Mitigating geolocation errors in nighttime light satellite data and global CO2 emission gridded data

dc.citation.epage316
dc.citation.issue2
dc.citation.spage304
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationУніверситети космічної дослідницької асоціації
dc.contributor.affiliationУніверситет Меріленда
dc.contributor.affiliationУніверситет Осака
dc.contributor.affiliationУніверситет WSB
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUniversities Space Research Association
dc.contributor.affiliationUniversity of Maryland
dc.contributor.affiliationOsaka University
dc.contributor.affiliationWSB University
dc.contributor.authorКінах, В.
dc.contributor.authorОда, Т.
dc.contributor.authorБунь, Р.
dc.contributor.authorНовіцька, О.
dc.contributor.authorKinakh, V.
dc.contributor.authorOda, T.
dc.contributor.authorBun, R.
dc.contributor.authorNovitska, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-24T07:21:47Z
dc.date.available2023-10-24T07:21:47Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractТочне геопросторове моделювання емісії парникових газів (ПГ) є важливою частиною майбутньої глобальної системи моніторингу цих газів. У нашій попередній роботі було виявлено систематичний зсув у глобальних відкритих растрових даних про антропогенні емісії діоксиду вуглецю (CO2) (ODIAC дані). Виявляється, що цей зсув зумовлений зміщенням геолокації первинних даних про нічне освітлення (NTL) супутникової програми метеорологічного моніторингу (DMSP програми), які використовуються як просторові індикатори для оцінювання розподілу неточкових джерел емісії в ODIAC. Зменшення такої похибки геолокації (∼ 1.7 км), яка є того ж порядку, що і величина комірки растру супутників, що здійснюють моніторинг вуглецю, є особливо критичним для просторового аналізу емісій міст. У цій роботі запропоновано метод компенсації зміщення геолокації даних NTL DMSP, який можна застосувати до геопросторових продуктів на основі цих даних, зокрема до даних ODIAC. Для виявлення та оцінювання зміщення геолокації застосовано репозиторій OpenStreetMap, щоб визначити межі великого числа міст з усієї планети. Використано припущення, що сумарні емісії у межах міста є максимальними, якщо у NTL даних нічного освітлення відсутнє зміщення (зсув геолокації). Тому ми шукали оптимальний вектор (відстань та кут), який максимізує сумарні ODIAC емісії у містах, шляхом зміщення емісійних полів. У процесі підготовки річних композитів даних нічного освітлення деяким пікселям DMSP даних, які відповідають водним об’єктам, було присвоєно нульові значення, що із-за зміщення геолокації необґрунтовано спотворило ODIAC емісійні поля. Тому запропоновано оригінальний підхід до відновлення даних у таких пікселях, що усунуло фактор, який спотворював емісійні поля ODIAC. Розроблено також метод корекції зсувів для зміщених емісійних полів ODIAC даних високої роздільної здатності. Процедуру корекції зсувів застосовано до емісійних даних багатьох міст з різних континентів. Показано, що така корекція (усунення похибки геолокації в полях неточкових джерел емісії) збільшує сумарні емісії CO2 у межах міст у середньому на 4.76% шляхом відповідного зменшення емісії з позаміських регіонів, куди ці емісії початково бути помилково віднесені.
dc.description.abstractAccurate geospatial modeling of greenhouse gas (GHG) emissions is an essential part of the future of global GHG monitoring systems. Our previous work found a systematic displacement in the high-resolution carbon dioxide (CO2) emission raster data of the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission product. It turns out this displacement is due to geolocation bias in the Defense Meteorological Satellite Program (DMSP) nighttime lights (NTL) data products, which are used as a spatial emission proxy for estimating non-point source emissions distributions in ODIAC. Mitigating such geolocation error (∼ 1.7 km), which is on the same order of the size of the carbon observing satellites field of view, is especially critical for the spatial analysis of emissions from cities. In this paper, there is proposed a method to mitigate the geolocation bias in DMSP NTL data that can be applied to DMSP NTL-based geospatial products, such as ODIAC. To identify and characterize the geolocation bias, we used the OpenStreetMap repository to define city boundaries for a large number of global cities. Assumption is that the total emissions within the city boundaries are at the maximum if there is no displacement (geolocation bias) in NTL data. Therefore, it is necessary to find an optimal vector (distance and angle) that maximizes the ODIAC total emissions within cities by shifting the emission fields. In the process of preparing annual composites of the nighttime stable lights data, some pixels of the DMSP data corresponding to water bodies were zeroed, which due to the geolocation bias unreasonably distorted the ODIAC emission fields. Hence, an original approach for restoring data in such pixels is considered using elimination of the factor that distorted the ODIAC emission fields. It is also proposed a bias correction method for shifted high-resolution emission fields in ODIAC. The bias correction was applied to multiple cities from the different continents. It is shown that the bias correction to the emission data (elimination of geolocation error in non-point emission source fields) increases the total CO2 emissions within city boundaries by 4.76% on average, due to reduced emissions from non-urban areas to which these emissions were likely to be erroneously attributed.
dc.format.extent304-316
dc.format.pages13
dc.identifier.citationMitigating geolocation errors in nighttime light satellite data and global CO2 emission gridded data / V. Kinakh, T. Oda, R. Bun, O. Novitska // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 304–316.
dc.identifier.citationenMitigating geolocation errors in nighttime light satellite data and global CO2 emission gridded data / V. Kinakh, T. Oda, R. Bun, O. Novitska // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 304–316.
dc.identifier.doidoi.org/10.23939/mmc2021.02.304
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60384
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (8), 2021
dc.relation.references[1] Yeh C., Perez A., Driscoll A., Azzari G., Tang Z., Lobell D., Ermon S., Burke M. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat. Commun. 11 (1), 1–11 (2020).
dc.relation.references[2] Lespinas F., Wang Y., Broquet G., Breon F.-M., Buchwitz M., Reuter M., Meijer Y., Loescher A., Janssens-Maenhout G., Zheng B., Ciais P. The potential of a constellation of low earth orbit satellite imagers to monitor worldwide fossil fuel CO2 emissions from large cities and point sources. Carbon Balance and Management. 15 (1), 18 (2020).
dc.relation.references[3] Sutton P., Dar R., Elvidge C., Kimberly B. An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 22 (16), 3061–3076 (2001).
dc.relation.references[4] Bennett M. M., Smith L. C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 192, 176–197 (2017).
dc.relation.references[5] Elvidge C. D., Baugh K. E., Kihn E. A., Kroehl H. W., Davis E. R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Rem. S. 63, 727–734 (1997).
dc.relation.references[6] Baugh K., Elvidge C., Ghosh T., Ziskin D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. of the Asia-Pacific Advanced Network. 30, 114–130 (2010).
dc.relation.references[7] DMSP OLS. Nighttime Lights Time Series Version 4, Defense Meteorological Program Operational Linescan System. https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
dc.relation.references[8] Small C., Pozzi F., Elvidge C. D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 96 (3–4), 277–291 (2005).
dc.relation.references[9] Ghosh T., Anderson S. J., Elvidge C. D., Sutton P. C. Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability. 5, 4988–5019 (2013).
dc.relation.references[10] Bruederle A., Hodler R. Nighttime lights as a proxy for human development at the local level. PLoS ONE. 13 (9), e0202231 (2018).
dc.relation.references[11] Li L., Yu T., Zhao L., Zhan Y., Zheng F., Zhang Y., Mumtaz F., Wang C. Characteristics and trend analysis of the relationship between land surface temperature and nighttime light intensity levels over China. Infrared Phys. Techn. 97, 381–390 (2019).
dc.relation.references[12] Oda T., Maksyutov S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556 (2011).
dc.relation.references[13] Oda T., Maksyutov S., Andres R. J. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data. 10, 87–107 (2018).
dc.relation.references[14] ODIAC fossil fuel emission dataset. http://db.cger.nies.go.jp/dataset/ODIAC/
dc.relation.references[15] Chen J., Zhao F., Zeng N., Oda T. Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities. Carbon Balance and Management. 15 (9), 1–15 (2020).
dc.relation.references[16] Gaughan A.E., Oda T., Sorichetta A., Stevens F.R., Krauser L., Yetman G., Bun R., Bondarenko M., Nghiem S. V. Evaluation of gridded CO2 emissions from night-time lights compared with geospatiallyderived population distributions for Vietnam, Cambodia and Laos. IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 1625–1628 (2019).
dc.relation.references[17] Han P., Zeng N., Oda T., Lin X., Crippa M., Guan D., Janssens-Maenhout G., Ma X., Liu Z., Shan Y., Tao S., Wang H., Wang R., Wu L., Yun X., Zhang Q., Zhao F., Zheng B. Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories. Atmos. Chem. Phys. 20, 11371–11385 (2020).
dc.relation.references[18] Oda T., Bun R., Kinakh V., Topylko P., Halushchak M., Marland G., Lauvaux T., Jonas M., Maksyutov S., Nahorski Z., Lesiv M., Danylo O., Horabik-Pyzel J. Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitig. Adapt. Strat. Gl. 24 (6), 1007–1050 (2019).
dc.relation.references[19] Jokar Arsanjani J., Zipf A., Mooney P., Helbich M. OpenStreetMap in GIScience - Experiences, Research, and Applications. Springer (2015).
dc.relation.references[20] Bun R., Nahorski Z., Horabik-Pyzel J., Danylo O., See L., Charkovska N., Topylko P., Halushchak M., Lesiv M., Valakh M., Kinakh V. Development of a high resolution spatial inventory of GHG emissions for Poland from stationary and mobile sources. Mitig. Adapt. Strat. Gl. 24 (6), 853–881 (2019).
dc.relation.references[21] Charkovska N., Halushchak M., Bun R., Nahorski Z., Oda T., Jonas M., Topylko P. A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: Reducing the errors and uncertainties in global emission modelling. Mitig. Adapt. Strat. Gl. 24 (6), 941–968 (2019).
dc.relation.references[22] Danylo O., Bun R., See L., Charkovska N. High resolution spatial distribution of greenhouse gas emissions in the residential sector. Mitig. Adapt. Strat. Gl. 24 (6), 907–939 (2019).
dc.relation.references[23] Kinakh V., Bun R., Danylo O. Geoinformation technology for analysis and visualisation of high spatial resolution greenhouse gas emissions data using a cloud platform. Advances in Intelligent Systems and Computing II. 689, 217–229 (2018).
dc.relation.references[24] Crisp D., Pollock H. R., Rosenberg R., Chapsky L., Lee R. A. M., Oyafuso F. A., Frankenberg C., O’Dell C. W., Bruegge C. J., Doran G. B., Eldering A., Fisher B. M., Fu D., Gunson M. R., Mandrake L., Osterman G. B., Schwandner F. M., Sun K., Taylor T. E., Wennberg P. O., Wunch D. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10, 59–81 (2017).
dc.relation.references[25] Eldering A., Taylor T. E., O’Dell C. W., Pavlick R. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmos. Meas. Tech. 12, 2341–2370 (2019).
dc.relation.references[26] Zheng Z., Chen Y., Wu Z., Ye X., Guo G., Qian Q. The desaturation method of DMSP/OLS nighttime light data based on vector data: taking the rapidly urbanized China as an example. Int. J. Geogr. Inf. Sci. 33 (3), 431–453 (2018).
dc.relation.references[27] de Miguel A. S., Kyba C. C., Zamorano J., Gallego J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 10, 7829 (2020).
dc.relation.references[28] Li X., Zhou Y., Zhao M., Zhao X. A harmonized global nighttime light dataset 1992-2018. Scientific Data. 7, 168 (2020).
dc.relation.references[29] Letu H., Hara M., Tana G., Nishio F. A saturated light correction method for DMSP/OLS nighttime satellite imagery. IEEE T. Geosci. Remote. 50 (2), 389–396 (2012).
dc.relation.references[30] Zhenga Q., Wenga Q., Wang K. Correcting the Pixel Blooming Effect (PiBE) of DMSP-OLS nighttime light imagery. Remote Sens. Environ. 240, 111707 (2020).
dc.relation.references[31] Ash K., Mazur K. Identifying and correcting signal shift in DMSP-OLS data. Remote Sens. 12 (14), 2219 (2020).
dc.relation.references[32] Ren C., Yu Z., Deng K., Pan Y. Deblurring study of DMSP/OLS nighttime light data by RTSVD. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII3/W10 (2020).
dc.relation.references[33] Zheng Z., Yang Z., Chen Y., Wu Z., Marinello F. The interannual calibration and global nighttime light fluctuation assessment based on pixel-level linear regression analysis. Remote Sens. 11 (18), 2185 (2019).
dc.relation.references[34] Kinakh V., Oda T., Bun R. Formulating a geolocation bias correction for DMSP nighttime lights of global cities. Advances in Intelligent Systems and Computing V. 1293, 383–398 (2021).
dc.relation.referencesen[1] Yeh C., Perez A., Driscoll A., Azzari G., Tang Z., Lobell D., Ermon S., Burke M. Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nat. Commun. 11 (1), 1–11 (2020).
dc.relation.referencesen[2] Lespinas F., Wang Y., Broquet G., Breon F.-M., Buchwitz M., Reuter M., Meijer Y., Loescher A., Janssens-Maenhout G., Zheng B., Ciais P. The potential of a constellation of low earth orbit satellite imagers to monitor worldwide fossil fuel CO2 emissions from large cities and point sources. Carbon Balance and Management. 15 (1), 18 (2020).
dc.relation.referencesen[3] Sutton P., Dar R., Elvidge C., Kimberly B. An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 22 (16), 3061–3076 (2001).
dc.relation.referencesen[4] Bennett M. M., Smith L. C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 192, 176–197 (2017).
dc.relation.referencesen[5] Elvidge C. D., Baugh K. E., Kihn E. A., Kroehl H. W., Davis E. R. Mapping city lights with nighttime data from the DMSP operational linescan system. Photogramm. Eng. Rem. S. 63, 727–734 (1997).
dc.relation.referencesen[6] Baugh K., Elvidge C., Ghosh T., Ziskin D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. of the Asia-Pacific Advanced Network. 30, 114–130 (2010).
dc.relation.referencesen[7] DMSP OLS. Nighttime Lights Time Series Version 4, Defense Meteorological Program Operational Linescan System. https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
dc.relation.referencesen[8] Small C., Pozzi F., Elvidge C. D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 96 (3–4), 277–291 (2005).
dc.relation.referencesen[9] Ghosh T., Anderson S. J., Elvidge C. D., Sutton P. C. Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability. 5, 4988–5019 (2013).
dc.relation.referencesen[10] Bruederle A., Hodler R. Nighttime lights as a proxy for human development at the local level. PLoS ONE. 13 (9), e0202231 (2018).
dc.relation.referencesen[11] Li L., Yu T., Zhao L., Zhan Y., Zheng F., Zhang Y., Mumtaz F., Wang C. Characteristics and trend analysis of the relationship between land surface temperature and nighttime light intensity levels over China. Infrared Phys. Techn. 97, 381–390 (2019).
dc.relation.referencesen[12] Oda T., Maksyutov S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556 (2011).
dc.relation.referencesen[13] Oda T., Maksyutov S., Andres R. J. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data. 10, 87–107 (2018).
dc.relation.referencesen[14] ODIAC fossil fuel emission dataset. http://db.cger.nies.go.jp/dataset/ODIAC/
dc.relation.referencesen[15] Chen J., Zhao F., Zeng N., Oda T. Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities. Carbon Balance and Management. 15 (9), 1–15 (2020).
dc.relation.referencesen[16] Gaughan A.E., Oda T., Sorichetta A., Stevens F.R., Krauser L., Yetman G., Bun R., Bondarenko M., Nghiem S. V. Evaluation of gridded CO2 emissions from night-time lights compared with geospatiallyderived population distributions for Vietnam, Cambodia and Laos. IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 1625–1628 (2019).
dc.relation.referencesen[17] Han P., Zeng N., Oda T., Lin X., Crippa M., Guan D., Janssens-Maenhout G., Ma X., Liu Z., Shan Y., Tao S., Wang H., Wang R., Wu L., Yun X., Zhang Q., Zhao F., Zheng B. Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories. Atmos. Chem. Phys. 20, 11371–11385 (2020).
dc.relation.referencesen[18] Oda T., Bun R., Kinakh V., Topylko P., Halushchak M., Marland G., Lauvaux T., Jonas M., Maksyutov S., Nahorski Z., Lesiv M., Danylo O., Horabik-Pyzel J. Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitig. Adapt. Strat. Gl. 24 (6), 1007–1050 (2019).
dc.relation.referencesen[19] Jokar Arsanjani J., Zipf A., Mooney P., Helbich M. OpenStreetMap in GIScience - Experiences, Research, and Applications. Springer (2015).
dc.relation.referencesen[20] Bun R., Nahorski Z., Horabik-Pyzel J., Danylo O., See L., Charkovska N., Topylko P., Halushchak M., Lesiv M., Valakh M., Kinakh V. Development of a high resolution spatial inventory of GHG emissions for Poland from stationary and mobile sources. Mitig. Adapt. Strat. Gl. 24 (6), 853–881 (2019).
dc.relation.referencesen[21] Charkovska N., Halushchak M., Bun R., Nahorski Z., Oda T., Jonas M., Topylko P. A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: Reducing the errors and uncertainties in global emission modelling. Mitig. Adapt. Strat. Gl. 24 (6), 941–968 (2019).
dc.relation.referencesen[22] Danylo O., Bun R., See L., Charkovska N. High resolution spatial distribution of greenhouse gas emissions in the residential sector. Mitig. Adapt. Strat. Gl. 24 (6), 907–939 (2019).
dc.relation.referencesen[23] Kinakh V., Bun R., Danylo O. Geoinformation technology for analysis and visualisation of high spatial resolution greenhouse gas emissions data using a cloud platform. Advances in Intelligent Systems and Computing II. 689, 217–229 (2018).
dc.relation.referencesen[24] Crisp D., Pollock H. R., Rosenberg R., Chapsky L., Lee R. A. M., Oyafuso F. A., Frankenberg C., O’Dell C. W., Bruegge C. J., Doran G. B., Eldering A., Fisher B. M., Fu D., Gunson M. R., Mandrake L., Osterman G. B., Schwandner F. M., Sun K., Taylor T. E., Wennberg P. O., Wunch D. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10, 59–81 (2017).
dc.relation.referencesen[25] Eldering A., Taylor T. E., O’Dell C. W., Pavlick R. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmos. Meas. Tech. 12, 2341–2370 (2019).
dc.relation.referencesen[26] Zheng Z., Chen Y., Wu Z., Ye X., Guo G., Qian Q. The desaturation method of DMSP/OLS nighttime light data based on vector data: taking the rapidly urbanized China as an example. Int. J. Geogr. Inf. Sci. 33 (3), 431–453 (2018).
dc.relation.referencesen[27] de Miguel A. S., Kyba C. C., Zamorano J., Gallego J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 10, 7829 (2020).
dc.relation.referencesen[28] Li X., Zhou Y., Zhao M., Zhao X. A harmonized global nighttime light dataset 1992-2018. Scientific Data. 7, 168 (2020).
dc.relation.referencesen[29] Letu H., Hara M., Tana G., Nishio F. A saturated light correction method for DMSP/OLS nighttime satellite imagery. IEEE T. Geosci. Remote. 50 (2), 389–396 (2012).
dc.relation.referencesen[30] Zhenga Q., Wenga Q., Wang K. Correcting the Pixel Blooming Effect (PiBE) of DMSP-OLS nighttime light imagery. Remote Sens. Environ. 240, 111707 (2020).
dc.relation.referencesen[31] Ash K., Mazur K. Identifying and correcting signal shift in DMSP-OLS data. Remote Sens. 12 (14), 2219 (2020).
dc.relation.referencesen[32] Ren C., Yu Z., Deng K., Pan Y. Deblurring study of DMSP/OLS nighttime light data by RTSVD. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII3/W10 (2020).
dc.relation.referencesen[33] Zheng Z., Yang Z., Chen Y., Wu Z., Marinello F. The interannual calibration and global nighttime light fluctuation assessment based on pixel-level linear regression analysis. Remote Sens. 11 (18), 2185 (2019).
dc.relation.referencesen[34] Kinakh V., Oda T., Bun R. Formulating a geolocation bias correction for DMSP nighttime lights of global cities. Advances in Intelligent Systems and Computing V. 1293, 383–398 (2021).
dc.relation.urihttps://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
dc.relation.urihttp://db.cger.nies.go.jp/dataset/ODIAC/
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectдистанційне зондування
dc.subjectдані нічного освітлення
dc.subjectемісія парникових газів
dc.subjectзміщення супутникових даних
dc.subjectалгоритм аналізу зміщення
dc.subjectremote sensing
dc.subjectnighttime lights data
dc.subjectgreenhouse gas emission
dc.subjectsatellite data bias
dc.subjectbias analysis algorithm
dc.titleMitigating geolocation errors in nighttime light satellite data and global CO2 emission gridded data
dc.title.alternativeЗменшення похибок геолокації супутникових даних нічного освітлення та глобальних растрових даних про емісії CO2
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n2_Kinakh_V-Mitigating_geolocation_errors_304-316.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n2_Kinakh_V-Mitigating_geolocation_errors_304-316__COVER.png
Size:
428.25 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: