Model of biomineralization of ferrum compounds by Gallionella cells immobilized on contact loading of bioreactor

dc.citation.epage56
dc.citation.issue2
dc.citation.spage51
dc.citation.volume3
dc.contributor.affiliationНаціональний університет водного господарства та природокористування
dc.contributor.affiliationРівненський державний гуманітарний університет
dc.contributor.affiliationНаціональний технічний університет України “Київський політехнічний інститут імені Ігоря Сікорського”
dc.contributor.affiliationNational University of Water Environmental Engineering
dc.contributor.affiliationRivne State Humanitarian University
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.authorКвартенко, Олександр
dc.contributor.authorГрюк, Ірина
dc.contributor.authorСаблій, Лариса
dc.contributor.authorKvartenko, Oleksandr
dc.contributor.authorGryuk, Iryna
dc.contributor.authorSabliy, Larysa
dc.coverage.placenameLviv
dc.date.accessioned2018-09-05T13:56:51Z
dc.date.available2018-09-05T13:56:51Z
dc.date.created2017-11-10
dc.date.issued2017-11-10
dc.description.abstractУ підземних водах, незабруднених органічними сполуками, двовалентне залізо трапляється у формі гідрокарбонатів. Невід’ємним супутником іонів заліза є залізобактерії. У результаті проведеного літературного огляду встановлено, що дотепер не вивчено механізмів впливу додаткового джерела неорганічного вуглецю на процеси внутрішньоклітинного метаболізму бактерій роду Gallionella. Метою роботи є встановлення впливу додаткового джерела неорганічного вуглецю у вигляді Na2CO3 на процеси масообміну та швидкість біохімічного окиснення сполук заліза бактеріями Gallionella sp. та розроблення можливого механізму асиміляції неорганічного вуглецю до відновленого пентозофосфатного циклу. Комплексна схема активації метаболізму бактерій, яку ми розробили, свідчить про можливість підвищення енергетичної потужності відновленого пентозофосфатного циклу, прискорення циклів метаболізму та швидкості перекачування електронів через ферментативну систему клітини. Сукупність наведених процесів призводить до прискорення ферментативного окиснення іонів Fe2+ на поверхні клітини з кінцевим утворенням матриксних структур біомінералів та підвищення ефективності роботи біореакторів.
dc.description.abstractIn the underground waters not polluted by organic compounds the bivalent iron occurs in the form of hydrocarbonates. An inseparable part of ferrum ions are ferrum bacteria. As a result of the literature review carried out it is determined that up till present no mechanism of the impact of additional source of non-organic carbon on the processes of in-cellular metabolism of Gallionella type bacteria had been established. The aim of the paper is the determination of the effect of the additional source of non-organic carbon in the form of Na2CO3 on processes of metabolism and the rate of biochemical oxidation of iron compounds by bacteria Gallionella sp. and the development of the possible mechanism of the assimilation of non-organic carbon in the recovered pentose phosphate cycle. The comprehensive scheme of activating bacteria metabolism developed by us testifies to the possibility of increasing the energy capacity of recovered pentose phosphate cycle, the acceleration of metabolism cycles and the rate of pumping electrons via the fermentative cell system. The totality of presented processes results in speeding up the fermentative oxidation of Fe2+ on the surface of a cell with the final formation of matrix structures of biominerals and the increased efficiency of bioreactors operation.
dc.format.extent51-56
dc.format.pages6
dc.identifier.citationKvartenko O. Model of biomineralization of ferrum compounds by Gallionella cells immobilized on contact loading of bioreactor / Oleksandr Kvartenko, Iryna Gryuk, Larysa Sabliy // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 2. — P. 51–56.
dc.identifier.citationenKvartenko O. Model of biomineralization of ferrum compounds by Gallionella cells immobilized on contact loading of bioreactor / Oleksandr Kvartenko, Iryna Gryuk, Larysa Sabliy // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 2. — P. 51–56.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/42606
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (3), 2017
dc.relation.references[1] Czekalla, C. (1985). Quantitative Removal of Iron and Manganese by Microorganisms in Rapid Sand Filters (In Situ Investigations) / C. Czekalla, W. Mevius, H. Hanert // Water Supply. – Vol. 3. – Berlin “B”, pp. 111–123.
dc.relation.references[2] Seppänen H. (1991). Experiences of Biological iron and manganese removal in Finland. / H.Seppänen// Proc. IWEM ann. Sym. – No. 15(1). p. 9–11.
dc.relation.references[3] Mouchet, P. (1992). From Conventional to Biological Removal of Iron and Manganese in France / P. Mouchet, // Journal of the American Water Works Association. – 1992. – Vol. 84, No. 4, p. 158–167.
dc.relation.references[4] Mencha M. N. (2006). Ferrobacteria in water supply systems with underground water sources. / M. N. Mencha// Water Supply and Sanitary Engineering. – No. 7. p. 25–32 (in Russian).
dc.relation.references[5] Zhurba M. G. (2006). Biochemical deironing and demanganation of underground water / M. G.Zhurba, Zh. M. Govorova., A. N.Kvartenko, O. B. Govorov // Water Supply and Sanitary Engineering. – No. 9, part 2. pp. 17–23 (in Russian).
dc.relation.references[6] Gusev M. V., Mineeva L. A. (2003). Microbiology. Textbook. M.: Academy, – 464 p. (in Russian).
dc.relation.references[7] Emerson D., Field E., Chertkov O., Davenport K. W., Goodwin L., Munk C., Nolan M., Woyke T. (2013). Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Frontiers in Microbiology / Evolutionary and Genomic Microbiology. Vol. 4, Article 254. doi: 10.3389/fmicb.2013.00254.
dc.relation.references[8] Nicholls, D. G., and Ferguson, S J. (2002). Bioenergetics 3.London: Academic Press.
dc.relation.references[9] Refojo, P. N.,Teixeira, M.,and Pereira, M. M. (2012). The alternative complex III: properties and possible mechanisms for electron transfer and energy conservation. Biochim. Biophys. Acta 1817, 1852–1859. doi:10.1016/j.bbabio.2012.05.003
dc.relation.references[10] Gennis, R. B., and Stewart, V. (1996). “Respiration” in Escherichia coli and Salmonella Cellular and Molecular.
dc.relation.references[11] Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011). The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 1807, 1398–1413. doi: 10.1016/j.bbabio.2011.06.016.
dc.relation.references[12] Hallberg R., Ferris, F Grant (2004). Biomineralization by Gallionella. Geomicrobiology Journal. Vol. 21, P. 325–330.
dc.relation.references[13] Kvartenko A., Orlov V., Pletuk O. (2016). Research into the biosorption process of heavy metal ions by the sediments from stations of biological iron removal. Eastern-European Journal of Enterprise Technologies. Vol. 4, No. 10 (88), р. 37–43.
dc.relation.references[14] Bukreeva V.Yu., Grabovich M.Yu., Eprintsev A.T., Dubinina G.A. (2009). Sorption of colloidal compounds of iron and manganese oxides by means of iron bacteria on sandy loads of treatment facilities of water-lifting stations. / Sorption and chromatographic processes. Vol. 9. Iss. 4. P. 506–514 (in Russian).
dc.relation.referencesen[1] Czekalla, C. (1985). Quantitative Removal of Iron and Manganese by Microorganisms in Rapid Sand Filters (In Situ Investigations), C. Czekalla, W. Mevius, H. Hanert, Water Supply, Vol. 3, Berlin "B", pp. 111–123.
dc.relation.referencesen[2] Seppänen H. (1991). Experiences of Biological iron and manganese removal in Finland., H.Seppänen// Proc. IWEM ann. Sym, No. 15(1). p. 9–11.
dc.relation.referencesen[3] Mouchet, P. (1992). From Conventional to Biological Removal of Iron and Manganese in France, P. Mouchet,, Journal of the American Water Works Association, 1992, Vol. 84, No. 4, p. 158–167.
dc.relation.referencesen[4] Mencha M. N. (2006). Ferrobacteria in water supply systems with underground water sources., M. N. Mencha// Water Supply and Sanitary Engineering, No. 7. p. 25–32 (in Russian).
dc.relation.referencesen[5] Zhurba M. G. (2006). Biochemical deironing and demanganation of underground water, M. G.Zhurba, Zh. M. Govorova., A. N.Kvartenko, O. B. Govorov, Water Supply and Sanitary Engineering, No. 9, part 2. pp. 17–23 (in Russian).
dc.relation.referencesen[6] Gusev M. V., Mineeva L. A. (2003). Microbiology. Textbook. M., Academy, 464 p. (in Russian).
dc.relation.referencesen[7] Emerson D., Field E., Chertkov O., Davenport K. W., Goodwin L., Munk C., Nolan M., Woyke T. (2013). Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Frontiers in Microbiology, Evolutionary and Genomic Microbiology. Vol. 4, Article 254. doi: 10.3389/fmicb.2013.00254.
dc.relation.referencesen[8] Nicholls, D. G., and Ferguson, S J. (2002). Bioenergetics 3.London: Academic Press.
dc.relation.referencesen[9] Refojo, P. N.,Teixeira, M.,and Pereira, M. M. (2012). The alternative complex III: properties and possible mechanisms for electron transfer and energy conservation. Biochim. Biophys. Acta 1817, 1852–1859. doi:10.1016/j.bbabio.2012.05.003
dc.relation.referencesen[10] Gennis, R. B., and Stewart, V. (1996). "Respiration" in Escherichia coli and Salmonella Cellular and Molecular.
dc.relation.referencesen[11] Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011). The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 1807, 1398–1413. doi: 10.1016/j.bbabio.2011.06.016.
dc.relation.referencesen[12] Hallberg R., Ferris, F Grant (2004). Biomineralization by Gallionella. Geomicrobiology Journal. Vol. 21, P. 325–330.
dc.relation.referencesen[13] Kvartenko A., Orlov V., Pletuk O. (2016). Research into the biosorption process of heavy metal ions by the sediments from stations of biological iron removal. Eastern-European Journal of Enterprise Technologies. Vol. 4, No. 10 (88), r. 37–43.
dc.relation.referencesen[14] Bukreeva V.Yu., Grabovich M.Yu., Eprintsev A.T., Dubinina G.A. (2009). Sorption of colloidal compounds of iron and manganese oxides by means of iron bacteria on sandy loads of treatment facilities of water-lifting stations., Sorption and chromatographic processes. Vol. 9. Iss. 4. P. 506–514 (in Russian).
dc.rights.holder© 2017 The Authors. Published by Lviv Polytechnic National University
dc.subjectбіомінералізація сполук заліза
dc.subjectзалізобактерії
dc.subjectелектрони
dc.subjectдихальний ланцюг
dc.subjectbiomineralization of iron compounds
dc.subjectiron bacteria
dc.subjectelectrons
dc.subjectrespiratory chain
dc.titleModel of biomineralization of ferrum compounds by Gallionella cells immobilized on contact loading of bioreactor
dc.title.alternativeМодель біомінералізації сполук заліза клітинами Gallionella, іммобілізованими на контактному завантаженні біореактора
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2017v3n2_Kvartenko_O-Model_of_biomineralization_51-56.pdf
Size:
458.37 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2017v3n2_Kvartenko_O-Model_of_biomineralization_51-56__COVER.png
Size:
375.31 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.06 KB
Format:
Plain Text
Description: