Sonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions

dc.citation.epage87
dc.citation.issue1
dc.citation.spage82
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШепіда, М. В.
dc.contributor.authorСозанський, М. А.
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorМазур, А. С.
dc.contributor.authorКунтий, Орест Іванович
dc.contributor.authorShepida, M. V.
dc.contributor.authorSozanskyi, M. A.
dc.contributor.authorSukhatskiy, Yu. V.
dc.contributor.authorMazur, A. S.
dc.contributor.authorKuntyi, O. I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:39Z
dc.date.available2024-01-22T08:14:39Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractНаведено результати досліджень впливу головних параметрів (концентрації ПАР і температури) на синтез наночастинок срібла (AgNPs) соноелектрохімічним методом у розчинах полівінілпіролідону (PVP) за циклічної вольтрамперометрії (CVA). Показано, що ультразвукове поле (22 kHz) спричиняє зростання анодних і катодних струмів на – 30 %. Запропоновано схему утворення AgNPs із такими основними процесами: 1) розчинення жертовних срібних анодів за Е = 0.2...1.0 V з утворенням комплексного йона [AgPVP]+ ; 2) катодне й сонохімічне відновлення останнього до Ag(0); 3) формування AgNPs. Встановлено, що з підвищенням концентрації PVP від 1 до 4 g∙L-1 анодні та катодні струми зменшуються на 40–60 %. Зменшується також швидкість утворення AgNPs. Зростання анодних і катодних струмів і швидкості формування наночастинок у діапазоні 20–60 оС відповідає дифузійно-кінетичній дії температурного фактора. CVА криві практично не змінються в часі, що свідчить про стабільність анодних і катодних процесів за тривалого соноелектрохімічного синтезу. Характер UV-Vis колоїдних розчинів AgNPs у PVP із максимумом поглинання 405–410 нм однаковий у широкому діапазоні концентрацій наночастинок.
dc.description.abstractThe results of investigations of the influence of main parameters (surfactant concentration and temperature) on the synthesis of silver nanoparticles (AgNPs) by the sonoelectrochemical method in polyvinylpyrrolidone (PVP) solutions by cyclic voltammetry (CVA) are presented. It is shown that the ultrasonic field (22 kHz) leads to an increase in the anodic and cathodic currents by ~30 %. A scheme of the AgNPs formation has been proposed, which includes the following main processes: 1) dissolution of sacrificial silver anodes at E = 0.2...1.0 V with the formation of [AgPVP]+ complex ions; 2) cathodic and sonochemical reduction of the latter to Ag(0); 3) formation of AgNPs. It has been established that with an increase in PVP concentration from 1 to 4 g·L-1, the anodic and cathodic currents decrease by 40–60 %. The formation rate of AgNPs also decreases. The growth of anodic and cathodic currents and the formation rate of nanoparticles in the range of 20…60 °C corresponds to the diffusion-kinetic action of the temperature factor. The CVA curves practically do not change in time, which indicates the stability of anodic and cathodic processes at prolonged sonoelectrochemical synthesis. The character of the UV-Vis spectra of AgNPs colloidal solutions in PVP with the 405…410 nm absorption maximum is the same in a wide range of nanoparticle concentrations.
dc.format.extent82-87
dc.format.pages6
dc.identifier.citationSonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions / M. V. Shepida, M. A. Sozanskyi, Yu. V. Sukhatskiy, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 82–87.
dc.identifier.citationenSonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions / M. V. Shepida, M. A. Sozanskyi, Yu. V. Sukhatskiy, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 82–87.
dc.identifier.doidoi.org/ 10.23939/ctas2021.01.082
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60840
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Birkin, P. R., Offin, D. G., Joseph, P. F., & Leighton, T. G. (2005). Cavitation, shock waves and the invasive nature of sonoelectrochemistry. The Journal of Physical Chemistry B, 109(35), 16997–17005. https://doi.org/10.1021/jp051619w
dc.relation.references2. Sáez, V., & Mason, T. J. (2009). Sonoelectrochemical synthesis of nanoparticles. Molecules, 14(10), 4284–4299. https://doi.org/10.3390/molecules14104284
dc.relation.references3. Sakkas, P., Schneider, O., Martens, S., Thanou, P., Sourkouni, G., & Argirusis, C. (2012). Fundamental studies of sonoelectrochemical nanomaterials preparation. Journal of Applied Electrochemistry, 42(9), 763–777. https://doi.org/10.1007/s10800-012-0443-z
dc.relation.references4. Hihn, J. Y., Doche, M. L., Hallez, L., Taouil, A. E., & Pollet, B. G. (2018). Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes. The Electrochemical Society Interface, 27(3), 47. https://doi.org/10.1149/2.F05183if
dc.relation.references5. Islam, M. H., Paul, M. T., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics sonochemistry, 59, 104711. https://doi.org/10.1016/j.ultsonch.2019.104711
dc.relation.references6. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396–6399. https://doi.org/10.1021/la991507u
dc.relation.references7. Socol, Y., Abramson, O., Gedanken, A., Meshorer, Y., Berenstein, L., & Zaban, A. (2002). Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 18(12), 4736–4740. https://doi.org/10.1021/la015689f
dc.relation.references8. Jiang, L. P., Wang, A. N., Zhao, Y., Zhang, J. R., & Zhu, J. J. (2004). A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications, 7(4), 506–509. https://doi.org/10.1016/j.inoche.2004.02.003
dc.relation.references9. Liu, Y. C., & Lin, L. H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry communications, 6(11), 1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010
dc.relation.references10. Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116(2–3), 464–468. https://doi.org/10.1016/j.matchemphys.2009.04.004
dc.relation.references11. Kuntyi, O., Shepida, M., Sozanskyi, M., Sukhatskiy, Y., Mazur, A., Kytsya, A., & Bazylyak, L. (2020). Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution, 11(4), 12202–12214. https://doi.org/10.33263/BRIAC114.1220212214
dc.relation.references12. Pollet, B. G. (2010). The use of ultrasound for the fabrication of fuel cell materials. International Journal of Hydrogen Energy, 35(21), 11986–12004. https://doi.org/10.1016/j.ijhydene.2010.08.021
dc.relation.references13. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 14, 2773. https://doi.org/10.2147/IJN.S196472
dc.relation.references14. Mozaffari, S., Li, W., Dixit, M., Seifert, S., Lee, B., Kovarik, L., ... & Karim, A. M. (2019). The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Advances, 1(10), 4052–4066. https://doi.org/10.1039/C9NA00348G
dc.relation.references15. Kuntyi, О. І., Kytsya, А. R., Mertsalo, I. P., Mazur, А. S., Zozula, G. І., Bazylyak, L. I., & Тоpchak, R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid and Polymer Science, 297(5), 689–695. https://doi.org/10.1007/s00396-019-04488-4
dc.relation.references16. Kuntyi, O., Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., & Prokopalo, A. (2020). Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro & Nano Letters, 15(12), 802–807. https://doi.org/10.1049/mnl.2020.0195
dc.relation.references17. Kuntyi, O. I., Kytsya, А. R., Bondarenko, A. B., Mazur, А. S., Mertsalo, I. P., & Bazylyak, L. I. (2021). Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes. Colloid and Polymer Science, 1–9. https://doi.org/10.1007/s00396-021-04811-y
dc.relation.references18. Malina, D., Sobczak-Kupiec, A., Wzorek, Z., & Kowalski, Z. (2012). Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Digest Journal of Nanomaterials & Biostructures, 7(4).
dc.relation.references19. Yin, B., Ma, H., Wang, S., & Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). The Journal of Physical Chemistry B, 107(34), 8898–8904. https://doi.org/10.1021/jp0349031
dc.relation.references20. Zhang, Z., Zhao, B., & Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105–110. https://doi.org/10.1006/jssc.1996.0015
dc.relation.references21. Okitsu, K., & Cavalieri, F. (2018). Synthesis of metal nanomaterials with chemical and physical effects of ultrasound and acoustic cavitation. In Sonochemical Production of Nanomaterials, pp. 19–37. Springer, Cham. https://doi.org/10.1007/978-3-319-96734-9_2
dc.relation.referencesen1. Birkin, P. R., Offin, D. G., Joseph, P. F., & Leighton, T. G. (2005). Cavitation, shock waves and the invasive nature of sonoelectrochemistry. The Journal of Physical Chemistry B, 109(35), 16997–17005. https://doi.org/10.1021/jp051619w
dc.relation.referencesen2. Sáez, V., & Mason, T. J. (2009). Sonoelectrochemical synthesis of nanoparticles. Molecules, 14(10), 4284–4299. https://doi.org/10.3390/molecules14104284
dc.relation.referencesen3. Sakkas, P., Schneider, O., Martens, S., Thanou, P., Sourkouni, G., & Argirusis, C. (2012). Fundamental studies of sonoelectrochemical nanomaterials preparation. Journal of Applied Electrochemistry, 42(9), 763–777. https://doi.org/10.1007/s10800-012-0443-z
dc.relation.referencesen4. Hihn, J. Y., Doche, M. L., Hallez, L., Taouil, A. E., & Pollet, B. G. (2018). Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes. The Electrochemical Society Interface, 27(3), 47. https://doi.org/10.1149/2.F05183if
dc.relation.referencesen5. Islam, M. H., Paul, M. T., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics sonochemistry, 59, 104711. https://doi.org/10.1016/j.ultsonch.2019.104711
dc.relation.referencesen6. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396–6399. https://doi.org/10.1021/la991507u
dc.relation.referencesen7. Socol, Y., Abramson, O., Gedanken, A., Meshorer, Y., Berenstein, L., & Zaban, A. (2002). Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 18(12), 4736–4740. https://doi.org/10.1021/la015689f
dc.relation.referencesen8. Jiang, L. P., Wang, A. N., Zhao, Y., Zhang, J. R., & Zhu, J. J. (2004). A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications, 7(4), 506–509. https://doi.org/10.1016/j.inoche.2004.02.003
dc.relation.referencesen9. Liu, Y. C., & Lin, L. H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry communications, 6(11), 1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010
dc.relation.referencesen10. Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116(2–3), 464–468. https://doi.org/10.1016/j.matchemphys.2009.04.004
dc.relation.referencesen11. Kuntyi, O., Shepida, M., Sozanskyi, M., Sukhatskiy, Y., Mazur, A., Kytsya, A., & Bazylyak, L. (2020). Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution, 11(4), 12202–12214. https://doi.org/10.33263/BRIAC114.1220212214
dc.relation.referencesen12. Pollet, B. G. (2010). The use of ultrasound for the fabrication of fuel cell materials. International Journal of Hydrogen Energy, 35(21), 11986–12004. https://doi.org/10.1016/j.ijhydene.2010.08.021
dc.relation.referencesen13. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 14, 2773. https://doi.org/10.2147/IJN.S196472
dc.relation.referencesen14. Mozaffari, S., Li, W., Dixit, M., Seifert, S., Lee, B., Kovarik, L., ... & Karim, A. M. (2019). The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Advances, 1(10), 4052–4066. https://doi.org/10.1039/P.9NA00348G
dc.relation.referencesen15. Kuntyi, O. I., Kytsya, A. R., Mertsalo, I. P., Mazur, A. S., Zozula, G. I., Bazylyak, L. I., & Topchak, R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid and Polymer Science, 297(5), 689–695. https://doi.org/10.1007/s00396-019-04488-4
dc.relation.referencesen16. Kuntyi, O., Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., & Prokopalo, A. (2020). Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro & Nano Letters, 15(12), 802–807. https://doi.org/10.1049/mnl.2020.0195
dc.relation.referencesen17. Kuntyi, O. I., Kytsya, A. R., Bondarenko, A. B., Mazur, A. S., Mertsalo, I. P., & Bazylyak, L. I. (2021). Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes. Colloid and Polymer Science, 1–9. https://doi.org/10.1007/s00396-021-04811-y
dc.relation.referencesen18. Malina, D., Sobczak-Kupiec, A., Wzorek, Z., & Kowalski, Z. (2012). Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Digest Journal of Nanomaterials & Biostructures, 7(4).
dc.relation.referencesen19. Yin, B., Ma, H., Wang, S., & Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). The Journal of Physical Chemistry B, 107(34), 8898–8904. https://doi.org/10.1021/jp0349031
dc.relation.referencesen20. Zhang, Z., Zhao, B., & Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105–110. https://doi.org/10.1006/jssc.1996.0015
dc.relation.referencesen21. Okitsu, K., & Cavalieri, F. (2018). Synthesis of metal nanomaterials with chemical and physical effects of ultrasound and acoustic cavitation. In Sonochemical Production of Nanomaterials, pp. 19–37. Springer, Cham. https://doi.org/10.1007/978-3-319-96734-9_2
dc.relation.urihttps://doi.org/10.1021/jp051619w
dc.relation.urihttps://doi.org/10.3390/molecules14104284
dc.relation.urihttps://doi.org/10.1007/s10800-012-0443-z
dc.relation.urihttps://doi.org/10.1149/2.F05183if
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.104711
dc.relation.urihttps://doi.org/10.1021/la991507u
dc.relation.urihttps://doi.org/10.1021/la015689f
dc.relation.urihttps://doi.org/10.1016/j.inoche.2004.02.003
dc.relation.urihttps://doi.org/10.1016/j.elecom.2004.09.010
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2009.04.004
dc.relation.urihttps://doi.org/10.33263/BRIAC114.1220212214
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2010.08.021
dc.relation.urihttps://doi.org/10.2147/IJN.S196472
dc.relation.urihttps://doi.org/10.1039/C9NA00348G
dc.relation.urihttps://doi.org/10.1007/s00396-019-04488-4
dc.relation.urihttps://doi.org/10.1049/mnl.2020.0195
dc.relation.urihttps://doi.org/10.1007/s00396-021-04811-y
dc.relation.urihttps://doi.org/10.1021/jp0349031
dc.relation.urihttps://doi.org/10.1006/jssc.1996.0015
dc.relation.urihttps://doi.org/10.1007/978-3-319-96734-9_2
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectсоноелектрохімічний синтез
dc.subjectнаночастинки срібла
dc.subjectполівінілпіролідон
dc.subjectжертовні аноди
dc.subjectциклічна вольтамперометрія
dc.subject“зелений” синтез
dc.subjectsonoelectrochemical synthesis
dc.subjectsilver nanoparticles
dc.subjectpolyvinylpyrrolidone
dc.subjectsacrificial anodes
dc.subjectcyclic voltammetry
dc.subject“green” synthesis
dc.titleSonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions
dc.title.alternativeСоноелектрохімічний синтез наночастинок срібла у розчинах полівінілпіролідону
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Shepida_M_V-Sonoelectrochemical_synthesis_82-87.pdf
Size:
579.53 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Shepida_M_V-Sonoelectrochemical_synthesis_82-87__COVER.png
Size:
441.12 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: