Sonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions
dc.citation.epage | 87 | |
dc.citation.issue | 1 | |
dc.citation.spage | 82 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Шепіда, М. В. | |
dc.contributor.author | Созанський, М. А. | |
dc.contributor.author | Сухацький, Ю. В. | |
dc.contributor.author | Мазур, А. С. | |
dc.contributor.author | Кунтий, Орест Іванович | |
dc.contributor.author | Shepida, M. V. | |
dc.contributor.author | Sozanskyi, M. A. | |
dc.contributor.author | Sukhatskiy, Yu. V. | |
dc.contributor.author | Mazur, A. S. | |
dc.contributor.author | Kuntyi, O. I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:39Z | |
dc.date.available | 2024-01-22T08:14:39Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Наведено результати досліджень впливу головних параметрів (концентрації ПАР і температури) на синтез наночастинок срібла (AgNPs) соноелектрохімічним методом у розчинах полівінілпіролідону (PVP) за циклічної вольтрамперометрії (CVA). Показано, що ультразвукове поле (22 kHz) спричиняє зростання анодних і катодних струмів на – 30 %. Запропоновано схему утворення AgNPs із такими основними процесами: 1) розчинення жертовних срібних анодів за Е = 0.2...1.0 V з утворенням комплексного йона [AgPVP]+ ; 2) катодне й сонохімічне відновлення останнього до Ag(0); 3) формування AgNPs. Встановлено, що з підвищенням концентрації PVP від 1 до 4 g∙L-1 анодні та катодні струми зменшуються на 40–60 %. Зменшується також швидкість утворення AgNPs. Зростання анодних і катодних струмів і швидкості формування наночастинок у діапазоні 20–60 оС відповідає дифузійно-кінетичній дії температурного фактора. CVА криві практично не змінються в часі, що свідчить про стабільність анодних і катодних процесів за тривалого соноелектрохімічного синтезу. Характер UV-Vis колоїдних розчинів AgNPs у PVP із максимумом поглинання 405–410 нм однаковий у широкому діапазоні концентрацій наночастинок. | |
dc.description.abstract | The results of investigations of the influence of main parameters (surfactant concentration and temperature) on the synthesis of silver nanoparticles (AgNPs) by the sonoelectrochemical method in polyvinylpyrrolidone (PVP) solutions by cyclic voltammetry (CVA) are presented. It is shown that the ultrasonic field (22 kHz) leads to an increase in the anodic and cathodic currents by ~30 %. A scheme of the AgNPs formation has been proposed, which includes the following main processes: 1) dissolution of sacrificial silver anodes at E = 0.2...1.0 V with the formation of [AgPVP]+ complex ions; 2) cathodic and sonochemical reduction of the latter to Ag(0); 3) formation of AgNPs. It has been established that with an increase in PVP concentration from 1 to 4 g·L-1, the anodic and cathodic currents decrease by 40–60 %. The formation rate of AgNPs also decreases. The growth of anodic and cathodic currents and the formation rate of nanoparticles in the range of 20…60 °C corresponds to the diffusion-kinetic action of the temperature factor. The CVA curves practically do not change in time, which indicates the stability of anodic and cathodic processes at prolonged sonoelectrochemical synthesis. The character of the UV-Vis spectra of AgNPs colloidal solutions in PVP with the 405…410 nm absorption maximum is the same in a wide range of nanoparticle concentrations. | |
dc.format.extent | 82-87 | |
dc.format.pages | 6 | |
dc.identifier.citation | Sonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions / M. V. Shepida, M. A. Sozanskyi, Yu. V. Sukhatskiy, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 82–87. | |
dc.identifier.citationen | Sonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions / M. V. Shepida, M. A. Sozanskyi, Yu. V. Sukhatskiy, A. S. Mazur, O. I. Kuntyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 82–87. | |
dc.identifier.doi | doi.org/ 10.23939/ctas2021.01.082 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60840 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Birkin, P. R., Offin, D. G., Joseph, P. F., & Leighton, T. G. (2005). Cavitation, shock waves and the invasive nature of sonoelectrochemistry. The Journal of Physical Chemistry B, 109(35), 16997–17005. https://doi.org/10.1021/jp051619w | |
dc.relation.references | 2. Sáez, V., & Mason, T. J. (2009). Sonoelectrochemical synthesis of nanoparticles. Molecules, 14(10), 4284–4299. https://doi.org/10.3390/molecules14104284 | |
dc.relation.references | 3. Sakkas, P., Schneider, O., Martens, S., Thanou, P., Sourkouni, G., & Argirusis, C. (2012). Fundamental studies of sonoelectrochemical nanomaterials preparation. Journal of Applied Electrochemistry, 42(9), 763–777. https://doi.org/10.1007/s10800-012-0443-z | |
dc.relation.references | 4. Hihn, J. Y., Doche, M. L., Hallez, L., Taouil, A. E., & Pollet, B. G. (2018). Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes. The Electrochemical Society Interface, 27(3), 47. https://doi.org/10.1149/2.F05183if | |
dc.relation.references | 5. Islam, M. H., Paul, M. T., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics sonochemistry, 59, 104711. https://doi.org/10.1016/j.ultsonch.2019.104711 | |
dc.relation.references | 6. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396–6399. https://doi.org/10.1021/la991507u | |
dc.relation.references | 7. Socol, Y., Abramson, O., Gedanken, A., Meshorer, Y., Berenstein, L., & Zaban, A. (2002). Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 18(12), 4736–4740. https://doi.org/10.1021/la015689f | |
dc.relation.references | 8. Jiang, L. P., Wang, A. N., Zhao, Y., Zhang, J. R., & Zhu, J. J. (2004). A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications, 7(4), 506–509. https://doi.org/10.1016/j.inoche.2004.02.003 | |
dc.relation.references | 9. Liu, Y. C., & Lin, L. H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry communications, 6(11), 1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010 | |
dc.relation.references | 10. Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116(2–3), 464–468. https://doi.org/10.1016/j.matchemphys.2009.04.004 | |
dc.relation.references | 11. Kuntyi, O., Shepida, M., Sozanskyi, M., Sukhatskiy, Y., Mazur, A., Kytsya, A., & Bazylyak, L. (2020). Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution, 11(4), 12202–12214. https://doi.org/10.33263/BRIAC114.1220212214 | |
dc.relation.references | 12. Pollet, B. G. (2010). The use of ultrasound for the fabrication of fuel cell materials. International Journal of Hydrogen Energy, 35(21), 11986–12004. https://doi.org/10.1016/j.ijhydene.2010.08.021 | |
dc.relation.references | 13. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 14, 2773. https://doi.org/10.2147/IJN.S196472 | |
dc.relation.references | 14. Mozaffari, S., Li, W., Dixit, M., Seifert, S., Lee, B., Kovarik, L., ... & Karim, A. M. (2019). The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Advances, 1(10), 4052–4066. https://doi.org/10.1039/C9NA00348G | |
dc.relation.references | 15. Kuntyi, О. І., Kytsya, А. R., Mertsalo, I. P., Mazur, А. S., Zozula, G. І., Bazylyak, L. I., & Тоpchak, R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid and Polymer Science, 297(5), 689–695. https://doi.org/10.1007/s00396-019-04488-4 | |
dc.relation.references | 16. Kuntyi, O., Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., & Prokopalo, A. (2020). Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro & Nano Letters, 15(12), 802–807. https://doi.org/10.1049/mnl.2020.0195 | |
dc.relation.references | 17. Kuntyi, O. I., Kytsya, А. R., Bondarenko, A. B., Mazur, А. S., Mertsalo, I. P., & Bazylyak, L. I. (2021). Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes. Colloid and Polymer Science, 1–9. https://doi.org/10.1007/s00396-021-04811-y | |
dc.relation.references | 18. Malina, D., Sobczak-Kupiec, A., Wzorek, Z., & Kowalski, Z. (2012). Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Digest Journal of Nanomaterials & Biostructures, 7(4). | |
dc.relation.references | 19. Yin, B., Ma, H., Wang, S., & Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). The Journal of Physical Chemistry B, 107(34), 8898–8904. https://doi.org/10.1021/jp0349031 | |
dc.relation.references | 20. Zhang, Z., Zhao, B., & Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105–110. https://doi.org/10.1006/jssc.1996.0015 | |
dc.relation.references | 21. Okitsu, K., & Cavalieri, F. (2018). Synthesis of metal nanomaterials with chemical and physical effects of ultrasound and acoustic cavitation. In Sonochemical Production of Nanomaterials, pp. 19–37. Springer, Cham. https://doi.org/10.1007/978-3-319-96734-9_2 | |
dc.relation.referencesen | 1. Birkin, P. R., Offin, D. G., Joseph, P. F., & Leighton, T. G. (2005). Cavitation, shock waves and the invasive nature of sonoelectrochemistry. The Journal of Physical Chemistry B, 109(35), 16997–17005. https://doi.org/10.1021/jp051619w | |
dc.relation.referencesen | 2. Sáez, V., & Mason, T. J. (2009). Sonoelectrochemical synthesis of nanoparticles. Molecules, 14(10), 4284–4299. https://doi.org/10.3390/molecules14104284 | |
dc.relation.referencesen | 3. Sakkas, P., Schneider, O., Martens, S., Thanou, P., Sourkouni, G., & Argirusis, C. (2012). Fundamental studies of sonoelectrochemical nanomaterials preparation. Journal of Applied Electrochemistry, 42(9), 763–777. https://doi.org/10.1007/s10800-012-0443-z | |
dc.relation.referencesen | 4. Hihn, J. Y., Doche, M. L., Hallez, L., Taouil, A. E., & Pollet, B. G. (2018). Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes. The Electrochemical Society Interface, 27(3), 47. https://doi.org/10.1149/2.F05183if | |
dc.relation.referencesen | 5. Islam, M. H., Paul, M. T., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics sonochemistry, 59, 104711. https://doi.org/10.1016/j.ultsonch.2019.104711 | |
dc.relation.referencesen | 6. Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16(16), 6396–6399. https://doi.org/10.1021/la991507u | |
dc.relation.referencesen | 7. Socol, Y., Abramson, O., Gedanken, A., Meshorer, Y., Berenstein, L., & Zaban, A. (2002). Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 18(12), 4736–4740. https://doi.org/10.1021/la015689f | |
dc.relation.referencesen | 8. Jiang, L. P., Wang, A. N., Zhao, Y., Zhang, J. R., & Zhu, J. J. (2004). A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications, 7(4), 506–509. https://doi.org/10.1016/j.inoche.2004.02.003 | |
dc.relation.referencesen | 9. Liu, Y. C., & Lin, L. H. (2004). New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry communications, 6(11), 1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010 | |
dc.relation.referencesen | 10. Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116(2–3), 464–468. https://doi.org/10.1016/j.matchemphys.2009.04.004 | |
dc.relation.referencesen | 11. Kuntyi, O., Shepida, M., Sozanskyi, M., Sukhatskiy, Y., Mazur, A., Kytsya, A., & Bazylyak, L. (2020). Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution, 11(4), 12202–12214. https://doi.org/10.33263/BRIAC114.1220212214 | |
dc.relation.referencesen | 12. Pollet, B. G. (2010). The use of ultrasound for the fabrication of fuel cell materials. International Journal of Hydrogen Energy, 35(21), 11986–12004. https://doi.org/10.1016/j.ijhydene.2010.08.021 | |
dc.relation.referencesen | 13. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 14, 2773. https://doi.org/10.2147/IJN.S196472 | |
dc.relation.referencesen | 14. Mozaffari, S., Li, W., Dixit, M., Seifert, S., Lee, B., Kovarik, L., ... & Karim, A. M. (2019). The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Advances, 1(10), 4052–4066. https://doi.org/10.1039/P.9NA00348G | |
dc.relation.referencesen | 15. Kuntyi, O. I., Kytsya, A. R., Mertsalo, I. P., Mazur, A. S., Zozula, G. I., Bazylyak, L. I., & Topchak, R. V. (2019). Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid and Polymer Science, 297(5), 689–695. https://doi.org/10.1007/s00396-019-04488-4 | |
dc.relation.referencesen | 16. Kuntyi, O., Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., & Prokopalo, A. (2020). Electrochemical synthesis of silver nanoparticles in solutions of rhamnolipid. Micro & Nano Letters, 15(12), 802–807. https://doi.org/10.1049/mnl.2020.0195 | |
dc.relation.referencesen | 17. Kuntyi, O. I., Kytsya, A. R., Bondarenko, A. B., Mazur, A. S., Mertsalo, I. P., & Bazylyak, L. I. (2021). Microplasma synthesis of silver nanoparticles in PVP solutions using sacrificial silver anodes. Colloid and Polymer Science, 1–9. https://doi.org/10.1007/s00396-021-04811-y | |
dc.relation.referencesen | 18. Malina, D., Sobczak-Kupiec, A., Wzorek, Z., & Kowalski, Z. (2012). Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Digest Journal of Nanomaterials & Biostructures, 7(4). | |
dc.relation.referencesen | 19. Yin, B., Ma, H., Wang, S., & Chen, S. (2003). Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). The Journal of Physical Chemistry B, 107(34), 8898–8904. https://doi.org/10.1021/jp0349031 | |
dc.relation.referencesen | 20. Zhang, Z., Zhao, B., & Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105–110. https://doi.org/10.1006/jssc.1996.0015 | |
dc.relation.referencesen | 21. Okitsu, K., & Cavalieri, F. (2018). Synthesis of metal nanomaterials with chemical and physical effects of ultrasound and acoustic cavitation. In Sonochemical Production of Nanomaterials, pp. 19–37. Springer, Cham. https://doi.org/10.1007/978-3-319-96734-9_2 | |
dc.relation.uri | https://doi.org/10.1021/jp051619w | |
dc.relation.uri | https://doi.org/10.3390/molecules14104284 | |
dc.relation.uri | https://doi.org/10.1007/s10800-012-0443-z | |
dc.relation.uri | https://doi.org/10.1149/2.F05183if | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2019.104711 | |
dc.relation.uri | https://doi.org/10.1021/la991507u | |
dc.relation.uri | https://doi.org/10.1021/la015689f | |
dc.relation.uri | https://doi.org/10.1016/j.inoche.2004.02.003 | |
dc.relation.uri | https://doi.org/10.1016/j.elecom.2004.09.010 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2009.04.004 | |
dc.relation.uri | https://doi.org/10.33263/BRIAC114.1220212214 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2010.08.021 | |
dc.relation.uri | https://doi.org/10.2147/IJN.S196472 | |
dc.relation.uri | https://doi.org/10.1039/C9NA00348G | |
dc.relation.uri | https://doi.org/10.1007/s00396-019-04488-4 | |
dc.relation.uri | https://doi.org/10.1049/mnl.2020.0195 | |
dc.relation.uri | https://doi.org/10.1007/s00396-021-04811-y | |
dc.relation.uri | https://doi.org/10.1021/jp0349031 | |
dc.relation.uri | https://doi.org/10.1006/jssc.1996.0015 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-96734-9_2 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | соноелектрохімічний синтез | |
dc.subject | наночастинки срібла | |
dc.subject | полівінілпіролідон | |
dc.subject | жертовні аноди | |
dc.subject | циклічна вольтамперометрія | |
dc.subject | “зелений” синтез | |
dc.subject | sonoelectrochemical synthesis | |
dc.subject | silver nanoparticles | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | sacrificial anodes | |
dc.subject | cyclic voltammetry | |
dc.subject | “green” synthesis | |
dc.title | Sonoelectrochemical synthesis of silver nanoparticles in polyvinylpyrrolidone solutions | |
dc.title.alternative | Соноелектрохімічний синтез наночастинок срібла у розчинах полівінілпіролідону | |
dc.type | Article |
Files
License bundle
1 - 1 of 1