Modern Use of Biochar in Various Technologies and Industries. A Review

dc.citation.epage243
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage232
dc.citation.volume18
dc.contributor.affiliationNational Technical University “Kharkiv Polytechnic Institute”
dc.contributor.affiliationRiga Technical University
dc.contributor.affiliationState University of Economics and Technology
dc.contributor.authorMiroshnichenko, Denis
dc.contributor.authorZhylina, Maryna
dc.contributor.authorShmeltser, Kateryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:48:00Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПроаналізовано використання деревного вугілля для різних галузей промисловості (як сорбенту, палива, відновника в металургійній промисловості, компонента вугільних шихт коксування, біокомпозитів, модифікації вибухових речовин тощо). Зазначено, що напрям використання залежить від якості та характеристик деревного вугілля (розмір, фізичні властивості, хімічний склад), які обумовлені природою сировини (деревина або відходи сільського господарства), її хімічним складом, температурою карбонізації.
dc.description.abstractThe article analyzes the use of biochar in various industries and the national economy (as a sorbent, fuel, reducing agent in the metallurgical industry, a component of coal coke blends, biocomposites, modification of explosives, fertilizers, etc.) It is noted that the direction of use depends on the quality and characteristics of biochar (size, physical properties, chemical composition), which are determined by the nature of the raw material, its chemical composition and carbonization temperature.
dc.format.extent232-243
dc.format.pages12
dc.identifier.citationMiroshnichenko D. Modern Use of Biochar in Various Technologies and Industries. A Review / Denis Miroshnichenko, Maryna Zhylina, Kateryna Shmeltser // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 232–243.
dc.identifier.citationenMiroshnichenko D. Modern Use of Biochar in Various Technologies and Industries. A Review / Denis Miroshnichenko, Maryna Zhylina, Kateryna Shmeltser // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 232–243.
dc.identifier.doidoi.org/10.23939/chcht18.02.232
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111800
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Łaska, G.; Ige, A.R. A Review: Assessment of Domestic Solid Fuel Sources in Nigeria. Energies 2023, 16, 4722. https://doi.org/10.3390/en16124722
dc.relation.references[2] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Bautista Contreras, A.; Hassan, N.; Abd ElRasoul, A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
dc.relation.references[3] Malik, I.K.; Miroshnichenko, D.V.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. Prediction of the Higher Heating Value of Charcoal. Pet. Coal 2022, 64, 100–105.
dc.relation.references[4] Long, J.M.; Boyette, M.D. Analysis of Micronized Charcoal for Use in a Liquid Fuel Slurry. Energies 2017, 10, 25. https://doi.org/10.3390/en10010025
dc.relation.references[5] Straka, T.J. Charcoal as a Fuel in the Ironmaking and Smelting Industries. Advances in Historical Studies 2017, 6, 56–64. https://doi.org/10.4236/ahs.2017.61004
dc.relation.references[6] Miroshnichenko, D.; Shmeltser, K.; Kormer, M. Factors Affecting the Formation the Carbon Structure of coke and the Method of Stabilizing its Physical and Mechanical Properties. C-Journal of Carbon Research 2023, 9, 66. https://doi.org/10.3390/c9030066
dc.relation.references[7] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328–336. https://doi.org/10.23939/chcht16.02.328
dc.relation.references[8] Drozdnik, I.D.; Miroshnichenko, D.V.; Shmeltser, E.O.; Kormer, M.V.; Pyshyev, S.V. Investigation of Possible Losses of Coal Raw Materials During its Technological Preparation for Coking Message. 1. The Actual Mass Variation of Coal in the Process of its Storage and Crushing. Pet. Coal 2019, 61, 631–637.
dc.relation.references[9] Lyalyuk, V.P., Shmeltser, E.O., Kassim, D.A. Improving the technology production of coke for blast furnace smelting; Octan Print: Praga, 2022.
dc.relation.references[10] Ng, K.W.; MacPhee, J.A.; Giroux, L.; Todoschuk, T. Reactivity of Bio-Coke with CO2. Fuel Process. Technol. 2011, 92, 801–804. https://doi.org/10.1016/j.fuproc.2010.08.005
dc.relation.references[11] Jahanshani, S.; Mathieson, J.G.; Somerville, M.A.; Haque, N.; Norgate, T.E.; Deev, A.; Pan, Y.; Xie, D.; Ridgeway, P.; Zulli, P. Development of Low-Emission Integrated Steelmaking Process. J. Sustain. Metall. 2015, 1, 94–114. https://doi.org/10.1007/s40831-015-0008-6
dc.relation.references[12] Suopajärvi, H.; Pongrácz, E.; Fabritius, T. The potential of Using Biomass-Based Reducing Agents in the Blast Furnace: A Review of Thermochemical Conversion Technologies and Assessments Related to Sustainability. Renew. Sust. Energ. Rev. 2013, 25, 511–528. https://doi.org/10.1016/j.rser.2013.05.005
dc.relation.references[13] Suopajärvi, H.; Dahl, Е.; Kemppainen, А.; Gornostayev, S.; Koskela, А.; Fabritius, Т. Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity. Energies 2017, 10, 1850. https://doi.org/10.3390/en10111850
dc.relation.references[14] Suopajärvi, H.; Kemppainen, A.; Haapakangas, J.; Fabritius, T. Extensive Review of the Opportunities to Use Biomass-Based Fuels in Iron and Steelmaking Processes. J. Clean. Prod. 2017, 148, 709–734. https://doi.org/10.1016/j.jclepro.2017.02.029
dc.relation.references[15] Sundqvist Ökvist, L.; Lundgren, M. Experiences of Bio-Coal Applications in the Blast Furnace Process-Opportunities and Limitations. Minerals 2021, 11, 863. https://doi.org/10.3390/min11080863
dc.relation.references[16] Brooks, В.; Khoshk Rish, S.; Lomas, Н.; Jayasekara, А.; Tahmasebi, А. Advances in Low Carbon Cokemaking – Influence of Alternative Raw Materials and Coal Properties on Coke Quality. J Anal Appl Pyrolysis 2023, 173, 106083. https://doi.org/10.1016/j.jaap.2023.106083
dc.relation.references[17] Suopajäarvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romard, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N., et al. Use of Biomass in Integrated Steelmaking—Status Quo, Future Needs and Comparison to other Low-CO2 Steel Production Technologies. Appl. Energy 2018, 213, 384–407. https://doi.org/10.1016/j.apenergy.2018.01.060
dc.relation.references[18] Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass Applications in Iron and Steel Industry: An Overview of Challenges and Opportunities. Renew. Sust. Energ. Rev. 2016, 65, 1247–1266. https://doi.org/10.1016/j.rser.2016.07.061
dc.relation.references[19] Mousa, E.A.; Ahmed, H.M.; Wang, C. Novel Approach towards Biomass Lignin Utilization in Ironmaking Blast Furnace. ISIJ Int. 2017, 57, 1788–96. https://doi.org/10.2355/isijinternational.ISIJINT-2017-127
dc.relation.references[20] Mathieson, J.G.; Somerville, M.; Deev, A.; Jahanshahi, S. Utilization of biomass as an alternative fuel in ironmaking. In Iron Ore: Mineralogy, Processing and Environmental Sustainability, 1st ed.; Lu, L., Ed.; Woodhead Publ. Elsevier Ltd.: Cambridge, UK, Waltham, MA, USA, 2015; pp 581–609. https://doi.org/10.1016/B978-1-78242-156-6.00019-8
dc.relation.references[21] Ooi, T.C.; Aries, E.; Ewan, B.C.; Thompson, D.; Anderson, D.R.; Fisher, R.; Fray, T.; Tognarelli, D. The Study of Sunflower Seed Husks as a Fuel in the Iron Ore Clinkering Process. Miner Eng 2008, 21, 167–77. https://doi.org/10.1016/j.mineng.2007.09.005
dc.relation.references[22] Gan, M.; Fan, X.; Ji, Z.; Jiang, T.; Chen, X.; Yu, Z.; Li, G.; Yin, L. Application of Biomass Fuel in Iron Ore Clinkering: Influencing Mechanism and Emission Reduction. Ironmak. Steelmak. 2015, 42, 27–33. https://doi.org/10.1179/1743281214Y.0000000194
dc.relation.references[23] Cheng, Z.; Yang, J.; Zhou, L.; Liu, Y.; Wang, Q. Characteristics of Charcoal Combustion and its Effects on Iron-Ore Clinkering Performance. Appl Energy 2016, 161, 364–374. https://doi.org/10.1016/j.apenergy.2015.09.095
dc.relation.references[24] Amanat, N.; Tsafnat, N.; Loo, B.C.E.; Jones, A.S. Metallurgical Coke: An Investigation into Compression Properties and Microstructure Using X-ray Microtomography. Scr. Mater. 2009, 60, 92–95. https://doi.org/10.1016/j.scriptamat.2008.09.003
dc.relation.references[25] Kim, S.Y.; Sasaki, Y. Simulation of Effect of Pore Structure on Coke Strength Using 3-dimensional Discrete Element Method. ISIJ Int. 2010, 50, 813–821. http://dx.doi.org/10.2355/isijinternational.50.813
dc.relation.references[26] Haapakangas, J.; Uusitalo, J.; Mattila, O.; Kokkonen, T.; Porter, D.; Fabritius, T. A Method for Evaluating Coke Hot Strength. Steel Res. Int. 2013, 84, 65–71. https://doi.org/10.1002/srin.201200078
dc.relation.references[27] Haapakangas, J.A.; Uusitalo, J.A.; Mattila, O.J.; Gornostayev, S.S.; Porter, D.A.; Fabritius, T. The Hot Strength of Industrial Cokes–Evaluation of Coke Properties that Affect Its High-Temperature Strength. Steel Res. Int. 2014, 85, 1608–1619. https://doi.org/10.1016/j.jfueco.2022.100082
dc.relation.references[28] Bittencourt Marques, M.; Rodrigues Assis, A.; Benício Dias, S.M.; Harley Araújo, F.; Junqueira dos Santos, R. Co-injeção de gás natural moinha de carvão vegetal e carvão mineral no alto-forno “A” da Arcelormittal Monlevade. In Proceedings of the 41 Seminário de Redução de Minério de Ferro e Matérias-Primas Conference, Vila Vehla, Brazil, 12–16 September 2011. https://doi.org/10.5151/2594-357X-24003
dc.relation.references[29] Mahottamananda, S.N.; Pal, Y.; Dinesh, M.; Ingenito, A. Beeswax – EVA/Activated-Charcoal-Based Fuels for Hybrid Rockets: Thermal and Ballistic Evaluation. Energies 2022, 15, 7578. https://doi.org/10.3390/en15207578
dc.relation.references[30] Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrisha, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Natural Resources 2016, 7, 108–114. http://dx.doi.org/10.4236/nr.2016.73011
dc.relation.references[31] Delatorre, F.M.; Cupertino, G.F.M.; Oliveira, M.P.; da Silva Gomes, F.; Profeti, L.P.R.; Profeti, D.; Júnior, M.G.; de Azevedo, M.G.; Saloni, D.; Júnior, A.F.D. A Novel Approach to Charcoal Fine Waste: Sustainable Use as Filling of Polymeric Matrices. Polymers 2022, 14, 5525. https://doi.org/10.3390/polym14245525
dc.relation.references[32] Delatorre, F.M.; Cupertino, G.F.M.; Pereira, A.K.S.; de Souza, E.C.; da Silva, Á.M.; Ucella Filho, J.G.M.; Saloni, D.; Profeti, L.P.R.; Profeti, D.; Dias Júnior, A.F. Photoluminous Response of Biocomposites Produced with Charcoal. Polymers 2023, 15, 3788. https://doi.org/10.3390/polym15183788
dc.relation.references[33] Delatorre, F.M.; Pereira, A.K.S.; da Silva, Á.M.; de Souza, E.C.; Oliveira, M.P.; Profeti, D.; Profeti, L.P.R.; Dias Júnior, A.F. The Addition of Charcoal Fines Can Increase the Photodegradation Resistance of Polymeric Biocomposites. Environ. Sci. Proc. 2022, 13, 8. https://doi.org/10.3390/IECF2021-10812
dc.relation.references[34] Das, S.C.; Ashek-E-Khoda, S.; Sayeed, M.A.; Paul, D.; Dhar, S.A.; Grammatikos, S.A. On the Use of Wood Charcoal Filler to Improve the Properties of Natural Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 44, 926–929. https://doi.org/10.1016/j.matpr.2020.10.808
dc.relation.references[35] Islam, M.T.; Das, S.C.; Saha, J.; Paul, D.; Islam, M.T.; Rahman, M.; Khan, M.A. Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites. Chem. Mater. Eng. 2017, 5, 75–82. https://doi.org/10.13189/cme.2017.050401
dc.relation.references[36] Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. https://doi.org/10.1016/j.compositesb.2019.107169
dc.relation.references[37] Zainal Abidin, Z.; Mamauod, S.N.L.; Romli, A.Z.; Sarkawi, S.S.; Zainal, N.H. Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites. Polymers 2023, 15, 943. https://doi.org/10.3390/polym15040943
dc.relation.references[38] Miyake, A.; Kobayashi, H.; Echigoya, H.; Kubota, S.; Wada, Y.; Ogata, Y.; Arai, H.; Ogawa, T. Detonation Characteristics of Ammonium Nitrate and Activated Carbon Mixtures. J Loss Prev Process Ind 2007, 20, 584–588. https://doi.org/10.1016/j.jlp.2007.04.026
dc.relation.references[39] Nakamura, H.; Saeki, K.; Akiyoshi, M.; Takahasi, K. The Reaction of Ammonium Nitrate with Carbon Powder. J. Jpn. Explos. Soc. 2002, 63, 87–93.
dc.relation.references[40] Miyake, A.; Echigoya, H.; Kobayashi, H.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y.; Ogawa, T. Detonation Velocity and Pressure of Ammonium Nitrate and Activated Carbon Mixtures. Mater. Sci. Forum 2008, 566, 107–112. https://doi.org/10.4028/www.scientific.net/MSF.566.107
dc.relation.references[41] Miyake, A.; Echigoya, H.; Kobayashi, H.; Ogawa, T.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures. Int. J. Mod. Phys. B 2008, 22, 1319–1324. https://doi.org/10.1142/S0217979208046712
dc.relation.references[42] Kubota, S.; Saburi, T.; Ogata, Y.; Miyake, A. Non-Ideal Behaviour of Ammonium Nitrate Based High-Energetic Materials in Small Diameter Steel Tube. Sci. Technol. Energy Mater. 2013, 74, 61–65. https://doi.org/10.1142/S0217979208046712
dc.relation.references[43] Biessikirski, A.; Gotovac Atlagi´c, S.; Pytlik, M.; Kuterasi´nski, Ł.; Dworzak, M.; Twardosz, M.; Nowak-Senderowska, D.; Napruszewska, B.D. The Influence of Microstructured Charcoal Additive on ANFO’s Properties. Energies 2021, 14, 4354. https://doi.org/10.3390/en14144354
dc.relation.references[44] Heitkötter, J.; Marschner, B. Interactive Effects of Biochar Ageing in Soils Related to Feedstock, Pyrolysis Temperature, and Historic Charcoal Production. Geoderma 2015, 245–246, 56–64. https://doi.org/10.1016/j.geoderma.2015.01.012
dc.relation.references[45] Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various Biomass Pyrolysis Conditions Influence the Porosity and Pore Size Distribution of Biochar. Energy 2023, 263, 126128. https://doi.org/10.1016/j.energy.2022.126128
dc.relation.references[46] Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008
dc.relation.references[47] Idbella, M.; Baronti, S.; Giagnoni, L.; Renella, G.; Becagli, M.; Cardelli, R.; Maienza, A.; Vaccari, F.P.; Bonanomi, G. Long-Term Effects of Biochar on Soil Chemistry, Biochemistry, and Microbiota: Results from a 10-year Field Vineyard Experiment. Appl. Soil Ecol. 2023, 195, 105217. https://doi.org/10.1016/j.apsoil.2023.105217
dc.relation.references[48] Hasnain, M.; Munir, N.; Abideen, Z.; Zulfiqar, F.; Koyro, H.W.; Ali El-Naggar, A.; Caçador, I.; Duarte, B.; Rinklebe, J.; Yong, J.W.H. Biochar-Plant Interaction and Detoxification Strategies under Abiotic Stresses for Achieving Agricultural Resilience: A Critical Review. Ecotoxicol. Environ. Saf. 2023, 249, 114408. https://doi.org/10.1016/j.ecoenv.2022.114408
dc.relation.references[49] Nascimento, Í.V.D.; Fregolente, L.G.; Pereira, A.P.D.A.; Nascimento, C.D.V.D.; Mota, J.C.A.; Ferreira, O.P.; Sousa, H.H.D.F.; Silva, D.G.G.D.; Simões, L.R.; Souza Filho, A.G., et al. Biochar as a Carbonaceous Material to Enhance Soil Quality in Drylands Ecosystems: A Review. Environ Res. 2023, 233, 116489. https://doi.org/10.1016/j.envres.2023.116489
dc.relation.references[50] Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C., Loha, C.; Akinlabi, E.T. An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties. Journal of Bioresources and Bioproducts 2023, 8, 333-360 https://doi.org/10.1016/j.jobab.2023.09.005
dc.relation.references[51] Agyekum, E.B.; Nutakor, C. Recent Advancement in Biochar Production and Utilization – A Combination of Traditional and Bibliometric Review. Int. J. Hydrog. Energy 2024, 54, 1137-1153 https://doi.org/10.1016/j.ijhydene.2023.11.335
dc.relation.references[52] Du, Y.; Feng, Y.; Xiao, Y. Interaction between Biochar of Different Particle Sizes and Clay Minerals in Changing Biochar Physicochemical Properties and Cadmium Sorption Capacity. J. Clean. Prod. 2023, 428, 139348. https://doi.org/10.1016/j.jclepro.2023.139348
dc.relation.references[53] Huang, X.; Pan, G.; Li, L.; Zhang, X.; Wang, H.; Bolan, N.; Singh, B.P.; Ma, C.; Liang, F.; Chen, Y.; Li, H. Combined Resource Utilization of Ash from Biomass Power Generation and Wheat Straw Biochar for Soil Remediation. Appl. Soil Ecol. 2024, 193, 105150 https://doi.org/10.1016/j.apsoil.2023.105150
dc.relation.references[54] Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual Effects of Biochar on Improving Growth, Physiology and Yield of Wheat under Salt Stress. Agric Water Manag 2015, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010
dc.relation.references[55] Chintala, R.; Mollinedo, J.; Schumacher, T. E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch Agron Soil Sci. 2014, 60, 393–404. https://doi.org/10.1080/03650340.2013.789870
dc.relation.references[56] Iboko, M.P.; Dossou-Yovo, E.R.; Obalum, S.E.; Oraegbunam, C.J.; Diedhiou, S.; Brümmer, C.; Témé, N. Paddy Rice Yield and Greenhouse Gas Emissions: Any Trade-off Due to co-Application of Biochar and Nitrogen Fertilizer? A Systematic Review. Heliyon 2023, 9, e22132. https://doi.org/10.1016/j.heliyon.2023.e22132
dc.relation.references[57] Addai, P.; Mensah, A.K.; Sekyi-Annan, E.; Adjei, E.O. Biochar, Compost and/or NPK Fertilizer Affect the Uptake of Potentially Toxic Elements and Promote the Yield of Lettuce Grown in an Abandoned Gold Mine Tailing. Journal of Trace Elements and Minerals 2023, 4, 100066. https://doi.org/10.1016/j.jtemin.2023.100066
dc.relation.references[58] Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar Additions Alter Phosphorus and Nitrogen Availability in Agricultural Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 654, 463–472. https://doi.org/10.1016/j.scitotenv.2018.11.124
dc.relation.references[59] Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X. Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J Anal Appl Pyrolysis 2021, 155, 105081. https://doi.org/10.1016/j.jaap.2021.105081
dc.relation.references[60] Roy, P.; Dias, G. Prospects for Pyrolysis Technologies in the Bioenergy Sector: A Review. Renew. Sust. Energ. Rev. 2017, 77, 59–69. https://doi.org/10.1016/j.rser.2017.03.136
dc.relation.references[61] Gruss, I.; Twardowski, J.P.; Latawiec, A.; Medyńska-Juraszek, A.; Królczyk, J. Risk Assessment of low-Temperature Biochar Used as Soil Amendment on Soil Mesofauna. Environ. Sci. Pollut. Res. 2019, 26, 18230–18239. https://doi.org/10.1007/s11356-019-05153-7
dc.relation.references[62] Hestrin, R.; Torres-Rojas, D.; Dynes, J.J.; Hook, J.M.; Regier, T.Z.; Gillespie, A.W.; Smernik, R.J.; Lehmann, J. Fire-Derived Organic Matter Retains Ammonia Through Covalent Bond Formation. Nat Commun. 2019, 10, 664. https://doi.org/10.1038/s41467-019-08401-z
dc.relation.references[63] Keske, C.; Godfrey, T.; Hoag, D.L.K.; Abedin, J. Economic Feasibility of Biochar and Agriculture Coproduction from Canadian Black Spruce Forest. Food Energy Secur. 2020, 9, 1–11. https://doi.org/10.1002/fes3.188
dc.relation.references[64] Laskosky, J.D.; Mante, A.A.; Zvomuya, F.; Amarakoon, I.; Leskiw, L. A Bioassay of Long-Term Stockpiled Salvaged Soil Amended with Biochar, Peat, and Humalite. Agrosyst. geosci. environ. 2020, 3, e20068. https://doi.org/10.1002/agg2.20068
dc.relation.references[65] Chung, B.Y.H.; Ang, J.C.; Tang, J.Y.; Chong, J.W.; Tan, R.R.; Aviso, K.B.; Chemmangattuvalappil, N.G.; Thangalazhy-Gopakumar, S. Rough Set Approach to Predict Biochar Stability and pH from Pyrolysis Conditions and Feedstock Characteristics. Chem Eng Res Des 2023, 198, 221–233. https://doi.org/10.1016/j.cherd.2023.09.003
dc.relation.references[66] Solaiman, Z.M.; Anawar, H.M. Application of Biochars for Soil Constraints: Challenges and Solutions. UWA 2015, 25, 631–638.
dc.relation.references[67] Nguyen, C.T.; Tungtakanpoung, D.; Tra, V.T.; Kajitvichyanukul, P. Kinetic, Isotherm and Mechanism in Paraquat Removal by Adsorption Process Using Corn Cob Biochar Produced from Different Pyrolysis Conditions. Case Stud. Chem. Environ. Eng. 2022, 6, 100248. https://doi.org/10.1016/j.cscee.2022.100248
dc.relation.references[68] Xu, H.; Han, Y.; Wang, G.; Deng, P.; Feng, L. Walnut Shell Biochar Based Sorptive Remediation of Estrogens Polluted Simulated Wastewater: Characterization, Adsorption Mechanism and Degradation by Persistent Free Radicals. Environ Technol Innov. 2022, 28, 102870. https://doi.org/10.1016/j.eti.2022.102870
dc.relation.references[69] Torres-Lara, N.; Molina-Balmaceda, A.; Arismendi, D.; Richter, P. Peanut Shell-Derived Activated Biochar as a Convenient, Low-Cost, Ecofriendly and Efficient Sorbent in Rotating Disk Sorptive Extraction of Emerging Contaminants from Environmental Water Samples. Green Analytical Chemistry 2023, 6, 100073. https://doi.org/10.1016/j.greeac.2023.100073
dc.relation.references[70] Pimentel, C.H.; Díaz-Fernández, L.; Gómez-Díaz, D.; Freire, M.S.; González-Álvarez, J. Separation of CO2 Using Biochar and KOH and ZnCl2 Activated Carbons Derived from Pine Sawdust. J Environ Chem Eng. 2023, 11, 111378. https://doi.org/10.1016/j.jece.2023.111378
dc.relation.references[71] Elaigwu, S.E.; Greenway, G.M. Microwave-Assisted Hydrothermal Carbonization of Rapeseed Husk: A Strategy for Improving its Solid Fuel Properties. Fuel Process. Technol. 2016, 149, 305–312. https://doi.org/10.1016/j.fuproc.2016.04.030
dc.relation.references[72] Konneh, M.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Adsorption and Desorption of Nutrients from Abattoir Wastewater: Modelling and Comparison of Rice, Coconut and Coffee Husk Biochar. Heliyon 2021, 7, e08458. https://doi.org/10.1016/j.heliyon.2021.e08458
dc.relation.references[73] Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
dc.relation.references[74] Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical Transformation of CO2 During its Capture by Waste Biomass Derived Biochars. Environ. Pollut. 2016, 213, 533–540. https://doi.org/10.1016/j.envpol.2016.03.013
dc.relation.references[75] Sethupathi, S.; Zhang, M.; Rajapaksha, A.U.; Lee, S.R.; Mohamad Nor, N.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. https://doi.org/10.3390/su9010121
dc.relation.references[76] Ighalo, J.O.; Eletta, O.A.A.; Adeniyi, A.G. Biomass Carbonisation in Retort Kilns: Process Techniques, Product Quality and Future Perspectives. Bioresource Technology Reports 2022, 17, 100934. https://doi.org/10.1016/j.biteb.2021.100934
dc.relation.references[77] Raček, J.; Chorazy, T.; Carnevale Miino, M.; Vršanská, M.; Brtnický, M.; Mravcová, L.; Kučerík, J.; Hlavínek, P. Biochar Production from the Pyrolysis of Food Waste: Characterization and Implications for its Use. Sustain Chem Pharm. 2023, 37, 101387. https://doi.org/10.1016/j.scp.2023.101387
dc.relation.references[78] Godvin Sharmila, V.; Kumar Tyagi, V.; Varjani, S.; Rajesh Banu, S. A Review on the lignocellulosic Derived Biochar-Based Catalyst in Wastewater Remediation: Advanced Treatment Technologies and Machine Learning Tools. Bioresour. Technol. 2023, 387, 129587. https://doi.org/10.1016/j.biortech.2023.129587
dc.relation.references[79] Cui, X.; Wang, J.; Wang, X.; Du, G.; Khan, K.Y.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of Exhausted Hydrochar Sorbent for Cadmium Separation and Biochar Regeneration. Chemosphere 2022, 306, 135546. https://doi.org/10.1016/j.chemosphere.2022.135546
dc.relation.references[80] Ambaye, T.G.; Formicola, F.; Sbaffoni, S.; Milanese, C.; Franzetti, A.; Vaccari M. Effect of Biochar on Petroleum Hydrocarbon Degradation and Energy Production in Microbial Electrochemical Treatment. J Environ Chem Eng. 2023, 11, 5. https://doi.org/10.1016/j.jece.2023.110817
dc.relation.references[81] Qi, Y.; Zhong, Y.; Luo, L.; He, J.; Feng, B.; Wei, Q.; Zhang, K.; Ren, H. Subsurface Constructed Wetlands with Modified Biochar Added for Advanced Treatment of Tailwater: Performance and Microbial Communities. Sci. Total Environ. 2023, 906, 167533. https://doi.org/10.1016/j.scitotenv.2023.167533
dc.relation.references[82] Qin, X.; Cheng, S.; Xing, B.; Qu, X.; Shi, C.; Meng, W.; Zhang, C.; Xia, H. Preparation of Pyrolysis Products by Catalytic Pyrolysis of Poplar: Application of Biochar in Antibiotic Wastewater Treatment. Chemosphere 2023, 338, 139519. https://doi.org/10.1016/j.chemosphere.2023.139519
dc.relation.references[83] Su, K.; Hu, G.; Zhao, T.; Dong, H.; Yang, Y.; Pan, H.; Lin, Q. The Ultramicropore Biochar Derived from Waste Distiller’s Grains for Wet-Process Phosphoric Acid Purification: Removal Performance and Mechanisms of Cr(VI). Chemosphere 2023, 349, 140877. https://doi.org/10.1016/j.chemosphere.2023.140877
dc.relation.references[84] Piloni, R.V.; Coelho, L.F.; Sass, D.C.; Lanteri, M.; Zaghete Bertochi, M.A.; Laura Moyano, E.; Contiero, J. Biochars from Spirulina as an Alternative Material in the Purification of Lactic Acid from a Fermentation Broth. Curr. Opin. Green Sustain. Chem. 2021, 4, 100084. https://doi.org/10.1016/j.crgsc.2021.100084
dc.relation.references[85] Wang, Y.; Luo, J.; Qin, J.; Huang, Y.; Ke, T.; Luo, Y.; Yang, M. Efficient Removal of Phytochrome Using Rice Straw-Derived Biochar: Adsorption Performance, Mechanisms, and Practical Applications. Bioresour. Technol. 2023, 376, 128918. https://doi.org/10.1016/j.biortech.2023.128918
dc.relation.references[86] Bian, H.; Wang, M.; Huang, J.; Liang, R.; Du, J.; Fang, C.; Shen, C.; Man, Y.B.; Wong, M.H.; Shan, S., et al. Large Particle Size Boosting the Engineering Application Potential of Functional Biochar in Ammonia Nitrogen and Phosphorus Removal from Biogas Slurry. J. Water Process. Eng. 2023, 57, 104640. https://doi.org/10.1016/j.jwpe.2023.104640
dc.relation.references[87] Bibi, A.; Khan, H.; Hussain, S.; Arshad, M.; Wahab, F.; Usama, M.; Khan, K.; Akbal, F. Sustainable Wastewater Purification with Crab Shell-Derived Biochar: Advanced Machine Learning Modeling & Experimental Analysis. Bioresour. Technol. 2023, 390, 129900. https://doi.org/10.1016/j.biortech.2023.129900
dc.relation.references[88] Choi, J.; Kim, M.; Choi, J.; Jang, M.; Hyun, S. Sorption Behavior of Three Aromatic Acids (Benzoic Acid, 1-Naphthoic Acid and 9-Anthroic Acid) on Biochar: Cosolvent Effect in Different Liquid Phases. Chemosphere 2023, 349, 140898. https://doi.org/10.1016/j.chemosphere.2023.140898
dc.relation.references[89] Liu, Z.; Xie, S.; Zhou, H.; Zhao, L.; Yao, Z.; Fan, H.; Si, B.; Yang, G. Organic Contaminants Removal and Carbon Sequestration Using Pig Manure Solid Residue-Derived Biochar: A Novel Closed-Loop Strategy for Anaerobic Liquid Digestate. Chem. Eng. J. 2023, 471, 144601. https://doi.org/10.1016/j.cej.2023.144601
dc.relation.references[90] Gul, T.; Aslam, M.M.; Khan, A.S.; Iqbal, T.; Ullah, F.; Eldesoky, G.E.; Aljuwayid, A.M.; Akhtar, M.S. Phytotoxic Responses of Wheat to an Imidazolium Based Ionic Liquid in Absence and Presence of Biochar. Chemosphere 2023, 322, 138080. https://doi.org/10.1016/j.chemosphere.2023.138080
dc.relation.references[91] Lourenço, M.A.O.; Frade, T.; Bordonhos, M.; Castellino, M.; Pinto, M. L.; Bocchini, S. N-doped Sponge-Like Biochar: A Promising CO2 Sorbent for CO₂/CH₄ and CO2/N₂ Gas Separation. Chem. Eng. J. 2023, 470, 144005. https://doi.org/10.1016/j.cej.2023.144005
dc.relation.references[92] Lee, J.; Lee, S.; Lin, K.Y.A.; Jung, S.; Kwon, E. E. Abatement of Odor Emissions from Wastewater Treatment Plants Using Biochar. Environ. Pollut. 2023, 336, 122426. https://doi.org/10.1016/j.envpol.2023.122426
dc.relation.references[93] Guo, T.; Zhang, Y.; Geng, Y.; Chen, J.; Zhu, Z.; Bedane, A.H.; Du, Y. Surface Oxidation Modification of Nitrogen Doping Biochar for Enhancing CO2 Adsorption. Ind Crops Prod. 2023, 206, 117582. https://doi.org/10.1016/j.indcrop.2023.117582
dc.relation.references[94] Feng, Q.; Zhang, J.; Peng, C.; Cai, Z. Synthesis of Modified Sludge Biochar for Flue Gas Denitration: Biochar Properties, Synergistic Efficiency and Mechanism. Waste Manage. 2023, 170, 204–214. https://doi.org/10.1016/j.wasman.2023.08.007
dc.relation.references[95] Wang, Y.; Dou, Z.; Tang, X.; Lian, L.; Liu, Y. Oxidative Absorption of Elemental Mercury in Combustion Flue Gas Using Biochar-Activated Peroxydisulfate System. J. Energy Inst. 2023, 108, 101248. https://doi.org/10.1016/j.joei.2023.101248
dc.relation.references[96] Cho, S.H.; Lee, S.; Kim, Y.; Song, H.; Lee, J.; Tsang, Y.F.; Chen, W.-H.; Park, Y.-K.; Lee, D.-J.; Jung, S., et al. Applications of Agricultural Residue Biochars to Removal of Toxic Gases Emitted from Chemical Plants: A Review. Sci. Total Environ. 2023, 868, 161655. https://doi.org/10.1016/j.scitotenv.2023.161655
dc.relation.references[97] Selenius, M.; Ruokolainen, J.; Riikonen, J.; Rantanen, J.; Näkki, S Lehto, V.-P.; Hyttinen, M. Removing Siloxanes and Hydrogen Sulfide from Landfill Gases with Biochar and Activated Carbon Filters. Waste Manage. 2023, 167, 31–38. https://doi.org/10.1016/j.wasman.2023.05.006
dc.relation.references[98] Cao, W.; Xu, H.; Zhang, X.; Xiang, W.; Qi, G.; Wan, L.; Gao, B. Novel Post-Treatment of Ultrasound Assisting with Acid Washing Enhance Lignin-Based Biochar for CO2 Capture: Adsorption Performance and Mechanism. Chem. Eng. J. 2023, 47, 1445231. https://doi.org/10.1016/j.cej.2023.144523
dc.relation.referencesen[1] Łaska, G.; Ige, A.R. A Review: Assessment of Domestic Solid Fuel Sources in Nigeria. Energies 2023, 16, 4722. https://doi.org/10.3390/en16124722
dc.relation.referencesen[2] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Bautista Contreras, A.; Hassan, N.; Abd ElRasoul, A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
dc.relation.referencesen[3] Malik, I.K.; Miroshnichenko, D.V.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. Prediction of the Higher Heating Value of Charcoal. Pet. Coal 2022, 64, 100–105.
dc.relation.referencesen[4] Long, J.M.; Boyette, M.D. Analysis of Micronized Charcoal for Use in a Liquid Fuel Slurry. Energies 2017, 10, 25. https://doi.org/10.3390/en10010025
dc.relation.referencesen[5] Straka, T.J. Charcoal as a Fuel in the Ironmaking and Smelting Industries. Advances in Historical Studies 2017, 6, 56–64. https://doi.org/10.4236/ahs.2017.61004
dc.relation.referencesen[6] Miroshnichenko, D.; Shmeltser, K.; Kormer, M. Factors Affecting the Formation the Carbon Structure of coke and the Method of Stabilizing its Physical and Mechanical Properties. C-Journal of Carbon Research 2023, 9, 66. https://doi.org/10.3390/P.9030066
dc.relation.referencesen[7] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328–336. https://doi.org/10.23939/chcht16.02.328
dc.relation.referencesen[8] Drozdnik, I.D.; Miroshnichenko, D.V.; Shmeltser, E.O.; Kormer, M.V.; Pyshyev, S.V. Investigation of Possible Losses of Coal Raw Materials During its Technological Preparation for Coking Message. 1. The Actual Mass Variation of Coal in the Process of its Storage and Crushing. Pet. Coal 2019, 61, 631–637.
dc.relation.referencesen[9] Lyalyuk, V.P., Shmeltser, E.O., Kassim, D.A. Improving the technology production of coke for blast furnace smelting; Octan Print: Praga, 2022.
dc.relation.referencesen[10] Ng, K.W.; MacPhee, J.A.; Giroux, L.; Todoschuk, T. Reactivity of Bio-Coke with CO2. Fuel Process. Technol. 2011, 92, 801–804. https://doi.org/10.1016/j.fuproc.2010.08.005
dc.relation.referencesen[11] Jahanshani, S.; Mathieson, J.G.; Somerville, M.A.; Haque, N.; Norgate, T.E.; Deev, A.; Pan, Y.; Xie, D.; Ridgeway, P.; Zulli, P. Development of Low-Emission Integrated Steelmaking Process. J. Sustain. Metall. 2015, 1, 94–114. https://doi.org/10.1007/s40831-015-0008-6
dc.relation.referencesen[12] Suopajärvi, H.; Pongrácz, E.; Fabritius, T. The potential of Using Biomass-Based Reducing Agents in the Blast Furnace: A Review of Thermochemical Conversion Technologies and Assessments Related to Sustainability. Renew. Sust. Energ. Rev. 2013, 25, 511–528. https://doi.org/10.1016/j.rser.2013.05.005
dc.relation.referencesen[13] Suopajärvi, H.; Dahl, E.; Kemppainen, A.; Gornostayev, S.; Koskela, A.; Fabritius, T. Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity. Energies 2017, 10, 1850. https://doi.org/10.3390/en10111850
dc.relation.referencesen[14] Suopajärvi, H.; Kemppainen, A.; Haapakangas, J.; Fabritius, T. Extensive Review of the Opportunities to Use Biomass-Based Fuels in Iron and Steelmaking Processes. J. Clean. Prod. 2017, 148, 709–734. https://doi.org/10.1016/j.jclepro.2017.02.029
dc.relation.referencesen[15] Sundqvist Ökvist, L.; Lundgren, M. Experiences of Bio-Coal Applications in the Blast Furnace Process-Opportunities and Limitations. Minerals 2021, 11, 863. https://doi.org/10.3390/min11080863
dc.relation.referencesen[16] Brooks, V.; Khoshk Rish, S.; Lomas, N.; Jayasekara, A.; Tahmasebi, A. Advances in Low Carbon Cokemaking – Influence of Alternative Raw Materials and Coal Properties on Coke Quality. J Anal Appl Pyrolysis 2023, 173, 106083. https://doi.org/10.1016/j.jaap.2023.106083
dc.relation.referencesen[17] Suopajäarvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romard, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N., et al. Use of Biomass in Integrated Steelmaking-Status Quo, Future Needs and Comparison to other Low-CO2 Steel Production Technologies. Appl. Energy 2018, 213, 384–407. https://doi.org/10.1016/j.apenergy.2018.01.060
dc.relation.referencesen[18] Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass Applications in Iron and Steel Industry: An Overview of Challenges and Opportunities. Renew. Sust. Energ. Rev. 2016, 65, 1247–1266. https://doi.org/10.1016/j.rser.2016.07.061
dc.relation.referencesen[19] Mousa, E.A.; Ahmed, H.M.; Wang, C. Novel Approach towards Biomass Lignin Utilization in Ironmaking Blast Furnace. ISIJ Int. 2017, 57, 1788–96. https://doi.org/10.2355/isijinternational.ISIJINT-2017-127
dc.relation.referencesen[20] Mathieson, J.G.; Somerville, M.; Deev, A.; Jahanshahi, S. Utilization of biomass as an alternative fuel in ironmaking. In Iron Ore: Mineralogy, Processing and Environmental Sustainability, 1st ed.; Lu, L., Ed.; Woodhead Publ. Elsevier Ltd., Cambridge, UK, Waltham, MA, USA, 2015; pp 581–609. https://doi.org/10.1016/B978-1-78242-156-6.00019-8
dc.relation.referencesen[21] Ooi, T.C.; Aries, E.; Ewan, B.C.; Thompson, D.; Anderson, D.R.; Fisher, R.; Fray, T.; Tognarelli, D. The Study of Sunflower Seed Husks as a Fuel in the Iron Ore Clinkering Process. Miner Eng 2008, 21, 167–77. https://doi.org/10.1016/j.mineng.2007.09.005
dc.relation.referencesen[22] Gan, M.; Fan, X.; Ji, Z.; Jiang, T.; Chen, X.; Yu, Z.; Li, G.; Yin, L. Application of Biomass Fuel in Iron Ore Clinkering: Influencing Mechanism and Emission Reduction. Ironmak. Steelmak. 2015, 42, 27–33. https://doi.org/10.1179/1743281214Y.0000000194
dc.relation.referencesen[23] Cheng, Z.; Yang, J.; Zhou, L.; Liu, Y.; Wang, Q. Characteristics of Charcoal Combustion and its Effects on Iron-Ore Clinkering Performance. Appl Energy 2016, 161, 364–374. https://doi.org/10.1016/j.apenergy.2015.09.095
dc.relation.referencesen[24] Amanat, N.; Tsafnat, N.; Loo, B.C.E.; Jones, A.S. Metallurgical Coke: An Investigation into Compression Properties and Microstructure Using X-ray Microtomography. Scr. Mater. 2009, 60, 92–95. https://doi.org/10.1016/j.scriptamat.2008.09.003
dc.relation.referencesen[25] Kim, S.Y.; Sasaki, Y. Simulation of Effect of Pore Structure on Coke Strength Using 3-dimensional Discrete Element Method. ISIJ Int. 2010, 50, 813–821. http://dx.doi.org/10.2355/isijinternational.50.813
dc.relation.referencesen[26] Haapakangas, J.; Uusitalo, J.; Mattila, O.; Kokkonen, T.; Porter, D.; Fabritius, T. A Method for Evaluating Coke Hot Strength. Steel Res. Int. 2013, 84, 65–71. https://doi.org/10.1002/srin.201200078
dc.relation.referencesen[27] Haapakangas, J.A.; Uusitalo, J.A.; Mattila, O.J.; Gornostayev, S.S.; Porter, D.A.; Fabritius, T. The Hot Strength of Industrial Cokes–Evaluation of Coke Properties that Affect Its High-Temperature Strength. Steel Res. Int. 2014, 85, 1608–1619. https://doi.org/10.1016/j.jfueco.2022.100082
dc.relation.referencesen[28] Bittencourt Marques, M.; Rodrigues Assis, A.; Benício Dias, S.M.; Harley Araújo, F.; Junqueira dos Santos, R. Co-injeção de gás natural moinha de carvão vegetal e carvão mineral no alto-forno "A" da Arcelormittal Monlevade. In Proceedings of the 41 Seminário de Redução de Minério de Ferro e Matérias-Primas Conference, Vila Vehla, Brazil, 12–16 September 2011. https://doi.org/10.5151/2594-357X-24003
dc.relation.referencesen[29] Mahottamananda, S.N.; Pal, Y.; Dinesh, M.; Ingenito, A. Beeswax – EVA/Activated-Charcoal-Based Fuels for Hybrid Rockets: Thermal and Ballistic Evaluation. Energies 2022, 15, 7578. https://doi.org/10.3390/en15207578
dc.relation.referencesen[30] Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrisha, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Natural Resources 2016, 7, 108–114. http://dx.doi.org/10.4236/nr.2016.73011
dc.relation.referencesen[31] Delatorre, F.M.; Cupertino, G.F.M.; Oliveira, M.P.; da Silva Gomes, F.; Profeti, L.P.R.; Profeti, D.; Júnior, M.G.; de Azevedo, M.G.; Saloni, D.; Júnior, A.F.D. A Novel Approach to Charcoal Fine Waste: Sustainable Use as Filling of Polymeric Matrices. Polymers 2022, 14, 5525. https://doi.org/10.3390/polym14245525
dc.relation.referencesen[32] Delatorre, F.M.; Cupertino, G.F.M.; Pereira, A.K.S.; de Souza, E.C.; da Silva, Á.M.; Ucella Filho, J.G.M.; Saloni, D.; Profeti, L.P.R.; Profeti, D.; Dias Júnior, A.F. Photoluminous Response of Biocomposites Produced with Charcoal. Polymers 2023, 15, 3788. https://doi.org/10.3390/polym15183788
dc.relation.referencesen[33] Delatorre, F.M.; Pereira, A.K.S.; da Silva, Á.M.; de Souza, E.C.; Oliveira, M.P.; Profeti, D.; Profeti, L.P.R.; Dias Júnior, A.F. The Addition of Charcoal Fines Can Increase the Photodegradation Resistance of Polymeric Biocomposites. Environ. Sci. Proc. 2022, 13, 8. https://doi.org/10.3390/IECF2021-10812
dc.relation.referencesen[34] Das, S.C.; Ashek-E-Khoda, S.; Sayeed, M.A.; Paul, D.; Dhar, S.A.; Grammatikos, S.A. On the Use of Wood Charcoal Filler to Improve the Properties of Natural Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 44, 926–929. https://doi.org/10.1016/j.matpr.2020.10.808
dc.relation.referencesen[35] Islam, M.T.; Das, S.C.; Saha, J.; Paul, D.; Islam, M.T.; Rahman, M.; Khan, M.A. Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites. Chem. Mater. Eng. 2017, 5, 75–82. https://doi.org/10.13189/cme.2017.050401
dc.relation.referencesen[36] Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. https://doi.org/10.1016/j.compositesb.2019.107169
dc.relation.referencesen[37] Zainal Abidin, Z.; Mamauod, S.N.L.; Romli, A.Z.; Sarkawi, S.S.; Zainal, N.H. Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites. Polymers 2023, 15, 943. https://doi.org/10.3390/polym15040943
dc.relation.referencesen[38] Miyake, A.; Kobayashi, H.; Echigoya, H.; Kubota, S.; Wada, Y.; Ogata, Y.; Arai, H.; Ogawa, T. Detonation Characteristics of Ammonium Nitrate and Activated Carbon Mixtures. J Loss Prev Process Ind 2007, 20, 584–588. https://doi.org/10.1016/j.jlp.2007.04.026
dc.relation.referencesen[39] Nakamura, H.; Saeki, K.; Akiyoshi, M.; Takahasi, K. The Reaction of Ammonium Nitrate with Carbon Powder. J. Jpn. Explos. Soc. 2002, 63, 87–93.
dc.relation.referencesen[40] Miyake, A.; Echigoya, H.; Kobayashi, H.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y.; Ogawa, T. Detonation Velocity and Pressure of Ammonium Nitrate and Activated Carbon Mixtures. Mater. Sci. Forum 2008, 566, 107–112. https://doi.org/10.4028/www.scientific.net/MSF.566.107
dc.relation.referencesen[41] Miyake, A.; Echigoya, H.; Kobayashi, H.; Ogawa, T.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures. Int. J. Mod. Phys. B 2008, 22, 1319–1324. https://doi.org/10.1142/S0217979208046712
dc.relation.referencesen[42] Kubota, S.; Saburi, T.; Ogata, Y.; Miyake, A. Non-Ideal Behaviour of Ammonium Nitrate Based High-Energetic Materials in Small Diameter Steel Tube. Sci. Technol. Energy Mater. 2013, 74, 61–65. https://doi.org/10.1142/S0217979208046712
dc.relation.referencesen[43] Biessikirski, A.; Gotovac Atlagi´c, S.; Pytlik, M.; Kuterasi´nski, Ł.; Dworzak, M.; Twardosz, M.; Nowak-Senderowska, D.; Napruszewska, B.D. The Influence of Microstructured Charcoal Additive on ANFO’s Properties. Energies 2021, 14, 4354. https://doi.org/10.3390/en14144354
dc.relation.referencesen[44] Heitkötter, J.; Marschner, B. Interactive Effects of Biochar Ageing in Soils Related to Feedstock, Pyrolysis Temperature, and Historic Charcoal Production. Geoderma 2015, 245–246, 56–64. https://doi.org/10.1016/j.geoderma.2015.01.012
dc.relation.referencesen[45] Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various Biomass Pyrolysis Conditions Influence the Porosity and Pore Size Distribution of Biochar. Energy 2023, 263, 126128. https://doi.org/10.1016/j.energy.2022.126128
dc.relation.referencesen[46] Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008
dc.relation.referencesen[47] Idbella, M.; Baronti, S.; Giagnoni, L.; Renella, G.; Becagli, M.; Cardelli, R.; Maienza, A.; Vaccari, F.P.; Bonanomi, G. Long-Term Effects of Biochar on Soil Chemistry, Biochemistry, and Microbiota: Results from a 10-year Field Vineyard Experiment. Appl. Soil Ecol. 2023, 195, 105217. https://doi.org/10.1016/j.apsoil.2023.105217
dc.relation.referencesen[48] Hasnain, M.; Munir, N.; Abideen, Z.; Zulfiqar, F.; Koyro, H.W.; Ali El-Naggar, A.; Caçador, I.; Duarte, B.; Rinklebe, J.; Yong, J.W.H. Biochar-Plant Interaction and Detoxification Strategies under Abiotic Stresses for Achieving Agricultural Resilience: A Critical Review. Ecotoxicol. Environ. Saf. 2023, 249, 114408. https://doi.org/10.1016/j.ecoenv.2022.114408
dc.relation.referencesen[49] Nascimento, Í.V.D.; Fregolente, L.G.; Pereira, A.P.D.A.; Nascimento, C.D.V.D.; Mota, J.C.A.; Ferreira, O.P.; Sousa, H.H.D.F.; Silva, D.G.G.D.; Simões, L.R.; Souza Filho, A.G., et al. Biochar as a Carbonaceous Material to Enhance Soil Quality in Drylands Ecosystems: A Review. Environ Res. 2023, 233, 116489. https://doi.org/10.1016/j.envres.2023.116489
dc.relation.referencesen[50] Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C., Loha, C.; Akinlabi, E.T. An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties. Journal of Bioresources and Bioproducts 2023, 8, 333-360 https://doi.org/10.1016/j.jobab.2023.09.005
dc.relation.referencesen[51] Agyekum, E.B.; Nutakor, C. Recent Advancement in Biochar Production and Utilization – A Combination of Traditional and Bibliometric Review. Int. J. Hydrog. Energy 2024, 54, 1137-1153 https://doi.org/10.1016/j.ijhydene.2023.11.335
dc.relation.referencesen[52] Du, Y.; Feng, Y.; Xiao, Y. Interaction between Biochar of Different Particle Sizes and Clay Minerals in Changing Biochar Physicochemical Properties and Cadmium Sorption Capacity. J. Clean. Prod. 2023, 428, 139348. https://doi.org/10.1016/j.jclepro.2023.139348
dc.relation.referencesen[53] Huang, X.; Pan, G.; Li, L.; Zhang, X.; Wang, H.; Bolan, N.; Singh, B.P.; Ma, C.; Liang, F.; Chen, Y.; Li, H. Combined Resource Utilization of Ash from Biomass Power Generation and Wheat Straw Biochar for Soil Remediation. Appl. Soil Ecol. 2024, 193, 105150 https://doi.org/10.1016/j.apsoil.2023.105150
dc.relation.referencesen[54] Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual Effects of Biochar on Improving Growth, Physiology and Yield of Wheat under Salt Stress. Agric Water Manag 2015, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010
dc.relation.referencesen[55] Chintala, R.; Mollinedo, J.; Schumacher, T. E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch Agron Soil Sci. 2014, 60, 393–404. https://doi.org/10.1080/03650340.2013.789870
dc.relation.referencesen[56] Iboko, M.P.; Dossou-Yovo, E.R.; Obalum, S.E.; Oraegbunam, C.J.; Diedhiou, S.; Brümmer, C.; Témé, N. Paddy Rice Yield and Greenhouse Gas Emissions: Any Trade-off Due to co-Application of Biochar and Nitrogen Fertilizer? A Systematic Review. Heliyon 2023, 9, e22132. https://doi.org/10.1016/j.heliyon.2023.e22132
dc.relation.referencesen[57] Addai, P.; Mensah, A.K.; Sekyi-Annan, E.; Adjei, E.O. Biochar, Compost and/or NPK Fertilizer Affect the Uptake of Potentially Toxic Elements and Promote the Yield of Lettuce Grown in an Abandoned Gold Mine Tailing. Journal of Trace Elements and Minerals 2023, 4, 100066. https://doi.org/10.1016/j.jtemin.2023.100066
dc.relation.referencesen[58] Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar Additions Alter Phosphorus and Nitrogen Availability in Agricultural Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 654, 463–472. https://doi.org/10.1016/j.scitotenv.2018.11.124
dc.relation.referencesen[59] Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X. Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J Anal Appl Pyrolysis 2021, 155, 105081. https://doi.org/10.1016/j.jaap.2021.105081
dc.relation.referencesen[60] Roy, P.; Dias, G. Prospects for Pyrolysis Technologies in the Bioenergy Sector: A Review. Renew. Sust. Energ. Rev. 2017, 77, 59–69. https://doi.org/10.1016/j.rser.2017.03.136
dc.relation.referencesen[61] Gruss, I.; Twardowski, J.P.; Latawiec, A.; Medyńska-Juraszek, A.; Królczyk, J. Risk Assessment of low-Temperature Biochar Used as Soil Amendment on Soil Mesofauna. Environ. Sci. Pollut. Res. 2019, 26, 18230–18239. https://doi.org/10.1007/s11356-019-05153-7
dc.relation.referencesen[62] Hestrin, R.; Torres-Rojas, D.; Dynes, J.J.; Hook, J.M.; Regier, T.Z.; Gillespie, A.W.; Smernik, R.J.; Lehmann, J. Fire-Derived Organic Matter Retains Ammonia Through Covalent Bond Formation. Nat Commun. 2019, 10, 664. https://doi.org/10.1038/s41467-019-08401-z
dc.relation.referencesen[63] Keske, C.; Godfrey, T.; Hoag, D.L.K.; Abedin, J. Economic Feasibility of Biochar and Agriculture Coproduction from Canadian Black Spruce Forest. Food Energy Secur. 2020, 9, 1–11. https://doi.org/10.1002/fes3.188
dc.relation.referencesen[64] Laskosky, J.D.; Mante, A.A.; Zvomuya, F.; Amarakoon, I.; Leskiw, L. A Bioassay of Long-Term Stockpiled Salvaged Soil Amended with Biochar, Peat, and Humalite. Agrosyst. geosci. environ. 2020, 3, e20068. https://doi.org/10.1002/agg2.20068
dc.relation.referencesen[65] Chung, B.Y.H.; Ang, J.C.; Tang, J.Y.; Chong, J.W.; Tan, R.R.; Aviso, K.B.; Chemmangattuvalappil, N.G.; Thangalazhy-Gopakumar, S. Rough Set Approach to Predict Biochar Stability and pH from Pyrolysis Conditions and Feedstock Characteristics. Chem Eng Res Des 2023, 198, 221–233. https://doi.org/10.1016/j.cherd.2023.09.003
dc.relation.referencesen[66] Solaiman, Z.M.; Anawar, H.M. Application of Biochars for Soil Constraints: Challenges and Solutions. UWA 2015, 25, 631–638.
dc.relation.referencesen[67] Nguyen, C.T.; Tungtakanpoung, D.; Tra, V.T.; Kajitvichyanukul, P. Kinetic, Isotherm and Mechanism in Paraquat Removal by Adsorption Process Using Corn Cob Biochar Produced from Different Pyrolysis Conditions. Case Stud. Chem. Environ. Eng. 2022, 6, 100248. https://doi.org/10.1016/j.cscee.2022.100248
dc.relation.referencesen[68] Xu, H.; Han, Y.; Wang, G.; Deng, P.; Feng, L. Walnut Shell Biochar Based Sorptive Remediation of Estrogens Polluted Simulated Wastewater: Characterization, Adsorption Mechanism and Degradation by Persistent Free Radicals. Environ Technol Innov. 2022, 28, 102870. https://doi.org/10.1016/j.eti.2022.102870
dc.relation.referencesen[69] Torres-Lara, N.; Molina-Balmaceda, A.; Arismendi, D.; Richter, P. Peanut Shell-Derived Activated Biochar as a Convenient, Low-Cost, Ecofriendly and Efficient Sorbent in Rotating Disk Sorptive Extraction of Emerging Contaminants from Environmental Water Samples. Green Analytical Chemistry 2023, 6, 100073. https://doi.org/10.1016/j.greeac.2023.100073
dc.relation.referencesen[70] Pimentel, C.H.; Díaz-Fernández, L.; Gómez-Díaz, D.; Freire, M.S.; González-Álvarez, J. Separation of CO2 Using Biochar and KOH and ZnCl2 Activated Carbons Derived from Pine Sawdust. J Environ Chem Eng. 2023, 11, 111378. https://doi.org/10.1016/j.jece.2023.111378
dc.relation.referencesen[71] Elaigwu, S.E.; Greenway, G.M. Microwave-Assisted Hydrothermal Carbonization of Rapeseed Husk: A Strategy for Improving its Solid Fuel Properties. Fuel Process. Technol. 2016, 149, 305–312. https://doi.org/10.1016/j.fuproc.2016.04.030
dc.relation.referencesen[72] Konneh, M.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Adsorption and Desorption of Nutrients from Abattoir Wastewater: Modelling and Comparison of Rice, Coconut and Coffee Husk Biochar. Heliyon 2021, 7, e08458. https://doi.org/10.1016/j.heliyon.2021.e08458
dc.relation.referencesen[73] Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
dc.relation.referencesen[74] Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical Transformation of CO2 During its Capture by Waste Biomass Derived Biochars. Environ. Pollut. 2016, 213, 533–540. https://doi.org/10.1016/j.envpol.2016.03.013
dc.relation.referencesen[75] Sethupathi, S.; Zhang, M.; Rajapaksha, A.U.; Lee, S.R.; Mohamad Nor, N.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. https://doi.org/10.3390/su9010121
dc.relation.referencesen[76] Ighalo, J.O.; Eletta, O.A.A.; Adeniyi, A.G. Biomass Carbonisation in Retort Kilns: Process Techniques, Product Quality and Future Perspectives. Bioresource Technology Reports 2022, 17, 100934. https://doi.org/10.1016/j.biteb.2021.100934
dc.relation.referencesen[77] Raček, J.; Chorazy, T.; Carnevale Miino, M.; Vršanská, M.; Brtnický, M.; Mravcová, L.; Kučerík, J.; Hlavínek, P. Biochar Production from the Pyrolysis of Food Waste: Characterization and Implications for its Use. Sustain Chem Pharm. 2023, 37, 101387. https://doi.org/10.1016/j.scp.2023.101387
dc.relation.referencesen[78] Godvin Sharmila, V.; Kumar Tyagi, V.; Varjani, S.; Rajesh Banu, S. A Review on the lignocellulosic Derived Biochar-Based Catalyst in Wastewater Remediation: Advanced Treatment Technologies and Machine Learning Tools. Bioresour. Technol. 2023, 387, 129587. https://doi.org/10.1016/j.biortech.2023.129587
dc.relation.referencesen[79] Cui, X.; Wang, J.; Wang, X.; Du, G.; Khan, K.Y.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of Exhausted Hydrochar Sorbent for Cadmium Separation and Biochar Regeneration. Chemosphere 2022, 306, 135546. https://doi.org/10.1016/j.chemosphere.2022.135546
dc.relation.referencesen[80] Ambaye, T.G.; Formicola, F.; Sbaffoni, S.; Milanese, C.; Franzetti, A.; Vaccari M. Effect of Biochar on Petroleum Hydrocarbon Degradation and Energy Production in Microbial Electrochemical Treatment. J Environ Chem Eng. 2023, 11, 5. https://doi.org/10.1016/j.jece.2023.110817
dc.relation.referencesen[81] Qi, Y.; Zhong, Y.; Luo, L.; He, J.; Feng, B.; Wei, Q.; Zhang, K.; Ren, H. Subsurface Constructed Wetlands with Modified Biochar Added for Advanced Treatment of Tailwater: Performance and Microbial Communities. Sci. Total Environ. 2023, 906, 167533. https://doi.org/10.1016/j.scitotenv.2023.167533
dc.relation.referencesen[82] Qin, X.; Cheng, S.; Xing, B.; Qu, X.; Shi, C.; Meng, W.; Zhang, C.; Xia, H. Preparation of Pyrolysis Products by Catalytic Pyrolysis of Poplar: Application of Biochar in Antibiotic Wastewater Treatment. Chemosphere 2023, 338, 139519. https://doi.org/10.1016/j.chemosphere.2023.139519
dc.relation.referencesen[83] Su, K.; Hu, G.; Zhao, T.; Dong, H.; Yang, Y.; Pan, H.; Lin, Q. The Ultramicropore Biochar Derived from Waste Distiller’s Grains for Wet-Process Phosphoric Acid Purification: Removal Performance and Mechanisms of Cr(VI). Chemosphere 2023, 349, 140877. https://doi.org/10.1016/j.chemosphere.2023.140877
dc.relation.referencesen[84] Piloni, R.V.; Coelho, L.F.; Sass, D.C.; Lanteri, M.; Zaghete Bertochi, M.A.; Laura Moyano, E.; Contiero, J. Biochars from Spirulina as an Alternative Material in the Purification of Lactic Acid from a Fermentation Broth. Curr. Opin. Green Sustain. Chem. 2021, 4, 100084. https://doi.org/10.1016/j.crgsc.2021.100084
dc.relation.referencesen[85] Wang, Y.; Luo, J.; Qin, J.; Huang, Y.; Ke, T.; Luo, Y.; Yang, M. Efficient Removal of Phytochrome Using Rice Straw-Derived Biochar: Adsorption Performance, Mechanisms, and Practical Applications. Bioresour. Technol. 2023, 376, 128918. https://doi.org/10.1016/j.biortech.2023.128918
dc.relation.referencesen[86] Bian, H.; Wang, M.; Huang, J.; Liang, R.; Du, J.; Fang, C.; Shen, C.; Man, Y.B.; Wong, M.H.; Shan, S., et al. Large Particle Size Boosting the Engineering Application Potential of Functional Biochar in Ammonia Nitrogen and Phosphorus Removal from Biogas Slurry. J. Water Process. Eng. 2023, 57, 104640. https://doi.org/10.1016/j.jwpe.2023.104640
dc.relation.referencesen[87] Bibi, A.; Khan, H.; Hussain, S.; Arshad, M.; Wahab, F.; Usama, M.; Khan, K.; Akbal, F. Sustainable Wastewater Purification with Crab Shell-Derived Biochar: Advanced Machine Learning Modeling & Experimental Analysis. Bioresour. Technol. 2023, 390, 129900. https://doi.org/10.1016/j.biortech.2023.129900
dc.relation.referencesen[88] Choi, J.; Kim, M.; Choi, J.; Jang, M.; Hyun, S. Sorption Behavior of Three Aromatic Acids (Benzoic Acid, 1-Naphthoic Acid and 9-Anthroic Acid) on Biochar: Cosolvent Effect in Different Liquid Phases. Chemosphere 2023, 349, 140898. https://doi.org/10.1016/j.chemosphere.2023.140898
dc.relation.referencesen[89] Liu, Z.; Xie, S.; Zhou, H.; Zhao, L.; Yao, Z.; Fan, H.; Si, B.; Yang, G. Organic Contaminants Removal and Carbon Sequestration Using Pig Manure Solid Residue-Derived Biochar: A Novel Closed-Loop Strategy for Anaerobic Liquid Digestate. Chem. Eng. J. 2023, 471, 144601. https://doi.org/10.1016/j.cej.2023.144601
dc.relation.referencesen[90] Gul, T.; Aslam, M.M.; Khan, A.S.; Iqbal, T.; Ullah, F.; Eldesoky, G.E.; Aljuwayid, A.M.; Akhtar, M.S. Phytotoxic Responses of Wheat to an Imidazolium Based Ionic Liquid in Absence and Presence of Biochar. Chemosphere 2023, 322, 138080. https://doi.org/10.1016/j.chemosphere.2023.138080
dc.relation.referencesen[91] Lourenço, M.A.O.; Frade, T.; Bordonhos, M.; Castellino, M.; Pinto, M. L.; Bocchini, S. N-doped Sponge-Like Biochar: A Promising CO2 Sorbent for CO₂/CH₄ and CO2/N₂ Gas Separation. Chem. Eng. J. 2023, 470, 144005. https://doi.org/10.1016/j.cej.2023.144005
dc.relation.referencesen[92] Lee, J.; Lee, S.; Lin, K.Y.A.; Jung, S.; Kwon, E. E. Abatement of Odor Emissions from Wastewater Treatment Plants Using Biochar. Environ. Pollut. 2023, 336, 122426. https://doi.org/10.1016/j.envpol.2023.122426
dc.relation.referencesen[93] Guo, T.; Zhang, Y.; Geng, Y.; Chen, J.; Zhu, Z.; Bedane, A.H.; Du, Y. Surface Oxidation Modification of Nitrogen Doping Biochar for Enhancing CO2 Adsorption. Ind Crops Prod. 2023, 206, 117582. https://doi.org/10.1016/j.indcrop.2023.117582
dc.relation.referencesen[94] Feng, Q.; Zhang, J.; Peng, C.; Cai, Z. Synthesis of Modified Sludge Biochar for Flue Gas Denitration: Biochar Properties, Synergistic Efficiency and Mechanism. Waste Manage. 2023, 170, 204–214. https://doi.org/10.1016/j.wasman.2023.08.007
dc.relation.referencesen[95] Wang, Y.; Dou, Z.; Tang, X.; Lian, L.; Liu, Y. Oxidative Absorption of Elemental Mercury in Combustion Flue Gas Using Biochar-Activated Peroxydisulfate System. J. Energy Inst. 2023, 108, 101248. https://doi.org/10.1016/j.joei.2023.101248
dc.relation.referencesen[96] Cho, S.H.; Lee, S.; Kim, Y.; Song, H.; Lee, J.; Tsang, Y.F.; Chen, W.-H.; Park, Y.-K.; Lee, D.-J.; Jung, S., et al. Applications of Agricultural Residue Biochars to Removal of Toxic Gases Emitted from Chemical Plants: A Review. Sci. Total Environ. 2023, 868, 161655. https://doi.org/10.1016/j.scitotenv.2023.161655
dc.relation.referencesen[97] Selenius, M.; Ruokolainen, J.; Riikonen, J.; Rantanen, J.; Näkki, S Lehto, V.-P.; Hyttinen, M. Removing Siloxanes and Hydrogen Sulfide from Landfill Gases with Biochar and Activated Carbon Filters. Waste Manage. 2023, 167, 31–38. https://doi.org/10.1016/j.wasman.2023.05.006
dc.relation.referencesen[98] Cao, W.; Xu, H.; Zhang, X.; Xiang, W.; Qi, G.; Wan, L.; Gao, B. Novel Post-Treatment of Ultrasound Assisting with Acid Washing Enhance Lignin-Based Biochar for CO2 Capture: Adsorption Performance and Mechanism. Chem. Eng. J. 2023, 47, 1445231. https://doi.org/10.1016/j.cej.2023.144523
dc.relation.urihttps://doi.org/10.3390/en16124722
dc.relation.urihttps://doi.org/10.23939/chcht15.01.061
dc.relation.urihttps://doi.org/10.3390/en10010025
dc.relation.urihttps://doi.org/10.4236/ahs.2017.61004
dc.relation.urihttps://doi.org/10.3390/c9030066
dc.relation.urihttps://doi.org/10.23939/chcht16.02.328
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2010.08.005
dc.relation.urihttps://doi.org/10.1007/s40831-015-0008-6
dc.relation.urihttps://doi.org/10.1016/j.rser.2013.05.005
dc.relation.urihttps://doi.org/10.3390/en10111850
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2017.02.029
dc.relation.urihttps://doi.org/10.3390/min11080863
dc.relation.urihttps://doi.org/10.1016/j.jaap.2023.106083
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2018.01.060
dc.relation.urihttps://doi.org/10.1016/j.rser.2016.07.061
dc.relation.urihttps://doi.org/10.2355/isijinternational.ISIJINT-2017-127
dc.relation.urihttps://doi.org/10.1016/B978-1-78242-156-6.00019-8
dc.relation.urihttps://doi.org/10.1016/j.mineng.2007.09.005
dc.relation.urihttps://doi.org/10.1179/1743281214Y.0000000194
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2015.09.095
dc.relation.urihttps://doi.org/10.1016/j.scriptamat.2008.09.003
dc.relation.urihttp://dx.doi.org/10.2355/isijinternational.50.813
dc.relation.urihttps://doi.org/10.1002/srin.201200078
dc.relation.urihttps://doi.org/10.1016/j.jfueco.2022.100082
dc.relation.urihttps://doi.org/10.5151/2594-357X-24003
dc.relation.urihttps://doi.org/10.3390/en15207578
dc.relation.urihttp://dx.doi.org/10.4236/nr.2016.73011
dc.relation.urihttps://doi.org/10.3390/polym14245525
dc.relation.urihttps://doi.org/10.3390/polym15183788
dc.relation.urihttps://doi.org/10.3390/IECF2021-10812
dc.relation.urihttps://doi.org/10.1016/j.matpr.2020.10.808
dc.relation.urihttps://doi.org/10.13189/cme.2017.050401
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2019.107169
dc.relation.urihttps://doi.org/10.3390/polym15040943
dc.relation.urihttps://doi.org/10.1016/j.jlp.2007.04.026
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.566.107
dc.relation.urihttps://doi.org/10.1142/S0217979208046712
dc.relation.urihttps://doi.org/10.3390/en14144354
dc.relation.urihttps://doi.org/10.1016/j.geoderma.2015.01.012
dc.relation.urihttps://doi.org/10.1016/j.energy.2022.126128
dc.relation.urihttps://doi.org/10.1016/j.apsoil.2017.06.008
dc.relation.urihttps://doi.org/10.1016/j.apsoil.2023.105217
dc.relation.urihttps://doi.org/10.1016/j.ecoenv.2022.114408
dc.relation.urihttps://doi.org/10.1016/j.envres.2023.116489
dc.relation.urihttps://doi.org/10.1016/j.jobab.2023.09.005
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2023.11.335
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2023.139348
dc.relation.urihttps://doi.org/10.1016/j.apsoil.2023.105150
dc.relation.urihttps://doi.org/10.1016/j.agwat.2015.04.010
dc.relation.urihttps://doi.org/10.1080/03650340.2013.789870
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2023.e22132
dc.relation.urihttps://doi.org/10.1016/j.jtemin.2023.100066
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2018.11.124
dc.relation.urihttps://doi.org/10.1016/j.jaap.2021.105081
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.03.136
dc.relation.urihttps://doi.org/10.1007/s11356-019-05153-7
dc.relation.urihttps://doi.org/10.1038/s41467-019-08401-z
dc.relation.urihttps://doi.org/10.1002/fes3.188
dc.relation.urihttps://doi.org/10.1002/agg2.20068
dc.relation.urihttps://doi.org/10.1016/j.cherd.2023.09.003
dc.relation.urihttps://doi.org/10.1016/j.cscee.2022.100248
dc.relation.urihttps://doi.org/10.1016/j.eti.2022.102870
dc.relation.urihttps://doi.org/10.1016/j.greeac.2023.100073
dc.relation.urihttps://doi.org/10.1016/j.jece.2023.111378
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2016.04.030
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2021.e08458
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2013.10.071
dc.relation.urihttps://doi.org/10.1016/j.envpol.2016.03.013
dc.relation.urihttps://doi.org/10.3390/su9010121
dc.relation.urihttps://doi.org/10.1016/j.biteb.2021.100934
dc.relation.urihttps://doi.org/10.1016/j.scp.2023.101387
dc.relation.urihttps://doi.org/10.1016/j.biortech.2023.129587
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2022.135546
dc.relation.urihttps://doi.org/10.1016/j.jece.2023.110817
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2023.167533
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.139519
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.140877
dc.relation.urihttps://doi.org/10.1016/j.crgsc.2021.100084
dc.relation.urihttps://doi.org/10.1016/j.biortech.2023.128918
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2023.104640
dc.relation.urihttps://doi.org/10.1016/j.biortech.2023.129900
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.140898
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.144601
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2023.138080
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.144005
dc.relation.urihttps://doi.org/10.1016/j.envpol.2023.122426
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2023.117582
dc.relation.urihttps://doi.org/10.1016/j.wasman.2023.08.007
dc.relation.urihttps://doi.org/10.1016/j.joei.2023.101248
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2023.161655
dc.relation.urihttps://doi.org/10.1016/j.wasman.2023.05.006
dc.relation.urihttps://doi.org/10.1016/j.cej.2023.144523
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Miroshnichenko D., Zhylina M., Shmeltser K., 2024
dc.subjectдеревне вугілля
dc.subjectпаливо
dc.subjectметалургійна технологія
dc.subjectбіокомпозити
dc.subjectмодифікація вибухових речовин
dc.subjectдеревне вугілля в сільському господарстві
dc.subjectсорбент
dc.subjectbiochar
dc.subjectfuel
dc.subjectmetallurgical technology
dc.subjectbiocomposites
dc.subjectmodification of explosives
dc.subjectbiochar in agriculture
dc.subjectsorbent
dc.titleModern Use of Biochar in Various Technologies and Industries. A Review
dc.title.alternativeСучасні напрями використання біопалива в різних технологіях і галузях промисловості. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Miroshnichenko_D-Modern_Use_of_Biochar_232-243.pdf
Size:
676.68 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Miroshnichenko_D-Modern_Use_of_Biochar_232-243__COVER.png
Size:
540.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: