Pyrolysis Processing of Polymer Waste Components of Electronic Products

dc.citation.epage108
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage103
dc.citation.volume18
dc.contributor.affiliationVinnytsia National Technical University
dc.contributor.affiliationVinnytsia Mykhailo Kotsiubynskyi State Pedagogical University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationViacheslav Chornovil Institute of Sustainable Development
dc.contributor.authorRanskiy, Anatoliy
dc.contributor.authorGordienko, Olga
dc.contributor.authorKorinenko, Bogdan
dc.contributor.authorIshchenko, Vitalii
dc.contributor.authorSakalova, Halyna
dc.contributor.authorVasylinych, Tamara
dc.contributor.authorMalovanyy, Myroslav
dc.contributor.authorKryklyvyi, Rostyslav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:52Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractПоказана й обґрунтована доцільність переробки АБС-пластику як складової відходів електронного й електричного обладнання методом низькотемпературного піролізу й отримання альтернативних джерел енергії: піролізної рідини, газової суміші та пірокарбону. Проаналізовано основні компоненти відходів електронного й електричного обладнання, які складаються з пластику і вогнетривких оксидів, а також сполук міді та заліза. Приведено склад дорогоцінних, токсичних, малопоширених, основних металів і пластикових відходів. Показано, що відходи електронного й електричного обладнання є цінною вторинною сировиною та потребують окремих екологічно чистих технологій переробки. Досліджена термодеструкція АБС-пластику як складової відходів електронного й електричного обладнання на технологічній установці періодичної дії за відсутності кисню повітря та каталізатора кислотного типу. Дистиляцією піролізної рідини отримано бензинову, лігроїнову, керосинову, дизельну фракції та проведено дослідження їхнього якісного та кількісного складу методом газової хроматографії. Встановлено, що переважна більшість сполук у різних фракціях є насиченими вуглеводнями С8–С16 нормальної й ізомерної будови.
dc.description.abstractThe recycling of ABS plastic as a component of electronic and electrical equipment waste by the method of low-temperature pyrolysis is shown and substantiated as well as obtaining alternative sources of energy: pyrolysis liquid, gas mixture, and pyrocarbon. The main components of electronic and electrical equipment waste, which consists of plastic and refractory oxides, along with copper and iron compounds, were analyzed. The composition of precious, toxic, rare, basic metals, and plastic waste is given. It is shown that the waste of electronic and electrical equipment is a valuable secondary raw material and requires separate environmentally friendly processing technologies. The thermal destruction of ABS plastic as a component of waste electronic and electrical equipment at a technological installation of periodic action in the absence of air oxygen and an acid-type catalyst was investigated. Gasoline, naphtha, kerosene, and diesel fractions were obtained by distillation of the pyrolysis liquid, and their qualitative and quantitative composition was studied by gas chromatography. It was established that the vast majority of compounds in different fractions are saturated C8–C16 hydrocarbons of normal and isomeric structure.
dc.format.extent103-108
dc.format.pages6
dc.identifier.citationPyrolysis Processing of Polymer Waste Components of Electronic Products / Anatoliy Ranskiy, Olga Gordienko, Bogdan Korinenko, Vitalii Ishchenko, Halyna Sakalova, Tamara Vasylinych, Myroslav Malovanyy, Rostyslav Kryklyvyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 103–108.
dc.identifier.citationenPyrolysis Processing of Polymer Waste Components of Electronic Products / Anatoliy Ranskiy, Olga Gordienko, Bogdan Korinenko, Vitalii Ishchenko, Halyna Sakalova, Tamara Vasylinych, Myroslav Malovanyy, Rostyslav Kryklyvyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 103–108.
dc.identifier.doidoi.org/10.23939/chcht18.01.103
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111775
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies For The Growth Substrate Based on the Man-Made Waste – Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248-263. https://doi.org/10.1504/IJFIP.2020.111239
dc.relation.references[2] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372–376. https://doi.org/10.23939/chcht13.03.372
dc.relation.references[3] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17x8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117
dc.relation.references[4] Malovanyy, M.; Palamarchuk, O.; Trach, I.; Petruk, H.; Sakalova, H.; Soloviy, Kh.; Vasylinych, T.; Tymchuk, I.; Vronska, N. Adsorption Extraction of Chromium Ions (III) with the Help of Bentonite Clays. J. Ecol. Eng. 2020, 21, 178–185. https://doi.org/10.12911/22998993/125545
dc.relation.references[5] Ishchenko, V. Heavy Metals in Municipal Waste: The Content and Leaching Ability by Waste Fraction. J. Environ. Sci. Health A 2019, 54, 1448-1456. https://doi.org/10.1080/10934529.2019.1655369
dc.relation.references[6] Ishchenko, V. Environment Contamination with Heavy Metals Contained in Waste. Environ. probl. 2018, 3, 21–24.
dc.relation.references[7] Przystupa, K.; Vasylkivskyi, I.; Ishchenko, V.; Pohrebennyk, V.; Kochan, O. Electromagnetic Pollution: Case Study of Energy Transmission Lines and Radio Transmission Equipment. Przeglad Elektrotechniczny 2020, 2, 124684. https://doi.org/10.15199/48.2020.02.11
dc.relation.references[8] Przystupa, K. Selected Methods for Improving Power Reliability. Przegląd Elektrotechniczny 2018, 94, 117360. https://doi.org/10.15199/48.2018.12.62
dc.relation.references[9] Ishchenko, V.; Pohrebennyk, V.; Kochanek, A.; Hlavatska, L. Waste Electrical and Electronic Equipment Management in Ukraine. Proceedings of International Conference on Geosciences 2019, 1, 197–204.
dc.relation.references[10] Hlavatska, L.; Ishchenko, V. Doslidzhennya orhanizatsiynykh zasad povodzhennya z vidkhodamy elektrychnoho ta elektronnoho obladnannya v Ukrayini. Visnyk Vinnytskoho Politechnichnoho Instytutu 2021, 1, 42–48. https://doi.org/10.31649/1997-9266-2021-154-1-42-48
dc.relation.references[11] Lee, D.; Offenhuber, D.; Duarte, F.; Biderman, A.; Ratti, C. Monitour: Tracking Global Routes of Electronic Waste. Waste Manage. 2018, 72, 362–370. https://doi.org/10.1016/j.wasman.2017.11.014
dc.relation.references[12] Salhofer, S.; Tesar, M. Assessment of Removal of Components Containing Hazardous Substances from Small WEEE in Austria. J. Hazard. Mater. 2011, 186, 1481–1488. https://doi.org/10.1016/j.jhazmat.2010.12.030
dc.relation.references[13] Vasylkivskyi, I.; Ishchenko, V.; Sakalova, H.; Hernan Ullianodt, G.C.; Polyvanyi, S. Municipal Wastewater Management in Ukraine. Desalination Water Treat. 2023, 288, 159–164. https://doi.org/10.5004/dwt.2023.29379
dc.relation.references[14] Ranskiy, A.; Korinenko, B. Alternative Energy: Obtaining Synthetic Oil during the Pyrolysis Processing of Polypropylene Waste. Visnyk Vinnytskoho Politechnichnoho Instytutu 2023, 2, 6–15. https://doi.org/10.31649/1997-9266-2023-166-1-13-20
dc.relation.references[15] Ranskiy, A.; Gordienko, O.; Sakalova, H.; Sydoruk, T.; Titov, T.; Blazhko, O. Complex Sorption Treatment of Industrial Waste and Production of Plastic Lubricants. Ecol. Eng. Environ. Technol. 2023, 24, 54–59. https://doi.org/10.12912/27197050/159628
dc.relation.referencesen[1] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies For The Growth Substrate Based on the Man-Made Waste – Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248-263. https://doi.org/10.1504/IJFIP.2020.111239
dc.relation.referencesen[2] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372–376. https://doi.org/10.23939/chcht13.03.372
dc.relation.referencesen[3] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17x8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117
dc.relation.referencesen[4] Malovanyy, M.; Palamarchuk, O.; Trach, I.; Petruk, H.; Sakalova, H.; Soloviy, Kh.; Vasylinych, T.; Tymchuk, I.; Vronska, N. Adsorption Extraction of Chromium Ions (III) with the Help of Bentonite Clays. J. Ecol. Eng. 2020, 21, 178–185. https://doi.org/10.12911/22998993/125545
dc.relation.referencesen[5] Ishchenko, V. Heavy Metals in Municipal Waste: The Content and Leaching Ability by Waste Fraction. J. Environ. Sci. Health A 2019, 54, 1448-1456. https://doi.org/10.1080/10934529.2019.1655369
dc.relation.referencesen[6] Ishchenko, V. Environment Contamination with Heavy Metals Contained in Waste. Environ. probl. 2018, 3, 21–24.
dc.relation.referencesen[7] Przystupa, K.; Vasylkivskyi, I.; Ishchenko, V.; Pohrebennyk, V.; Kochan, O. Electromagnetic Pollution: Case Study of Energy Transmission Lines and Radio Transmission Equipment. Przeglad Elektrotechniczny 2020, 2, 124684. https://doi.org/10.15199/48.2020.02.11
dc.relation.referencesen[8] Przystupa, K. Selected Methods for Improving Power Reliability. Przegląd Elektrotechniczny 2018, 94, 117360. https://doi.org/10.15199/48.2018.12.62
dc.relation.referencesen[9] Ishchenko, V.; Pohrebennyk, V.; Kochanek, A.; Hlavatska, L. Waste Electrical and Electronic Equipment Management in Ukraine. Proceedings of International Conference on Geosciences 2019, 1, 197–204.
dc.relation.referencesen[10] Hlavatska, L.; Ishchenko, V. Doslidzhennya orhanizatsiynykh zasad povodzhennya z vidkhodamy elektrychnoho ta elektronnoho obladnannya v Ukrayini. Visnyk Vinnytskoho Politechnichnoho Instytutu 2021, 1, 42–48. https://doi.org/10.31649/1997-9266-2021-154-1-42-48
dc.relation.referencesen[11] Lee, D.; Offenhuber, D.; Duarte, F.; Biderman, A.; Ratti, C. Monitour: Tracking Global Routes of Electronic Waste. Waste Manage. 2018, 72, 362–370. https://doi.org/10.1016/j.wasman.2017.11.014
dc.relation.referencesen[12] Salhofer, S.; Tesar, M. Assessment of Removal of Components Containing Hazardous Substances from Small WEEE in Austria. J. Hazard. Mater. 2011, 186, 1481–1488. https://doi.org/10.1016/j.jhazmat.2010.12.030
dc.relation.referencesen[13] Vasylkivskyi, I.; Ishchenko, V.; Sakalova, H.; Hernan Ullianodt, G.C.; Polyvanyi, S. Municipal Wastewater Management in Ukraine. Desalination Water Treat. 2023, 288, 159–164. https://doi.org/10.5004/dwt.2023.29379
dc.relation.referencesen[14] Ranskiy, A.; Korinenko, B. Alternative Energy: Obtaining Synthetic Oil during the Pyrolysis Processing of Polypropylene Waste. Visnyk Vinnytskoho Politechnichnoho Instytutu 2023, 2, 6–15. https://doi.org/10.31649/1997-9266-2023-166-1-13-20
dc.relation.referencesen[15] Ranskiy, A.; Gordienko, O.; Sakalova, H.; Sydoruk, T.; Titov, T.; Blazhko, O. Complex Sorption Treatment of Industrial Waste and Production of Plastic Lubricants. Ecol. Eng. Environ. Technol. 2023, 24, 54–59. https://doi.org/10.12912/27197050/159628
dc.relation.urihttps://doi.org/10.1504/IJFIP.2020.111239
dc.relation.urihttps://doi.org/10.23939/chcht13.03.372
dc.relation.urihttps://doi.org/10.23939/chcht11.01.117
dc.relation.urihttps://doi.org/10.12911/22998993/125545
dc.relation.urihttps://doi.org/10.1080/10934529.2019.1655369
dc.relation.urihttps://doi.org/10.15199/48.2020.02.11
dc.relation.urihttps://doi.org/10.15199/48.2018.12.62
dc.relation.urihttps://doi.org/10.31649/1997-9266-2021-154-1-42-48
dc.relation.urihttps://doi.org/10.1016/j.wasman.2017.11.014
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.12.030
dc.relation.urihttps://doi.org/10.5004/dwt.2023.29379
dc.relation.urihttps://doi.org/10.31649/1997-9266-2023-166-1-13-20
dc.relation.urihttps://doi.org/10.12912/27197050/159628
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Ranskiy A., Gordienko O., Korinenko B., Ishchenco V., Sakalova H., Vasylinych T., Malovanyy M., 2024
dc.subjectвідходи електронного й електричного обладнання
dc.subjectАБС-пластик
dc.subjectпіроліз
dc.subjectтехнологія
dc.subjectхроматографічний аналіз
dc.subjectальтернативна енергетика
dc.subjectwaste of electronic and electrical equipment
dc.subjectABS plastic
dc.subjectpyrolysis
dc.subjecttechnology
dc.subjectchromatographic analysis
dc.subjectalternative energetics
dc.titlePyrolysis Processing of Polymer Waste Components of Electronic Products
dc.title.alternativeПіролізна переробка полімерних складових відходів електронної продукції
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Ranskiy_A-Pyrolysis_Processing_of_103-108.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Ranskiy_A-Pyrolysis_Processing_of_103-108__COVER.png
Size:
543.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: