Smart parking system for license plate recognition based on YOLO neural network and optical character recognition
| dc.citation.epage | 129 | |
| dc.citation.issue | 3 | |
| dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
| dc.citation.spage | 123 | |
| dc.contributor.affiliation | Національний університет "Львівська політехніка" | |
| dc.contributor.affiliation | Національний університет "Львівська політехніка" | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Висоцький, Владислав | |
| dc.contributor.author | Яворський, Назарій | |
| dc.contributor.author | Vysotskyi, Vladyslav | |
| dc.contributor.author | Jaworski, Nazariy | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-16T08:40:53Z | |
| dc.description.abstract | У статті описано метод розпізнавання номерних знаків на прикладі навчання та розгортання моделі машинного навчання. У дослідженні використано архітектуру нейронної мережі YOLO (You Only Look Once‖) і методи оптичного розпізнавання символів (OCR) для вилучення символів номерних знаків, що уможливлюють розпізнавання номерних знаків у реальному часі. Експериментальні випробування, які охоплюють навчання моделі, валідацію та оцінку, продемонст- рували ефективність цих методів для поліпшення автоматизованого контролю доступу в розумних системах паркування. | |
| dc.description.abstract | This paper describes a license plate recognition method, exemplified by training and deploying a machine learning model. The study uses the YOLO (You Only Look Once‖) neural network architecture and optical character recognition (OCR) techniques to extract license plate characters for real-time license plate recognition. Experimental tests, including model training, validation, and evaluation, demonstrate the effectiveness of these methods in enhancing automated access control in smart parking systems. | |
| dc.format.extent | 123-129 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Vysotskyi V. Smart parking system for license plate recognition based on YOLO neural network and optical character recognition / Vladyslav Vysotskyi, Nazariy Jaworski // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 123–129. | |
| dc.identifier.citation2015 | Vysotskyi V., Jaworski N. Smart parking system for license plate recognition based on YOLO neural network and optical character recognition // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 123–129. | |
| dc.identifier.citationenAPA | Vysotskyi, V., & Jaworski, N. (2024). Smart parking system for license plate recognition based on YOLO neural network and optical character recognition. Computer Systems of Design. Theory and Practice, 6(3), 123-129. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Vysotskyi V., Jaworski N. (2024) Smart parking system for license plate recognition based on YOLO neural network and optical character recognition. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 123-129. | |
| dc.identifier.doi | https://doi.org/10.23939/cds2024.03.123 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124087 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 3 (6), 2024 | |
| dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 3 (6), 2024 | |
| dc.relation.references | [1] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ―YouO nly Look Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,2016, pp. 779–788, https://doi.org/10.48550/arXiv.1506.02640 | |
| dc.relation.references | [2] [Electronic resource]. Smart Parking Market Size is projected to reach USD 16.54 Billion by 2030, growing at a CAGR of 13.6 %: Straits Research,https://www.globenewswire.com/en/newsrelease/2023/09/14/2743480/0/en/Smart-Parking-Market-Size-is-projected-to-reach-USD-16-54-Billion-by-2030- growing-at-a-CAGR-of-13-6-Straits-Research.html | |
| dc.relation.references | [3] [Electronic resource]. AutoRia Dataset, https://nomeroff.net.ua/datasets | |
| dc.relation.references | [4] [Electronic resource]. Ultralytics YOLOv8 Docs, https://docs.ultralytics.com/models/yolov8 | |
| dc.relation.references | [5] [Electronic resource]. Roboflow Documentation, https://docs.roboflow.com | |
| dc.relation.references | [6] [Electronic resource]. CUDA Toolkit Documentation, https://docs.nvidia.com/cuda/ | |
| dc.relation.references | [7] Afif, Mouna & Said, Yahia & Atri, Mohamed (2020). Computer vision algorithms acceleration using graphic processors NVIDIA CUDA. Cluster Computing, 23. 10.1007/s10586-020-03090-6. | |
| dc.relation.references | [8] [Electronic resource]. Sambasivarao K., ―Non-maximum Suppression (NMS), A technique to filter the predictions of object detectors‖, Towards Data Science, https://towardsdatascience.com/non-maximum-suppressionnms-93ce178e177c | |
| dc.relation.references | [9] [Electronic resource]. EasyOCR Github page, https://github.com/JaidedAI/EasyOCR | |
| dc.relation.references | [10] [Electronic resource]. LiteRT overview, https://ai.google.dev/edge/litert | |
| dc.relation.referencesen | [1] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ―YouO nly Look Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,2016, pp. 779–788, https://doi.org/10.48550/arXiv.1506.02640 | |
| dc.relation.referencesen | [2] [Electronic resource]. Smart Parking Market Size is projected to reach USD 16.54 Billion by 2030, growing at a CAGR of 13.6 %: Straits Research,https://www.globenewswire.com/en/newsrelease/2023/09/14/2743480/0/en/Smart-Parking-Market-Size-is-projected-to-reach-USD-16-54-Billion-by-2030- growing-at-a-CAGR-of-13-6-Straits-Research.html | |
| dc.relation.referencesen | [3] [Electronic resource]. AutoRia Dataset, https://nomeroff.net.ua/datasets | |
| dc.relation.referencesen | [4] [Electronic resource]. Ultralytics YOLOv8 Docs, https://docs.ultralytics.com/models/yolov8 | |
| dc.relation.referencesen | [5] [Electronic resource]. Roboflow Documentation, https://docs.roboflow.com | |
| dc.relation.referencesen | [6] [Electronic resource]. CUDA Toolkit Documentation, https://docs.nvidia.com/cuda/ | |
| dc.relation.referencesen | [7] Afif, Mouna & Said, Yahia & Atri, Mohamed (2020). Computer vision algorithms acceleration using graphic processors NVIDIA CUDA. Cluster Computing, 23. 10.1007/s10586-020-03090-6. | |
| dc.relation.referencesen | [8] [Electronic resource]. Sambasivarao K., ―Non-maximum Suppression (NMS), A technique to filter the predictions of object detectors‖, Towards Data Science, https://towardsdatascience.com/non-maximum-suppressionnms-93ce178e177c | |
| dc.relation.referencesen | [9] [Electronic resource]. EasyOCR Github page, https://github.com/JaidedAI/EasyOCR | |
| dc.relation.referencesen | [10] [Electronic resource]. LiteRT overview, https://ai.google.dev/edge/litert | |
| dc.relation.uri | https://doi.org/10.48550/arXiv.1506.02640 | |
| dc.relation.uri | https://www.globenewswire.com/en/newsrelease/2023/09/14/2743480/0/en/Smart-Parking-Market-Size-is-projected-to-reach-USD-16-54-Billion-by-2030- | |
| dc.relation.uri | https://nomeroff.net.ua/datasets | |
| dc.relation.uri | https://docs.ultralytics.com/models/yolov8 | |
| dc.relation.uri | https://docs.roboflow.com | |
| dc.relation.uri | https://docs.nvidia.com/cuda/ | |
| dc.relation.uri | https://towardsdatascience.com/non-maximum-suppressionnms-93ce178e177c | |
| dc.relation.uri | https://github.com/JaidedAI/EasyOCR | |
| dc.relation.uri | https://ai.google.dev/edge/litert | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Vysotskyi V., Jaworski N., 2024 | |
| dc.subject | моделі нейронних мереж | |
| dc.subject | YOLO | |
| dc.subject | розпізнавання номерних знаків | |
| dc.subject | розумне паркування | |
| dc.subject | оптичне розпізнавання символів | |
| dc.subject | neural network models | |
| dc.subject | YOLO | |
| dc.subject | license plates recognition | |
| dc.subject | smart parking | |
| dc.subject | optical character recognition | |
| dc.title | Smart parking system for license plate recognition based on YOLO neural network and optical character recognition | |
| dc.title.alternative | Система розумного паркування для розпізнавання номерних знаків на основі нейромережі YOLO та оптичного розпізнавання символів | |
| dc.type | Article |