The origin of the low density zones in the crystalline crust of the Transcarpathian depression (Ukraine) from petrophysical thermobaric modelling

dc.citation.epage93
dc.citation.issue1 (28)
dc.citation.journalTitleГеодинаміка
dc.citation.spage81
dc.contributor.affiliationІнститут геофізики ім. С. І. Субботіна НАН України
dc.contributor.affiliationSubbotin Institute of Geophysics NAS of Ukraine
dc.contributor.authorКорчін, В. О.
dc.contributor.authorРусаков, О. М.
dc.contributor.authorБуртний, П. О.
dc.contributor.authorКарнаухова, О. Є.
dc.contributor.authorKorchin, V. A.
dc.contributor.authorRusakov, O. M.
dc.contributor.authorBurtnyi, P. A.
dc.contributor.authorKarnaukhova, E. E.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-20T07:49:33Z
dc.date.available2023-06-20T07:49:33Z
dc.date.created2020-02-25
dc.date.issued2020-02-25
dc.description.abstractМета. На основі матеріалів лабораторних РТ-досліджень гірських порід і геофізичних даних щодо регіонального профілю РП-17 і їх сумісного аналізу передбачалось розкрити генезис зон низьких швидкостей у корі Закарпатського прогину як горизонтів термобаричного розущільнення мінеральної речовини та простежити зв’язок цих зон із землетрусами і родовищами вуглеводнів. Методика. Суть такого підходу полягає у порівнянні інформації ГСЗ і експериментальних даних про фізичні параметри гірських порід за високих тисків і температур. Для цього використано результати лабораторних досліджень у високих PT-режимах петрофізичних характеристик зразків гірських порід, аналогічних тим, які притаманні досліджуваному району. Результати. На основі аналізу вивчення даних лабораторних РТ-досліджень характеристик порід Українського щита і результатів спільної інтерпретації цих та сейсмічних даних по регіональних сейсмічних профілях ГСЗ на УЩ розроблено метод петрофізичного термобаричного моделювання. Напрацьовані підходи і методики застосовано для аналізу даних щодо Закарпаття, зокрема, вздовж регіонального профілю РП-17. Тут виявлено дві зони розущільнення термобаричного походження, які збігаються із зонами низьких швидкостей, аналогічні зафіксованим лабораторними методами в зразках гірських порід у різних РТ-умовах. Зони прогнозуються як ефективні регіональні пастки мантійних флюїдів, зокрема вуглеводнів, які під дією високих тиску, температури і декомпресії проникають у земну кору, а потім у приповерхневі шари осадового чохла, де сформують певні родовища. У зонах розущільнення активізуються приповерхневі землетруси із малими магнітудами, що розширює області розущільнення і сприяє переміщенню у них глибинних, наприклад, вуглеводнів до зон їх локалізації. Наукова новизна. Зони низьких швидкостей (області термобаричного розущільнення мінеральної речовини) обов’язкові за певного тиску і температур у земній корі будь-яких регіонів. Вперше показано, що для Закарпаття вони є її невід’ємною частиною і обов’язково формуються в процесі прогрівання земних надр під час їх “термогеоактивізаціі”. Горизонти термобаричного розущільнення порід під впливом тектонічних напружень, різноспрямованих деформацій і вібрацій набувають властивостей сильно дислокованих середовищ, формують великі канали міграції флюїдів, так званих “труб дегазації”, які, своєю чергою, забезпечують рух корисних мінеральних середовищ до поверхні, а також є зонами релаксації тектонічних напружень, зокрема, у вигляді землетрусів. Практична значущість. Результати описаних досліджень дають можливість уточнити геолого-структурні особливості будови земної кори Закарпаття, адекватно інтерпретувати просторовий розподіл геофізичних полів та розшифровувати особливості місцевої геодинаміки і сейсмотектонічного процесу, уточнювати рівень та характер геоекологічних небезпек, ефективніше прогнозувати та досліджувати глибинно-просторовий розподіл корисних копалин.
dc.description.abstractPurpose. Based on laboratory PT-studies of rocks and their joint analysis with the data from the regional profile RP-17, the aim of this research is to reveal the origin of the low-velocity zones in the Transcarpathian depression as zones of thermobaric rock decompaction and to elucidate the relationship of these zones with earthquakes and hydrocarbon fields. Methodology. The essence of such an approach is the comparison of the DSS information with experimental data on the physical parameters of rocks at high pressures and temperatures. For this purpose, we used the results e from high PT measurements of physical parameters on rocks analogous to those from the region under study. Results. Having analyzed the findings of the laboratory PT-experiments, we developed the method of petrophysical thermobaric modelling. This method is based on the characteristics of the “granitoid” type rocks from the Ukrainian Shield and the results of the joint interpretation of these data and information on the regional deep seismic sounding profiles from this tectonic unit. These approaches and techniques were applied to the analysis of the data from Transcarpathia, in particular, to the RP-17 regional profile. Two decompaction zones of the thermobaric origin were revealed along the profile coinciding with low seismic velocity zones. They are supposed to be effective regional traps for the mantle fluids, especially for hydrocarbons which under high pressure, temperature, and decompression penetrate into the near-surface layers of the sedimentary cover and form mineral deposits. In the decompaction zones shallow earthquakes with low magnitudes become activated. They widen the decomposition domains and facilitate the movement of deep hydrocarbons to the location within them. Originality. For the first time, it was shown that low velocity zones (the region of thermobaric decompaction of mineral matter) under certain pressure and temperature in the Еarth's crust of “thermoactive” region, including Transcarpathia, are its integral part; they are inevitably formed in the process of warming up of the Earth’s interior during its “thermoactivation”. Horizons of thermobaric decompression of rocks, which under the influence of stresses, multidirectional deformations, and vibrations, acquire the properties of strongly dislocated media forming extensive migration channels of fluids, “degassing pipes”. They provide the movement of useful mineral media to the surface and the zones of intense relaxation of tectonic stresses, especially in the form of earthquakes. Practical significance. The results of the studies give an opportunity to clarify the geological and structural features of the structure of the Earth's crust of Transcarpathia, to adequately interpret the spatial distribution of geophysical fields and to decipher the features of local geodynamics and seismotectonic process, to clarify the level and nature of geo-ecological hazards, to more effectively predict and study deep regional distribution of mineral resources.
dc.format.extent81-93
dc.format.pages13
dc.identifier.citationThe origin of the low density zones in the crystalline crust of the Transcarpathian depression (Ukraine) from petrophysical thermobaric modelling / V. A. Korchin, O. M. Rusakov, P. A. Burtnyi, E. E. Karnaukhova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 1 (28). — P. 81–93.
dc.identifier.citationenThe origin of the low density zones in the crystalline crust of the Transcarpathian depression (Ukraine) from petrophysical thermobaric modelling / V. A. Korchin, O. M. Rusakov, P. A. Burtnyi, E. E. Karnaukhova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 1 (28). — P. 81–93.
dc.identifier.doidoi.org/10.23939/jgd2020.01.081
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59294
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1 (28), 2020
dc.relation.ispartofGeodynamics, 1 (28), 2020
dc.relation.referencesAlers, D. (1968). Using measurements of sound velocity
dc.relation.referencesfor determining the Debye temperature in solid
dc.relation.referencesbodies. Dynamics of lattice. Moscow: Mir, рр. 13–61. (in Russian).
dc.relation.referencesBurtnyi, P. A., Korchin, V. A., Karnaukhova, E. E.
dc.relation.references(2013). Modelling matter composition of the deep
dc.relation.referenceshorizons of the Earth’s crust (a new conception of
dc.relation.referencesthe interpretation of geophysical data). LAP Lambert
dc.relation.referencesAcademic Publishing House, Saarbrücken,
dc.relation.referencesDeutschland, 188 р. ISBN: 978-3-659-38626-8. (in Russian).
dc.relation.referencesChekunov, A. V., Livanova, L. P., Geyko, V. S. (1969).
dc.relation.referencesDeep structure and certain peculiarities of the
dc.relation.referencestectonics of the Transcarpathian depression. Soviet
dc.relation.referencesGeology, 10, 57–68. (in Russian).
dc.relation.referencesChekunov, A. V., Sologub, N. V., Starostenko V. I. et.
dc.relation.referencesal. (1994). The deep structure and geodynamics of
dc.relation.referencesthe Carpathians. Lithosphere of Central and Eastern
dc.relation.referencesEurope: Young Platforms and Alpine fold complex /
dc.relation.referencesed. by Chekunov A.V. Naukova Dumka Publishin
dc.relation.referencesHouse, Kyiv., p. 121–174. (in Russian).
dc.relation.referencesChristensen, N. (1989). Reflectivity and seismic properties
dc.relation.referencesof the deep continental crust. Journal of Geophysical
dc.relation.referencesResearch, 94(17), 793–804.
dc.relation.referencesChristensen, N., Mooney, W. (1995). Seismic velocity
dc.relation.referencesstructure and composition of the continental crust:
dc.relation.referencesA global view. Journal of Geophysical Research, 100(B7). 9761–9788.
dc.relation.referencesGeguzin, Y.E., Krivoglaz, M. A. (1971). Migration of
dc.relation.referencesmacroscopic inclusions in solid bodies. Moscow:
dc.relation.referencesMetallurgia, 344 р. (in Russian).
dc.relation.referencesGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovachikova, S., Logvinov, I. M., Tarasov, V. N., Usenko, O. V. (2011). The Ukrainian
dc.relation.referencesCarpathians (geophysics, deep processes). Logos
dc.relation.referencesPublishing House, Kiev, 128 р. ISBN 978-966-171-350-4. (In Russian).
dc.relation.referencesGordienko, V. V., Gordienko, L.Ya. (2019). Asthenospheric lenses in the mantle of oil and gas regions.
dc.relation.referencesGeology of mineral resources and the World Ocean, 2, рр. 35–51. (In Russian). https: // doi.org/10. 15407./gpimo2019.02.035
dc.relation.referencesKern, H. (1978). The effect of high temperature and high
dc.relation.referencesconfining pressure on compression a wave velocity
dc.relation.referencesin quartz-bearing and quartzfree igneous and
dc.relation.referencesmetamorphic rocks. Tectonophysics, 4, 185–203.
dc.relation.referencesKorchin, V. A. (2013a) Thermodynamics of crustal
dc.relation.referenceslow velocity zones (a new scientific hypothesis).
dc.relation.referencesLAP Lambert Academic Publishing, Saarbrücken,
dc.relation.referencesDeutschland, 280 р. (in Russian).
dc.relation.referencesKorchin, V. A. (2013b). Crustal low velocity zones –
dc.relation.referencesperspective horizons for localization of deep hydrocarbons. Deep oil, 8, рр. 1099–1116. (in Russian).
dc.relation.referencesKorchin, V. A. (2017). Anomalies of low density in
dc.relation.referencesthe crystalline crust of thermobaric origin: a new
dc.relation.referencesinsight into migration and localization of hydrocarbons. In: Gasi, S and Hachay, O (Eds) Oil
dc.relation.referencesand Gas Exploration: Methods and Application.
dc.relation.referencesMonograph Number 72. Wiley, рр. 237–257.
dc.relation.referencesKorchin, V. A. (2018). Features of thermobaric elasticdensity anomalies of the Еarth's crust of seismicallytectonically active regions. Modern problems of
dc.relation.referencesmechanics, 33(3), 244–254. ISSN 1694-6065. (in Russian).
dc.relation.referencesKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.references(2018a). Decompaction of metamorphic rocks
dc.relation.referencesunder thermodynamic conditions of the Earth’s
dc.relation.referencescrust (experimental data). Geophysical Journal, 40(4), 107–130. DOI: 10.24028/gzh.0203-3100.v404.2018.140612. (in Russian).
dc.relation.referencesKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.references(2018b). Thermobaric decompression zones of the
dc.relation.referencescrustal rocks are natural satellites of seismotectonically active regions. Modern problems of
dc.relation.referencesmechanics, 33(3), 399-409. ISSN 1694-6065. (in
dc.relation.referencesRussian).
dc.relation.referencesKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.references(2019а). Transcarpathian petrophysical thermobaric model along the RP-17 seismic profile.
dc.relation.referencesActual prospects for the development of geology:
dc.relation.referencesscience and production: Materials of the VІ
dc.relation.referencesInternational Geological Forum (Odessa, Ukraine,
dc.relation.referencesJune 17-22, 2019), Kiev: USGRI, рр. 116–119.
dc.relation.referencesISBN 978-966-7896-85-0. (in Russian).
dc.relation.referencesKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.references(2019b). The prognosis Transcarpathia petrophysical
dc.relation.referencesthermobaric model along the RP-17 profile.
dc.relation.referencesGeophysics and geodynamics: forecasting and
dc.relation.referencesmonitoring of the geological medium / Edited
dc.relation.referencesby Maksimchuk V., Lviv: Rastr-7, рр. 68–70.
dc.relation.referencesISBN 978-617-7726-70-7. (in Ukrainian).
dc.relation.referencesKorchin, V. A., Burtnyi, P. A., Kobolev, V. P. (2013).
dc.relation.referencesThermobaric petrophysical modelling in geophysics.
dc.relation.referencesNaukova Dumka Publishin House, Kiev. ISBN: 978-966-00-1360-5, 312 р. (in Russian).
dc.relation.referencesKorchin V., Rusakov O. (2019). The regional thermobaric trap for mantle hydrocarbons in the crystalline
dc.relation.referencescrust of the Ukrainian NW Black Sea sector. 18th
dc.relation.referencesInternational Conference on Geoinformatics –
dc.relation.referencesTheoretical and Applied Aspects. 13–16 May 2019.
dc.relation.referencesKyiv, Ukraine. DOI: 10.3997/2214-4609.201902054.
dc.relation.referencesKutas R. I. (1978). Field of heat flows and a theoretical model of the Earth’s crust. Naukova Dumka
dc.relation.referencesPublishing House, Kiev, 140 р. (in Russian).
dc.relation.referencesKutas R. I. (2014). Heat flow and geothermal models for the Earth’s crust of the Ukrainian Carpathians. Geophysical Journal, 36, 6, рр. 3–27.
dc.relation.referencesDOI: https://doi.org/10.24028/gzh.0203-3100.v36i6.2014.111016. (in Russian).
dc.relation.referencesKutas R. I. (2016). Geothermal conditions and the
dc.relation.referencesMesozoic-Cenozoic evolution of the CarpathianPannonian region. Geophysical Journal, 38, 5,
dc.relation.referencesрр. 75–107. DOI: 10.24028/gzh.0203-3100.v38i5. 2016.107823. (in Russian).
dc.relation.referencesMilanovsky, S. Yu., Nicolaevsky, V. N. (2009). The
dc.relation.referencesrole of fracturing in the evolution of the Earth's
dc.relation.referencescrust. Tectonophysics and current issues of Earth
dc.relation.referencessciences. Col. of Materials of reports of the AllRussian Conference. (8–12 October 2009, Moscow,
dc.relation.referencesRussia). Vol. 2. Moscow: IEP, p. 71-103. (in Russian).
dc.relation.referencesMilanovsky, S. Yu., Nicolaevsky, V. N. (2010).
dc.relation.referencesProcesses of transfer (migration) in the system of
dc.relation.referencesthe Earth’s crust. Modern methods of seismic
dc.relation.referencessurvey in searching for oil and gas under conditions of
dc.relation.referencescomplex structures (Seismo 2012), 16–22 September 2010, Kurortnoe, AR Crimea, Ukraine.
dc.relation.referencesThe International scientific and practical conference, p. 37–44.
dc.relation.references(in Russian).
dc.relation.referencesNashchekin, V. V. (1969). Technical thermodynamics
dc.relation.referencesand heat transfer. Moscow: Higher school, 560 р.
dc.relation.references(in Russian).
dc.relation.referencesNazarevich, A. V., Nazarevich, L. E. (2002). Deep
dc.relation.referencestrap-collector tectonic structures in the lithosphere
dc.relation.referencesof the Carpathian region of Ukraine: nature, origin
dc.relation.referencesand perspective resources. Scientific bulletin
dc.relation.referencesIvano-Frankivsk National Technical University of
dc.relation.referencesOil and Gas, 3 (4), 10–21. (in Ukrainian).
dc.relation.referencesNazarevich, L. E., Nazarevich, A. V. (2004). Technique
dc.relation.referencesof refining the parameters of the hypocenters of the
dc.relation.referencesCarpathian earthquakes. Geodynamics, 1 (4), 53–62. (in Ukrainian).
dc.relation.referencesNazarevich, L. E., Nazarevich, A. V., Kovalishin, Z.
dc.relation.referencesI. (2002). Nature of the lowered velocities subzone
dc.relation.referencesin «granites» of the Transcarpathian crust and its
dc.relation.referencespotential recourses. Visnuk of the Lviv University,
dc.relation.referencesGeology Series, 15, 119–125. (in Ukrainian).
dc.relation.referencesNazarevich, L.E., Nazarevich, A.V., Starodub, G.P.,
dc.relation.referencesNazarevich P. A. (2011). On multistage of the seismotectonic process in the Ukrainian Transcarpathia and
dc.relation.referencesits relationship to the crustal structure of the
dc.relation.referencesregion and properties of its matter. Modern
dc.relation.referencesTectonophysics. IPE RAS: Moscow, рр. 179–186.
dc.relation.references(in Russian).
dc.relation.referencesNikolaevsky, V. N. (1966). Geomechanics and fluid
dc.relation.referencesdynamics. Moscow: Nedra, 447 p. (in Russian).
dc.relation.referencesReider, E. (1987). Fluid inclusions in minerals. Moscow:
dc.relation.referencesMir, 632 р. (in Russian).
dc.relation.referencesRusakov, O. M., Korchin, V. A. (2015). The origin
dc.relation.referencesand accumulation of abiogenic methane in the
dc.relation.referencescrystalline crust of the NW Black Sea shelf.
dc.relation.referencesMaterials of the 4st Conference on Deep Origin of
dc.relation.referencesOil “Kudriavtsev readings”, Moscow, JSC CGE,
dc.relation.referencesCD- ROM. (in Russian).
dc.relation.referencesTretyak, K. P., Maksimchuk, V. Yu, Kutas, R. I. (Eds)., 2015. Modern geodynamics and geophysical fields
dc.relation.referencesof Carpathians and contiguous territories. Polytechnic
dc.relation.referencesPublishing House, Lviv, 420 р. ISBN 978-617-607-763-3 (in Russian).
dc.relation.referencesTripolsky, A. A., Sharov, N. V. (2004). The lithosphere of
dc.relation.referencesthe Precambrian shields of the northern hemisphere
dc.relation.referencesderived from seismic data. Petrozavodsk: Karelian
dc.relation.referencesscientific centre RAS, 159 р. (in Russian).
dc.relation.referencesenAlers, D. (1968). Using measurements of sound velocity
dc.relation.referencesenfor determining the Debye temperature in solid
dc.relation.referencesenbodies. Dynamics of lattice. Moscow: Mir, rr. 13–61. (in Russian).
dc.relation.referencesenBurtnyi, P. A., Korchin, V. A., Karnaukhova, E. E.
dc.relation.referencesen(2013). Modelling matter composition of the deep
dc.relation.referencesenhorizons of the Earth’s crust (a new conception of
dc.relation.referencesenthe interpretation of geophysical data). LAP Lambert
dc.relation.referencesenAcademic Publishing House, Saarbrücken,
dc.relation.referencesenDeutschland, 188 r. ISBN: 978-3-659-38626-8. (in Russian).
dc.relation.referencesenChekunov, A. V., Livanova, L. P., Geyko, V. S. (1969).
dc.relation.referencesenDeep structure and certain peculiarities of the
dc.relation.referencesentectonics of the Transcarpathian depression. Soviet
dc.relation.referencesenGeology, 10, 57–68. (in Russian).
dc.relation.referencesenChekunov, A. V., Sologub, N. V., Starostenko V. I. et.
dc.relation.referencesenal. (1994). The deep structure and geodynamics of
dc.relation.referencesenthe Carpathians. Lithosphere of Central and Eastern
dc.relation.referencesenEurope: Young Platforms and Alpine fold complex /
dc.relation.referencesened. by Chekunov A.V. Naukova Dumka Publishin
dc.relation.referencesenHouse, Kyiv., p. 121–174. (in Russian).
dc.relation.referencesenChristensen, N. (1989). Reflectivity and seismic properties
dc.relation.referencesenof the deep continental crust. Journal of Geophysical
dc.relation.referencesenResearch, 94(17), 793–804.
dc.relation.referencesenChristensen, N., Mooney, W. (1995). Seismic velocity
dc.relation.referencesenstructure and composition of the continental crust:
dc.relation.referencesenA global view. Journal of Geophysical Research, 100(B7). 9761–9788.
dc.relation.referencesenGeguzin, Y.E., Krivoglaz, M. A. (1971). Migration of
dc.relation.referencesenmacroscopic inclusions in solid bodies. Moscow:
dc.relation.referencesenMetallurgia, 344 r. (in Russian).
dc.relation.referencesenGordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Kovachikova, S., Logvinov, I. M., Tarasov, V. N., Usenko, O. V. (2011). The Ukrainian
dc.relation.referencesenCarpathians (geophysics, deep processes). Logos
dc.relation.referencesenPublishing House, Kiev, 128 r. ISBN 978-966-171-350-4. (In Russian).
dc.relation.referencesenGordienko, V. V., Gordienko, L.Ya. (2019). Asthenospheric lenses in the mantle of oil and gas regions.
dc.relation.referencesenGeology of mineral resources and the World Ocean, 2, rr. 35–51. (In Russian). https:, doi.org/10. 15407./gpimo2019.02.035
dc.relation.referencesenKern, H. (1978). The effect of high temperature and high
dc.relation.referencesenconfining pressure on compression a wave velocity
dc.relation.referencesenin quartz-bearing and quartzfree igneous and
dc.relation.referencesenmetamorphic rocks. Tectonophysics, 4, 185–203.
dc.relation.referencesenKorchin, V. A. (2013a) Thermodynamics of crustal
dc.relation.referencesenlow velocity zones (a new scientific hypothesis).
dc.relation.referencesenLAP Lambert Academic Publishing, Saarbrücken,
dc.relation.referencesenDeutschland, 280 r. (in Russian).
dc.relation.referencesenKorchin, V. A. (2013b). Crustal low velocity zones –
dc.relation.referencesenperspective horizons for localization of deep hydrocarbons. Deep oil, 8, rr. 1099–1116. (in Russian).
dc.relation.referencesenKorchin, V. A. (2017). Anomalies of low density in
dc.relation.referencesenthe crystalline crust of thermobaric origin: a new
dc.relation.referenceseninsight into migration and localization of hydrocarbons. In: Gasi, S and Hachay, O (Eds) Oil
dc.relation.referencesenand Gas Exploration: Methods and Application.
dc.relation.referencesenMonograph Number 72. Wiley, rr. 237–257.
dc.relation.referencesenKorchin, V. A. (2018). Features of thermobaric elasticdensity anomalies of the Earth's crust of seismicallytectonically active regions. Modern problems of
dc.relation.referencesenmechanics, 33(3), 244–254. ISSN 1694-6065. (in Russian).
dc.relation.referencesenKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.referencesen(2018a). Decompaction of metamorphic rocks
dc.relation.referencesenunder thermodynamic conditions of the Earth’s
dc.relation.referencesencrust (experimental data). Geophysical Journal, 40(4), 107–130. DOI: 10.24028/gzh.0203-3100.v404.2018.140612. (in Russian).
dc.relation.referencesenKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.referencesen(2018b). Thermobaric decompression zones of the
dc.relation.referencesencrustal rocks are natural satellites of seismotectonically active regions. Modern problems of
dc.relation.referencesenmechanics, 33(3), 399-409. ISSN 1694-6065. (in
dc.relation.referencesenRussian).
dc.relation.referencesenKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.referencesen(2019a). Transcarpathian petrophysical thermobaric model along the RP-17 seismic profile.
dc.relation.referencesenActual prospects for the development of geology:
dc.relation.referencesenscience and production: Materials of the VI
dc.relation.referencesenInternational Geological Forum (Odessa, Ukraine,
dc.relation.referencesenJune 17-22, 2019), Kiev: USGRI, rr. 116–119.
dc.relation.referencesenISBN 978-966-7896-85-0. (in Russian).
dc.relation.referencesenKorchin, V. A., Burtnyi, P. A., Karnaukhova, E. E.
dc.relation.referencesen(2019b). The prognosis Transcarpathia petrophysical
dc.relation.referencesenthermobaric model along the RP-17 profile.
dc.relation.referencesenGeophysics and geodynamics: forecasting and
dc.relation.referencesenmonitoring of the geological medium, Edited
dc.relation.referencesenby Maksimchuk V., Lviv: Rastr-7, rr. 68–70.
dc.relation.referencesenISBN 978-617-7726-70-7. (in Ukrainian).
dc.relation.referencesenKorchin, V. A., Burtnyi, P. A., Kobolev, V. P. (2013).
dc.relation.referencesenThermobaric petrophysical modelling in geophysics.
dc.relation.referencesenNaukova Dumka Publishin House, Kiev. ISBN: 978-966-00-1360-5, 312 r. (in Russian).
dc.relation.referencesenKorchin V., Rusakov O. (2019). The regional thermobaric trap for mantle hydrocarbons in the crystalline
dc.relation.referencesencrust of the Ukrainian NW Black Sea sector. 18th
dc.relation.referencesenInternational Conference on Geoinformatics –
dc.relation.referencesenTheoretical and Applied Aspects. 13–16 May 2019.
dc.relation.referencesenKyiv, Ukraine. DOI: 10.3997/2214-4609.201902054.
dc.relation.referencesenKutas R. I. (1978). Field of heat flows and a theoretical model of the Earth’s crust. Naukova Dumka
dc.relation.referencesenPublishing House, Kiev, 140 r. (in Russian).
dc.relation.referencesenKutas R. I. (2014). Heat flow and geothermal models for the Earth’s crust of the Ukrainian Carpathians. Geophysical Journal, 36, 6, rr. 3–27.
dc.relation.referencesenDOI: https://doi.org/10.24028/gzh.0203-3100.v36i6.2014.111016. (in Russian).
dc.relation.referencesenKutas R. I. (2016). Geothermal conditions and the
dc.relation.referencesenMesozoic-Cenozoic evolution of the CarpathianPannonian region. Geophysical Journal, 38, 5,
dc.relation.referencesenrr. 75–107. DOI: 10.24028/gzh.0203-3100.v38i5. 2016.107823. (in Russian).
dc.relation.referencesenMilanovsky, S. Yu., Nicolaevsky, V. N. (2009). The
dc.relation.referencesenrole of fracturing in the evolution of the Earth's
dc.relation.referencesencrust. Tectonophysics and current issues of Earth
dc.relation.referencesensciences. Col. of Materials of reports of the AllRussian Conference. (8–12 October 2009, Moscow,
dc.relation.referencesenRussia). Vol. 2. Moscow: IEP, p. 71-103. (in Russian).
dc.relation.referencesenMilanovsky, S. Yu., Nicolaevsky, V. N. (2010).
dc.relation.referencesenProcesses of transfer (migration) in the system of
dc.relation.referencesenthe Earth’s crust. Modern methods of seismic
dc.relation.referencesensurvey in searching for oil and gas under conditions of
dc.relation.referencesencomplex structures (Seismo 2012), 16–22 September 2010, Kurortnoe, AR Crimea, Ukraine.
dc.relation.referencesenThe International scientific and practical conference, p. 37–44.
dc.relation.referencesen(in Russian).
dc.relation.referencesenNashchekin, V. V. (1969). Technical thermodynamics
dc.relation.referencesenand heat transfer. Moscow: Higher school, 560 r.
dc.relation.referencesen(in Russian).
dc.relation.referencesenNazarevich, A. V., Nazarevich, L. E. (2002). Deep
dc.relation.referencesentrap-collector tectonic structures in the lithosphere
dc.relation.referencesenof the Carpathian region of Ukraine: nature, origin
dc.relation.referencesenand perspective resources. Scientific bulletin
dc.relation.referencesenIvano-Frankivsk National Technical University of
dc.relation.referencesenOil and Gas, 3 (4), 10–21. (in Ukrainian).
dc.relation.referencesenNazarevich, L. E., Nazarevich, A. V. (2004). Technique
dc.relation.referencesenof refining the parameters of the hypocenters of the
dc.relation.referencesenCarpathian earthquakes. Geodynamics, 1 (4), 53–62. (in Ukrainian).
dc.relation.referencesenNazarevich, L. E., Nazarevich, A. V., Kovalishin, Z.
dc.relation.referencesenI. (2002). Nature of the lowered velocities subzone
dc.relation.referencesenin "granites" of the Transcarpathian crust and its
dc.relation.referencesenpotential recourses. Visnuk of the Lviv University,
dc.relation.referencesenGeology Series, 15, 119–125. (in Ukrainian).
dc.relation.referencesenNazarevich, L.E., Nazarevich, A.V., Starodub, G.P.,
dc.relation.referencesenNazarevich P. A. (2011). On multistage of the seismotectonic process in the Ukrainian Transcarpathia and
dc.relation.referencesenits relationship to the crustal structure of the
dc.relation.referencesenregion and properties of its matter. Modern
dc.relation.referencesenTectonophysics. IPE RAS: Moscow, rr. 179–186.
dc.relation.referencesen(in Russian).
dc.relation.referencesenNikolaevsky, V. N. (1966). Geomechanics and fluid
dc.relation.referencesendynamics. Moscow: Nedra, 447 p. (in Russian).
dc.relation.referencesenReider, E. (1987). Fluid inclusions in minerals. Moscow:
dc.relation.referencesenMir, 632 r. (in Russian).
dc.relation.referencesenRusakov, O. M., Korchin, V. A. (2015). The origin
dc.relation.referencesenand accumulation of abiogenic methane in the
dc.relation.referencesencrystalline crust of the NW Black Sea shelf.
dc.relation.referencesenMaterials of the 4st Conference on Deep Origin of
dc.relation.referencesenOil "Kudriavtsev readings", Moscow, JSC CGE,
dc.relation.referencesenCD- ROM. (in Russian).
dc.relation.referencesenTretyak, K. P., Maksimchuk, V. Yu, Kutas, R. I. (Eds)., 2015. Modern geodynamics and geophysical fields
dc.relation.referencesenof Carpathians and contiguous territories. Polytechnic
dc.relation.referencesenPublishing House, Lviv, 420 r. ISBN 978-617-607-763-3 (in Russian).
dc.relation.referencesenTripolsky, A. A., Sharov, N. V. (2004). The lithosphere of
dc.relation.referencesenthe Precambrian shields of the northern hemisphere
dc.relation.referencesenderived from seismic data. Petrozavodsk: Karelian
dc.relation.referencesenscientific centre RAS, 159 r. (in Russian).
dc.relation.urihttps://doi.org/10.24028/gzh.0203-3100.v36i6.2014.111016
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2020
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Korchin V. A., Rusakov O. M., Burtnyi P. A., Karnaukhova E. E.
dc.subjectЗакарпатський прогин (Україна)
dc.subjectзони низьких швидкостей і густини
dc.subjectпетрофізичне термобаричне моделювання
dc.subjectтермобаричні пастки вуглеводнів
dc.subjectприповерхневі землетруси
dc.subjectthe Transcarpathian depression (Ukraine)
dc.subjectlow seismic velocity and density zones
dc.subjectpetrophysical thermobaric modelling
dc.subjectthermobaric hydrocarbon traps
dc.subjectshallow earthquakes
dc.subject.udc(552.1
dc.subject.udc53)
dc.subject.udc550.3
dc.subject.udc550.85
dc.titleThe origin of the low density zones in the crystalline crust of the Transcarpathian depression (Ukraine) from petrophysical thermobaric modelling
dc.title.alternativeПоходження зон низької густини в кристалічній корі Закарпатського прогину (Україна) за даними петрофізичного термобаричного моделювання
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020n1_Korchin_V_A-The_origin_of_the_low_density_81-93.pdf
Size:
1023.29 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020n1_Korchin_V_A-The_origin_of_the_low_density_81-93__COVER.png
Size:
582.7 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: