Disruption of Yeast Cells Xanthophyllomyces Dendrorhous (Phaffia Rhodozyma) by Vibration Resonant Low-Frequency Cavitator
dc.citation.epage | 194 | |
dc.citation.issue | 1 | |
dc.citation.spage | 188 | |
dc.contributor.affiliation | Institute of Animal Biology NAAS | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Stefanyshyn, Olha | |
dc.contributor.author | Hunchak, Alla | |
dc.contributor.author | Starchevskyy, Volodymyr | |
dc.contributor.author | Salyha, Yuriy | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:37Z | |
dc.date.available | 2024-02-09T10:29:37Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Метою дослідження було встановити оптимальний режим руйнування клітин дріжджів P. rhodozyma штаму KNH 1 з водяним охолодженням, потужністю 800 Вт та резонансними частотами за дії віброрезонансного низько-частотного кавітатора (ВНК). Руйнування клітинної біомаси культури дріжджів P. rhodozyma штаму KNH 1 здійснено у віброрезонансному низькочастотному кавітаторі (ВНК) з водяним охолодженням, потужністю 800 Вт та резонансними частотами коливань 30 Гц, 35 Гц, 37 Гц, 37,8 Гц, 39 Гц, 50 Гц та за наявності азоту в реакційному середовищі. Наші дані свідчать про те, що вихід біомаси, переробленої дріжджової культури залежить від віку культури та режиму обробки. Для шестиденної культури найбільший вихід зруйнованих клітинами отримали, обробляючи її в ВНК за допомогою 35 Гц протягом 75 хв. Найвищий вихід з п’ятиденної культури отримано після обробки в ВНК протягом 1 години за 37–37,8 Гц. Найнижчий вихід зруйнованих дріжджових клітин одержано після 5 годин обробки в ВНК за 37,8 Гц. Високий рівень руйнування дріжджових клітин може сприяти полегшеному вивільненню каротиноїдів із біомаси та, одночасно, утворенню пор у структурі бета-глюканового шару клітин. Наші дані показують, що для такого рівня пошкодження економічно вигідна обробка п’ятиденної культури P. rhodozyma в ВНК на частоті резонансу 37 Гц газоподібним азотом, барботажем через реакційне середовище. Це дослідження вперше демонструє встановлений оптимальний режим руйнування дріжджових клітин P. rhodozyma штаму KNH 1 за дії вібраційно-резонансного низькочастотного кавітатора. Аналіз представлених даних вказує, що заявлений спосіб є зручним, ефективним та технологічно виправданим. | |
dc.description.abstract | The goal of the study is to optimize the mode of disruption of the yeast Phaffia rhodozyma KNH 1 by a vibration-resonant low-frequency cavitator (VLC). The destruction of the cell biomass of yeast culture P. rhodozyma strain KNH 1 was carried out in VLC with water cooling, the capacity of 800 W, and resonant frequencies of vibrations of 30 Hz, 35 Hz, 37 Hz, 37.8 Hz, 39 Hz, 50 Hz, and in the presence of nitrogen in the reaction medium. Our data suggest that the yield of processed biomass by the treatment of yeast culture in VLC depends on the culture age and the mode of the treatment. Thus, for the six-day culture, we got the highest yield by its processing in VLC at 35 Hz for 75 min. The highest yield from the five-day culture was obtained after the treatment in VLC for 1 h at 37-37.8 Hz. The lowest yield of the disrupted yeast cells was obtained after 5 h of treatment in VLC at 37.8 Hz. The high level of yeast cell disruption can be used for the preparation of glucans aqueous solutions. Our data show that for such a level of disruption to treat five-day culture of P. rhodozyma in VLC at 37 Hz resonance frequency with nitrogen gas, bubbling through the reaction medium is economically profitable. For the first time, this study demonstrates the established optimal mode of destruction of yeast cells of P. rhodozyma strain KNH1 for the action of the vibration-resonance low-frequency cavitator or VLC. Analysis of the presented data indicates that the claimed method is convenient, efficient, and technologically justified. | |
dc.format.extent | 188-194 | |
dc.format.pages | 7 | |
dc.identifier.citation | Disruption of Yeast Cells Xanthophyllomyces Dendrorhous (Phaffia Rhodozyma) by Vibration Resonant Low-Frequency Cavitator / Olha Stefanyshyn, Alla Hunchak, Volodymyr Starchevskyy, Yuriy Salyha // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 188–194. | |
dc.identifier.citationen | Disruption of Yeast Cells Xanthophyllomyces Dendrorhous (Phaffia Rhodozyma) by Vibration Resonant Low-Frequency Cavitator / Olha Stefanyshyn, Alla Hunchak, Volodymyr Starchevskyy, Yuriy Salyha // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 188–194. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.188 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61220 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Akiba, Y.; Sato, K.; Takahashi, K.; Matsushita, K.; Komiyama, H.; Tsunekawa, H.; Nagao, H. Meat Color Modification in Broiler Chickens by Feeding Yeast Phaffia rhodozyma Containing High Concentrations of Astaxanthin. J. Appl. Poult. Res. 2001, 10, 154-161. https://doi.org/10.1093/japr/10.2.154 | |
dc.relation.references | [2] Stefanyshyn, O.M.; Nechay, H.I.; Boretska, N.I.; Hural, S.V.; Tsepko, N.І. Profilaktychnyi ta korerhuyuchyi vplyv kormovoi dobavky karotynosyntezuvalnykh drizhdzhiv Phaffia rhodozyma na formuvannia mikrobotsenozu kyshkivnyka kurei pid chas krytychnogo periodu yoho stanovlennia. Biologia tvaryn 2013, 15, 125-131. http://nbuv.gov.ua/UJRN/bitv_2013_15_3_19 | |
dc.relation.references | [3] Shoja, B.; Ahmadi, A.R.; Rafiee, F.; Manavi, P.N. Influence of Probiotic Yeast Phaffia rhodozyma on Growth, Survival and Ma-turity of Artemia Urmiana. Asian J. Exp. Biol. Sci. 2012, 3, 355-359. | |
dc.relation.references | [4] Jacobson, C.K.; Jolly, S.O.; Sedmak, J.J.; Skatrud, T.J.; Wasileski, J.M. Astaxanthin Over-Producing Strains of Phaffia rhodozyma. Method for their Cultivation and their Use in Animal Feeds. US 6015684, January 18, 2000. | |
dc.relation.references | [5] Choi, J.; Rahman, M.M.; Lee, S.Y.; Chang, K.H.; Lee, S.M. Effects of Dietary Inclusion of Fermented Soybean Meal with Phaffia rhodozyma on Growth, Muscle Pigmentation, and Antioxidant Activity of Juvenile Rainbow Trout (Oncorhynchus mykiss). Turkish J. Fish. Aquat. Sci. 2016, 16, 91–101 https://doi.org/10.4194/1303-2712-v16_1_10 | |
dc.relation.references | [6] Perenlei, G.; Tojo, H.; Okada, T.; Kubota, M.; Kadowaki, M.; Fujimura, S. Effect of Dietary Astaxanthin Rich Yeast, Phaffia rhodozyma, on Meat Quality of Broiler Chikens. Anim. Sci. J. 2014, 85, 895-903. https://doi.org/10.1111/asj.12221 | |
dc.relation.references | [7] Wu, W.; Yu, X. Optimization of Ultrasound-assisted Extraction Procedure to Determine Astaxanthin in Xanthophyllomyces dendrorhous by Box-Behnken Designn. Adv. J. Food Sci. Technol. 2013, 5, 1536-1542. http://dx.doi.org/10.19026/ajfst.5.3381 | |
dc.relation.references | [8] Dos Santos Da Fonseca, R.A.; da Silva Rafael, R.; Kalil, S.J.; Burkert, C.A.V.; Burkert, J.F.M. Different Cell Disruption Methods for Astaxanthin Recovery by Phaffia rhozyma. Afr. J. Biotechnol. 2011, 10, 1165-1171. DOI: 10.5897/AJB10.1034 | |
dc.relation.references | [9] Michelon M., de Matos de Borba, T.; da Silva Rafael, R.; Burkert, C.A.V.; Burkert, J.F.M. Extracttion of Carotenoids from Phaffia rhodozyma: A Comparison between Different Techniques of Cell Disruption. Food Sci. Biotechnol. 2012, 21, 1-8. https://doi.org/10.1007/s10068-012-0001-9 | |
dc.relation.references | [10] Okagbue, R.N.; Lewis, M.J. Autolysis of the Red Yeast Phaffia rhodozyma: A Potential Tool to Facilitate Extraction of Astaxanthin. Biotechnol. Lett. 1984, 6, 247-250. https://doi.org/10.1007/BF00140045 | |
dc.relation.references | [11] Yaakob Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An Overview: Biomolecules from Microalgae for Animal Feed and Aquaculture. Journal of Biological Research-Thessaloniki 2014, 21, 6. https://doi.org/10.1186/2241-5793-21-6 | |
dc.relation.references | [12] El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome. J. Nutr. Metab. 2012, 28. https://doi.org/10.1155/2012/851362 | |
dc.relation.references | [13] Manners, D. J.; Masson, A. J.; Patterson, J.C. The Structure of a β-(1→3)-D-glucan from Yeast Cell Walls. Biochem. J. 1973, 135, 19-30. https://doi.org/10.1042/bj1350019 | |
dc.relation.references | [14] Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound Assisted Extraction in the Food Industry – A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161-169. https://doi.org/10.1016/j.ifset.2007.04.014 | |
dc.relation.references | [15] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219 | |
dc.relation.references | [16] Gural, S.V.; Kolysnyk, G.V.; Klymyshyn, D.О.; Gonchar M.V. Doslidzgennya skladu karotynoidiv u mutantav drizhdzhiv Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Biotekhnolohia 2011, 4, 93-100. | |
dc.relation.references | [17] Salyha, Yu.T.; Snitynskyi, V.V. Elektronna mikroskopia biolohichnylh ob’yektiv; Svit: Lviv, 1999. | |
dc.relation.references | [18] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.references | [19] Koval, I.Z.; Kіslenko, V.N.; Starchevskii, V.L.; Shevchuk, L.I. The Effect of Carbon Dioxide on the Viability of Bacteria of Bacillus and Diplococcus Genera. J. Water Chem. Technol. 2012, 34, 112-116. https://doi.org/10.3103/S1063455X12020075 | |
dc.relation.references | [20] Predzumirska, L.M.; Falyk, T.S.; Shevchuk, L.I.; Nykulyshyn, I.E.; Chaikivskyi, T.V. Efertyvnist kavitatsinoho ochycschennia vody v zaleznosti vid pryrody barbotovanoho hazu. Visnyk Kremenchutskoho Natsionalnoho Universytetu 2016, 97, 102-109. | |
dc.relation.referencesen | [1] Akiba, Y.; Sato, K.; Takahashi, K.; Matsushita, K.; Komiyama, H.; Tsunekawa, H.; Nagao, H. Meat Color Modification in Broiler Chickens by Feeding Yeast Phaffia rhodozyma Containing High Concentrations of Astaxanthin. J. Appl. Poult. Res. 2001, 10, 154-161. https://doi.org/10.1093/japr/10.2.154 | |
dc.relation.referencesen | [2] Stefanyshyn, O.M.; Nechay, H.I.; Boretska, N.I.; Hural, S.V.; Tsepko, N.I. Profilaktychnyi ta korerhuyuchyi vplyv kormovoi dobavky karotynosyntezuvalnykh drizhdzhiv Phaffia rhodozyma na formuvannia mikrobotsenozu kyshkivnyka kurei pid chas krytychnogo periodu yoho stanovlennia. Biologia tvaryn 2013, 15, 125-131. http://nbuv.gov.ua/UJRN/bitv_2013_15_3_19 | |
dc.relation.referencesen | [3] Shoja, B.; Ahmadi, A.R.; Rafiee, F.; Manavi, P.N. Influence of Probiotic Yeast Phaffia rhodozyma on Growth, Survival and Ma-turity of Artemia Urmiana. Asian J. Exp. Biol. Sci. 2012, 3, 355-359. | |
dc.relation.referencesen | [4] Jacobson, C.K.; Jolly, S.O.; Sedmak, J.J.; Skatrud, T.J.; Wasileski, J.M. Astaxanthin Over-Producing Strains of Phaffia rhodozyma. Method for their Cultivation and their Use in Animal Feeds. US 6015684, January 18, 2000. | |
dc.relation.referencesen | [5] Choi, J.; Rahman, M.M.; Lee, S.Y.; Chang, K.H.; Lee, S.M. Effects of Dietary Inclusion of Fermented Soybean Meal with Phaffia rhodozyma on Growth, Muscle Pigmentation, and Antioxidant Activity of Juvenile Rainbow Trout (Oncorhynchus mykiss). Turkish J. Fish. Aquat. Sci. 2016, 16, 91–101 https://doi.org/10.4194/1303-2712-v16_1_10 | |
dc.relation.referencesen | [6] Perenlei, G.; Tojo, H.; Okada, T.; Kubota, M.; Kadowaki, M.; Fujimura, S. Effect of Dietary Astaxanthin Rich Yeast, Phaffia rhodozyma, on Meat Quality of Broiler Chikens. Anim. Sci. J. 2014, 85, 895-903. https://doi.org/10.1111/asj.12221 | |
dc.relation.referencesen | [7] Wu, W.; Yu, X. Optimization of Ultrasound-assisted Extraction Procedure to Determine Astaxanthin in Xanthophyllomyces dendrorhous by Box-Behnken Designn. Adv. J. Food Sci. Technol. 2013, 5, 1536-1542. http://dx.doi.org/10.19026/ajfst.5.3381 | |
dc.relation.referencesen | [8] Dos Santos Da Fonseca, R.A.; da Silva Rafael, R.; Kalil, S.J.; Burkert, C.A.V.; Burkert, J.F.M. Different Cell Disruption Methods for Astaxanthin Recovery by Phaffia rhozyma. Afr. J. Biotechnol. 2011, 10, 1165-1171. DOI: 10.5897/AJB10.1034 | |
dc.relation.referencesen | [9] Michelon M., de Matos de Borba, T.; da Silva Rafael, R.; Burkert, C.A.V.; Burkert, J.F.M. Extracttion of Carotenoids from Phaffia rhodozyma: A Comparison between Different Techniques of Cell Disruption. Food Sci. Biotechnol. 2012, 21, 1-8. https://doi.org/10.1007/s10068-012-0001-9 | |
dc.relation.referencesen | [10] Okagbue, R.N.; Lewis, M.J. Autolysis of the Red Yeast Phaffia rhodozyma: A Potential Tool to Facilitate Extraction of Astaxanthin. Biotechnol. Lett. 1984, 6, 247-250. https://doi.org/10.1007/BF00140045 | |
dc.relation.referencesen | [11] Yaakob Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An Overview: Biomolecules from Microalgae for Animal Feed and Aquaculture. Journal of Biological Research-Thessaloniki 2014, 21, 6. https://doi.org/10.1186/2241-5793-21-6 | |
dc.relation.referencesen | [12] El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome. J. Nutr. Metab. 2012, 28. https://doi.org/10.1155/2012/851362 | |
dc.relation.referencesen | [13] Manners, D. J.; Masson, A. J.; Patterson, J.C. The Structure of a b-(1→3)-D-glucan from Yeast Cell Walls. Biochem. J. 1973, 135, 19-30. https://doi.org/10.1042/bj1350019 | |
dc.relation.referencesen | [14] Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound Assisted Extraction in the Food Industry – A Review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161-169. https://doi.org/10.1016/j.ifset.2007.04.014 | |
dc.relation.referencesen | [15] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219 | |
dc.relation.referencesen | [16] Gural, S.V.; Kolysnyk, G.V.; Klymyshyn, D.O.; Gonchar M.V. Doslidzgennya skladu karotynoidiv u mutantav drizhdzhiv Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Biotekhnolohia 2011, 4, 93-100. | |
dc.relation.referencesen | [17] Salyha, Yu.T.; Snitynskyi, V.V. Elektronna mikroskopia biolohichnylh ob’yektiv; Svit: Lviv, 1999. | |
dc.relation.referencesen | [18] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.referencesen | [19] Koval, I.Z.; Kislenko, V.N.; Starchevskii, V.L.; Shevchuk, L.I. The Effect of Carbon Dioxide on the Viability of Bacteria of Bacillus and Diplococcus Genera. J. Water Chem. Technol. 2012, 34, 112-116. https://doi.org/10.3103/S1063455X12020075 | |
dc.relation.referencesen | [20] Predzumirska, L.M.; Falyk, T.S.; Shevchuk, L.I.; Nykulyshyn, I.E.; Chaikivskyi, T.V. Efertyvnist kavitatsinoho ochycschennia vody v zaleznosti vid pryrody barbotovanoho hazu. Visnyk Kremenchutskoho Natsionalnoho Universytetu 2016, 97, 102-109. | |
dc.relation.uri | https://doi.org/10.1093/japr/10.2.154 | |
dc.relation.uri | http://nbuv.gov.ua/UJRN/bitv_2013_15_3_19 | |
dc.relation.uri | https://doi.org/10.4194/1303-2712-v16_1_10 | |
dc.relation.uri | https://doi.org/10.1111/asj.12221 | |
dc.relation.uri | http://dx.doi.org/10.19026/ajfst.5.3381 | |
dc.relation.uri | https://doi.org/10.1007/s10068-012-0001-9 | |
dc.relation.uri | https://doi.org/10.1007/BF00140045 | |
dc.relation.uri | https://doi.org/10.1186/2241-5793-21-6 | |
dc.relation.uri | https://doi.org/10.1155/2012/851362 | |
dc.relation.uri | https://doi.org/10.1042/bj1350019 | |
dc.relation.uri | https://doi.org/10.1016/j.ifset.2007.04.014 | |
dc.relation.uri | https://doi.org/10.23939/chcht06.02.219 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.uri | https://doi.org/10.3103/S1063455X12020075 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Stefanyshyn O., Hunchak A., Starchevskyy V., Salyha Y., 2023 | |
dc.subject | дріжджі | |
dc.subject | Phaffia rhodozyma | |
dc.subject | вібраційний резонансний низькочастотний кавітатор | |
dc.subject | yeast | |
dc.subject | Phaffia rhodozyma | |
dc.subject | vibration resonant low-frequency cavitator | |
dc.title | Disruption of Yeast Cells Xanthophyllomyces Dendrorhous (Phaffia Rhodozyma) by Vibration Resonant Low-Frequency Cavitator | |
dc.title.alternative | Руйнування клітин дріжджів xanthophyllomyces den-drorhous (phaffia rhodozyma) за дії віброрезонансного низькочастотного кавітатора | |
dc.type | Article |
Files
License bundle
1 - 1 of 1