Towards a polynomial approximation of support vector machine accuracy applied to Arabic tweet sentiment analysis
dc.citation.epage | 517 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 511 | |
dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
dc.contributor.affiliation | Hassan II of Casablanca University | |
dc.contributor.author | Бану, З. | |
dc.contributor.author | Ельфілалі, С. | |
dc.contributor.author | Бенлахмар, Х. | |
dc.contributor.author | Banou, Z. | |
dc.contributor.author | Elfilali, S. | |
dc.contributor.author | Benlahmar, H. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T10:28:11Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Алгоритми машинного навчання стали дуже часто використовуватися в обробці природної мови, зокрема в аналізі тональності, який допомагає визначити загальне відчуття, яке міститься в тексті. Серед цих алгоритмів метод опорних векторів (SVM) є потужними класифікаторами, особливо в такому завданні, коли їхня продуктивність оцінюється через показник точності та показник f1. Однак вони залишаються повільними з точки зору навчання, що робить вичерпні експерименти з пошуку по сітці дуже трудомісткими. У цій статті представлено спостережувану закономірність точності SVM і показник f1, апроксимований поліномом Лагранжа. | |
dc.description.abstract | Machine learning algorithms have become very frequently used in natural language processing, notably sentiment analysis, which helps determine the general feeling carried within a text. Among these algorithms, Support Vector Machines have proven powerful classifiers especially in such a task, when their performance is assessed through accuracy score and f1-score. However, they remain slow in terms of training, thus making exhaustive grid-search experimentations very time-consuming. In this paper, we present an observed pattern in SVM's accuracy, and f1-score approximated with a Lagrange polynomial. | |
dc.format.extent | 511-517 | |
dc.format.pages | 7 | |
dc.identifier.citation | Banou Z. Towards a polynomial approximation of support vector machine accuracy applied to Arabic tweet sentiment analysis / Z. Banou, S. Elfilali, H. Benlahmar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 511–517. | |
dc.identifier.citationen | Banou Z. Towards a polynomial approximation of support vector machine accuracy applied to Arabic tweet sentiment analysis / Z. Banou, S. Elfilali, H. Benlahmar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 511–517. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.02.511 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63412 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 2 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (10), 2023 | |
dc.relation.references | [1] Yang L., Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 415, 295–316 (2020). | |
dc.relation.references | [2] Bergstra J., Bengio Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research. 13, 281–305 (2012). | |
dc.relation.references | [3] Bergstra J., Bardenet R., Bengio Y., K´egl B. Algorithms for Hyper-Parameter Optimization. Advances In Neural Information Processing Systems. 24 (2011). | |
dc.relation.references | [4] Belete D. M., Huchaiah M. D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications. 44 (9), 875–886 (2021). | |
dc.relation.references | [5] Elgeldawi E., Sayed A., Galal A. R., Zaki A. M. Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics. 8 (4), 79 (2021). | |
dc.relation.references | [6] Wo´zniak M., Po lap D., Napoli C., Tramontana E. Graphic object feature extraction system based on Cuckoo Search Algorithm. Expert Systems with Applications. 66, 20–31 (2016). | |
dc.relation.references | [7] Kennedy J., Eberhart R. Particle swarm optimization. Proceedings Of ICNN’95 – International Conference On Neural Networks. 4, 1942–1948 (1995). | |
dc.relation.references | [8] Po lap D., Wo´zniak M. Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism. Symmetry. 9 (10), 203 (2017). | |
dc.relation.references | [9] Nabil M., Aly M., Atiya A. ASTD: Arabic Sentiment Tweets Dataset. Proceedings of The 2015 Conference on Empirical Methods in Natural Language Processing. 2515–2519 (2015). | |
dc.relation.references | [10] Mihi S., Ait B., El I., Arezki S., Laachfoubi N. MSTD: Moroccan Sentiment Twitter Dataset. International Journal of Advanced Computer Science and Applications. 11 (10), (2020). | |
dc.relation.references | [11] Elmadany A., Mubarak H., Magdy W. ArSAS: An Arabic Speech-Act and Sentiment Corpus of Tweets (2018). | |
dc.relation.references | [12] Alowisheq A., Al-Twairesh N., Altuwaijri M., Almoammar A., Alsuwailem A., Albuhairi T., Alahaideb W., Alhumoud S. MARSA: Multi-Domain Arabic Resources for Sentiment Analysis. IEEE Access. 9, 142718–142728 (2021). | |
dc.relation.referencesen | [1] Yang L., Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 415, 295–316 (2020). | |
dc.relation.referencesen | [2] Bergstra J., Bengio Y. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research. 13, 281–305 (2012). | |
dc.relation.referencesen | [3] Bergstra J., Bardenet R., Bengio Y., K´egl B. Algorithms for Hyper-Parameter Optimization. Advances In Neural Information Processing Systems. 24 (2011). | |
dc.relation.referencesen | [4] Belete D. M., Huchaiah M. D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications. 44 (9), 875–886 (2021). | |
dc.relation.referencesen | [5] Elgeldawi E., Sayed A., Galal A. R., Zaki A. M. Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics. 8 (4), 79 (2021). | |
dc.relation.referencesen | [6] Wo´zniak M., Po lap D., Napoli C., Tramontana E. Graphic object feature extraction system based on Cuckoo Search Algorithm. Expert Systems with Applications. 66, 20–31 (2016). | |
dc.relation.referencesen | [7] Kennedy J., Eberhart R. Particle swarm optimization. Proceedings Of ICNN’95 – International Conference On Neural Networks. 4, 1942–1948 (1995). | |
dc.relation.referencesen | [8] Po lap D., Wo´zniak M. Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and Dynamic Birth and Death Mechanism. Symmetry. 9 (10), 203 (2017). | |
dc.relation.referencesen | [9] Nabil M., Aly M., Atiya A. ASTD: Arabic Sentiment Tweets Dataset. Proceedings of The 2015 Conference on Empirical Methods in Natural Language Processing. 2515–2519 (2015). | |
dc.relation.referencesen | [10] Mihi S., Ait B., El I., Arezki S., Laachfoubi N. MSTD: Moroccan Sentiment Twitter Dataset. International Journal of Advanced Computer Science and Applications. 11 (10), (2020). | |
dc.relation.referencesen | [11] Elmadany A., Mubarak H., Magdy W. ArSAS: An Arabic Speech-Act and Sentiment Corpus of Tweets (2018). | |
dc.relation.referencesen | [12] Alowisheq A., Al-Twairesh N., Altuwaijri M., Almoammar A., Alsuwailem A., Albuhairi T., Alahaideb W., Alhumoud S. MARSA: Multi-Domain Arabic Resources for Sentiment Analysis. IEEE Access. 9, 142718–142728 (2021). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | поліном Лагранжа | |
dc.subject | метод опорних векторів | |
dc.subject | машинне навчання | |
dc.subject | аналіз тональності текстів | |
dc.subject | гіперпараметрична оптимізація | |
dc.subject | Lagrange polynomial | |
dc.subject | SVM | |
dc.subject | machine learning | |
dc.subject | sentiment analysis | |
dc.subject | hyperparameter optimization | |
dc.title | Towards a polynomial approximation of support vector machine accuracy applied to Arabic tweet sentiment analysis | |
dc.title.alternative | До поліноміальної апроксимації точності методу опорних векторів, застосованого до аналізу тональності твітів арабською мовою | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1