Pyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine

dc.citation.epage449
dc.citation.issue2
dc.citation.spage438
dc.contributor.affiliationBirla Institute of Technology
dc.contributor.affiliationPravara Rural Engineering College
dc.contributor.affiliationSai Nath University
dc.contributor.authorJana, Sumit Kumar
dc.contributor.authorPattanayak, Satarupa
dc.contributor.authorBhausaheb, Magar Subhash
dc.contributor.authorRuidas, Bidhan Chandra
dc.contributor.authorPal, Dan Bahadur
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:39Z
dc.date.available2024-02-12T08:30:39Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractУ цьому дослідженні різні пластикові відходи різноманітних типів пластмас, таких як поліетилен низької густини та поліпропілен, піддано піролізу в трубчастому реакторі періодичної дії з каталізатором оксидом цинку. Пластикові відходи охарактеризовано за допомогою ТГА та ДТГ аналізу, а також ІЧ-спектроскопії. Продукти піролізу аналізували стандартними методами для визначення різних параметрів.
dc.description.abstractIn the present study different plastic waste materials with various types of plastics such as lowdensity polyethylene and polypropylene with zinc oxide catalyst have been pyrolyzed in batch tubular reactor. Waste plastics were characterized by using TGA and DTG analysis and FTIR spectroscopy. The pyrolyzed products are analyzed by standard methods to determine various parameters.
dc.format.extent438-449
dc.format.pages12
dc.identifier.citationPyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine / Sumit Kumar Jana, Satarupa Pattanayak, Magar Subhash Bhausaheb, Bidhan Chandra Ruidas, Dan Bahadur Pal // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 438–449.
dc.identifier.citationenPyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine / Sumit Kumar Jana, Satarupa Pattanayak, Magar Subhash Bhausaheb, Bidhan Chandra Ruidas, Dan Bahadur Pal // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 438–449.
dc.identifier.doidoi.org/10.23939/chcht17.02.438
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61248
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Budsaereechai, S.; Hunt, A.J.; Ngernyen, Y. Catalytic Pyrolysis of Plastic Waste for the Production of Liquid Fuels for Engines. RSC Adv. 2019, 9, 5844-5857. https://doi.org/10.1039/C8RA10058F
dc.relation.references[2] Kasar, P.; Sharma, D.K.; Ahmaruzzaman, M. Thermal and Catalytic Decomposition of Waste Plastics and its co-Processing with Petroleum Residue through Pyrolysis Process. J. Clean. Prod. 2020, 265, 121639. https://doi.org/10.1016/j.jclepro.2020.121639
dc.relation.references[3] Levytska, O.; Dolzhenkova, O.; Sichevyi, O.; Dorhanova, L. Masonry Unit Manufacturing Technology Using Polymeric Binder. Chem. Chem. Technol. 2020, 14, 88-92. https://doi.org/10.23939/chcht14.01.088
dc.relation.references[4] Roberts, G. Dawei, X. Hydrogenation of Polymers in the Pres-ence of Non-Reactive Processing Aid. US 60423804, 2003.
dc.relation.references[5] Xu, D.; Carbonell, R.G.; Roberts, G.W.; Kiserow, D.J. Phase Equilibrium for the Hydrogenation of Polystyrene in CO2 Swollen Solvents. J. Supercrit. Fluids 2005, 34, 1-9. https://doi.org/10.1016/j.supflu.2004.09.004
dc.relation.references[6] Almeida, D.; Marques M.D. Niobium Oxide as Catalyst for the Pyrolysis of Polypropylene and Polyethylene Plastic Waste. Chem. Chem. Technol. 2016, 10, 465-672. https://doi.org/10.23939/chcht10.04.465
dc.relation.references[7] Kremer, I.; Tomić, T.; Katančić, Z.; Hrnjak-Murgić, Z.; Erceg, M.; Schneider, D.R. Catalytic Decomposition and Kinetic Study of Mixed Plastic Waste. Clean Technol. Environ. Policy 2021, 23, 811-827. https://doi.org/10.1007/s10098-020-01930-y
dc.relation.references[8] Shah, J; Rasul, M.J.; Mabood, F. Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons via Base Catalysts. Iran. J. Chem. Chem. Eng. 2008, 27, 103-109.
dc.relation.references[9] Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Conver-sion of Low Density Polyethylene (LDPE) over ZSM-5 Zeolite to Liquid Fuel. Fuel 2017, 192, 71-82. https://doi.org/10.1016/j.fuel.2016.12.008
dc.relation.references[10] Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586. https:// doi.org/10.3390/ma14102586
dc.relation.references[11] Thahir, R.; Ali Altway, A.; Juliastuti, S.R.; Susianto. Produc-tion of Liquid Fuel from Plastic Waste Using Integrated Pyrolysis Method with Refinery Distillation Bubble Cap Plate Column. Ener-gy Rep. 2019, 5, 70-77. https://doi.org/10.1016/j.egyr.2018.11.004
dc.relation.references[12] Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308-326. https://doi.org/10.1016/j.enconman.2016.02.037
dc.relation.references[13] Ramesha, D.; Kumara, G.P.; Mohammed, A.V.T.; Mohammad, H.A.; Kasma, M.A. An Experimental study on Usage of Plastic Oil and B20 Algae Biodiesel Blend as Substitute Fuel to Diesel Engine. Environ. Sci. Pollut. Res. 2016, 23, 9432-9439. https://doi.org/10.1007/s11356-015-5981-6
dc.relation.references[14] Ananthakumar, S.; Jayabal, S.; Thirumal, P. Investigation on Performance, Emission, and Combustion Characteristics of Variable Compression Engine Fuelled with Diesel, Waste Plastics Oil Blends. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 19-28. https://doi.org/10.1007/s40430-016-0518-6
dc.relation.references[15] Kumar, S.; Prakash, R.; Murugan, S.; Singh, R.K. Performance, and Emission Analysis of Blends of Waste Plastic Oil Obtained by Catalytic Pyrolysis of Waste HDPE with Diesel in a CI Engine. Energy Convers. Manag. 2013, 74, 323-331. https://doi.org/10.1016/j.enconman.2013.05.028
dc.relation.references[16] Khan, M.Z.H.; Sultana, M.; Al-Mamun, M.R. and Hasan, M.R. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. J. Environ. Public Health 2016, 2016, 7869080. https://doi.org/10.1155/2016/7869080
dc.relation.references[17] Owusu, P.A.; Banadda, N.; Zziwa, A.; Seay, J.; Kiggundu, N. Reverse Engineering of Plastic Waste into Useful Fuel Products. J. Anal. Appl. Pyrolysis 2018, 130, 285-293. https://doi.org/10.1016/j.jaap.2017.12.020
dc.relation.references[18] Diaz-Silvarrey, L.S.; Phan, A.N. Kinetic Study of Municipal Plastic Waste. Int. J. Hydrog. Energy 2016, 41, 16352-16364. https://doi.org/10.1016/j.ijhydene.2016.05.202
dc.relation.references[19] Wang, Q.; Wang, G.; Zhang, J.; Lee, J.-Y.; Wang, H.; Wang, C. Combustion Behaviors and Kinetics Analysis of Coal, Biomass, and Plastic. Thermochim. Acta 2018, 669, 140-148. https://doi.org/10.1016/j.tca.2018.09.016
dc.relation.references[20] Burra, K.G.; Gupta, A.K. Kinetics of Synergistic Effects in co-Pyrolysis of Biomass with Plastic Wastes. Appl. Energy 2018, 220, 408-418. https://doi.org/10.1016/j.apenergy.2018.03.117
dc.relation.references[21] Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M., Tariq, R., Gul, K.; Ahmad, W. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products. Int. J. Green Energy 2015, 12, 663-671. https://doi.org/10.1080/15435075.2014.880146
dc.relation.references[22] Syamsiro, M.; Saptoadi, H.; Norsujianto, T.; Noviasri, P.; Cheng, S.; Alimuddin, Z.; Yoshikawa, K. Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors. Energy Procedia 2014, 47, 180-188. https://doi.org/10.1016/j.egypro.2014.01.212
dc.relation.references[23] Garfoth, A.A.; Lin, Y.H.; Sharratt, P.N.; Dwyer, J. Production of Hydrocarbons by Catalytic Degradation of High Density Polye-thylene in a Laboratory Fluidised-Bed Reactor. Appl. Catal. A-Gen. 1998, 169, 331-342. https://doi.org/10.1016/S0926-860X(98)00022-2
dc.relation.references[24] Lin, Y.-H.; Yen, H.-Y. Fluidised Bed Pyrolysis of Polypropy-lene over Cracking Catalysts for Producing Hydrocarbons. Polym. Degrad. Stab. 2005, 89, 101-108. https://doi.org/10.1016/j.polymdegradstab.2005.01.006
dc.relation.references[25] Mani, M.; Subash, C.; Nagarajan, G. Performance, Emission and Combustion Characteristics of a DI Diesel Engine Using Waste Plastic Oil. Appl. Therm. Eng. 2009, 29, 2738-2744. https://doi.org/10.1016/j.applthermaleng.2009.01.007
dc.relation.referencesen[1] Budsaereechai, S.; Hunt, A.J.; Ngernyen, Y. Catalytic Pyrolysis of Plastic Waste for the Production of Liquid Fuels for Engines. RSC Adv. 2019, 9, 5844-5857. https://doi.org/10.1039/P.8RA10058F
dc.relation.referencesen[2] Kasar, P.; Sharma, D.K.; Ahmaruzzaman, M. Thermal and Catalytic Decomposition of Waste Plastics and its co-Processing with Petroleum Residue through Pyrolysis Process. J. Clean. Prod. 2020, 265, 121639. https://doi.org/10.1016/j.jclepro.2020.121639
dc.relation.referencesen[3] Levytska, O.; Dolzhenkova, O.; Sichevyi, O.; Dorhanova, L. Masonry Unit Manufacturing Technology Using Polymeric Binder. Chem. Chem. Technol. 2020, 14, 88-92. https://doi.org/10.23939/chcht14.01.088
dc.relation.referencesen[4] Roberts, G. Dawei, X. Hydrogenation of Polymers in the Pres-ence of Non-Reactive Processing Aid. US 60423804, 2003.
dc.relation.referencesen[5] Xu, D.; Carbonell, R.G.; Roberts, G.W.; Kiserow, D.J. Phase Equilibrium for the Hydrogenation of Polystyrene in CO2 Swollen Solvents. J. Supercrit. Fluids 2005, 34, 1-9. https://doi.org/10.1016/j.supflu.2004.09.004
dc.relation.referencesen[6] Almeida, D.; Marques M.D. Niobium Oxide as Catalyst for the Pyrolysis of Polypropylene and Polyethylene Plastic Waste. Chem. Chem. Technol. 2016, 10, 465-672. https://doi.org/10.23939/chcht10.04.465
dc.relation.referencesen[7] Kremer, I.; Tomić, T.; Katančić, Z.; Hrnjak-Murgić, Z.; Erceg, M.; Schneider, D.R. Catalytic Decomposition and Kinetic Study of Mixed Plastic Waste. Clean Technol. Environ. Policy 2021, 23, 811-827. https://doi.org/10.1007/s10098-020-01930-y
dc.relation.referencesen[8] Shah, J; Rasul, M.J.; Mabood, F. Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons via Base Catalysts. Iran. J. Chem. Chem. Eng. 2008, 27, 103-109.
dc.relation.referencesen[9] Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Conver-sion of Low Density Polyethylene (LDPE) over ZSM-5 Zeolite to Liquid Fuel. Fuel 2017, 192, 71-82. https://doi.org/10.1016/j.fuel.2016.12.008
dc.relation.referencesen[10] Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586. https:// doi.org/10.3390/ma14102586
dc.relation.referencesen[11] Thahir, R.; Ali Altway, A.; Juliastuti, S.R.; Susianto. Produc-tion of Liquid Fuel from Plastic Waste Using Integrated Pyrolysis Method with Refinery Distillation Bubble Cap Plate Column. Ener-gy Rep. 2019, 5, 70-77. https://doi.org/10.1016/j.egyr.2018.11.004
dc.relation.referencesen[12] Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308-326. https://doi.org/10.1016/j.enconman.2016.02.037
dc.relation.referencesen[13] Ramesha, D.; Kumara, G.P.; Mohammed, A.V.T.; Mohammad, H.A.; Kasma, M.A. An Experimental study on Usage of Plastic Oil and B20 Algae Biodiesel Blend as Substitute Fuel to Diesel Engine. Environ. Sci. Pollut. Res. 2016, 23, 9432-9439. https://doi.org/10.1007/s11356-015-5981-6
dc.relation.referencesen[14] Ananthakumar, S.; Jayabal, S.; Thirumal, P. Investigation on Performance, Emission, and Combustion Characteristics of Variable Compression Engine Fuelled with Diesel, Waste Plastics Oil Blends. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 19-28. https://doi.org/10.1007/s40430-016-0518-6
dc.relation.referencesen[15] Kumar, S.; Prakash, R.; Murugan, S.; Singh, R.K. Performance, and Emission Analysis of Blends of Waste Plastic Oil Obtained by Catalytic Pyrolysis of Waste HDPE with Diesel in a CI Engine. Energy Convers. Manag. 2013, 74, 323-331. https://doi.org/10.1016/j.enconman.2013.05.028
dc.relation.referencesen[16] Khan, M.Z.H.; Sultana, M.; Al-Mamun, M.R. and Hasan, M.R. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. J. Environ. Public Health 2016, 2016, 7869080. https://doi.org/10.1155/2016/7869080
dc.relation.referencesen[17] Owusu, P.A.; Banadda, N.; Zziwa, A.; Seay, J.; Kiggundu, N. Reverse Engineering of Plastic Waste into Useful Fuel Products. J. Anal. Appl. Pyrolysis 2018, 130, 285-293. https://doi.org/10.1016/j.jaap.2017.12.020
dc.relation.referencesen[18] Diaz-Silvarrey, L.S.; Phan, A.N. Kinetic Study of Municipal Plastic Waste. Int. J. Hydrog. Energy 2016, 41, 16352-16364. https://doi.org/10.1016/j.ijhydene.2016.05.202
dc.relation.referencesen[19] Wang, Q.; Wang, G.; Zhang, J.; Lee, J.-Y.; Wang, H.; Wang, C. Combustion Behaviors and Kinetics Analysis of Coal, Biomass, and Plastic. Thermochim. Acta 2018, 669, 140-148. https://doi.org/10.1016/j.tca.2018.09.016
dc.relation.referencesen[20] Burra, K.G.; Gupta, A.K. Kinetics of Synergistic Effects in co-Pyrolysis of Biomass with Plastic Wastes. Appl. Energy 2018, 220, 408-418. https://doi.org/10.1016/j.apenergy.2018.03.117
dc.relation.referencesen[21] Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M., Tariq, R., Gul, K.; Ahmad, W. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products. Int. J. Green Energy 2015, 12, 663-671. https://doi.org/10.1080/15435075.2014.880146
dc.relation.referencesen[22] Syamsiro, M.; Saptoadi, H.; Norsujianto, T.; Noviasri, P.; Cheng, S.; Alimuddin, Z.; Yoshikawa, K. Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors. Energy Procedia 2014, 47, 180-188. https://doi.org/10.1016/j.egypro.2014.01.212
dc.relation.referencesen[23] Garfoth, A.A.; Lin, Y.H.; Sharratt, P.N.; Dwyer, J. Production of Hydrocarbons by Catalytic Degradation of High Density Polye-thylene in a Laboratory Fluidised-Bed Reactor. Appl. Catal. A-Gen. 1998, 169, 331-342. https://doi.org/10.1016/S0926-860X(98)00022-2
dc.relation.referencesen[24] Lin, Y.-H.; Yen, H.-Y. Fluidised Bed Pyrolysis of Polypropy-lene over Cracking Catalysts for Producing Hydrocarbons. Polym. Degrad. Stab. 2005, 89, 101-108. https://doi.org/10.1016/j.polymdegradstab.2005.01.006
dc.relation.referencesen[25] Mani, M.; Subash, C.; Nagarajan, G. Performance, Emission and Combustion Characteristics of a DI Diesel Engine Using Waste Plastic Oil. Appl. Therm. Eng. 2009, 29, 2738-2744. https://doi.org/10.1016/j.applthermaleng.2009.01.007
dc.relation.urihttps://doi.org/10.1039/C8RA10058F
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.121639
dc.relation.urihttps://doi.org/10.23939/chcht14.01.088
dc.relation.urihttps://doi.org/10.1016/j.supflu.2004.09.004
dc.relation.urihttps://doi.org/10.23939/chcht10.04.465
dc.relation.urihttps://doi.org/10.1007/s10098-020-01930-y
dc.relation.urihttps://doi.org/10.1016/j.fuel.2016.12.008
dc.relation.urihttps://doi.org/10.1016/j.egyr.2018.11.004
dc.relation.urihttps://doi.org/10.1016/j.enconman.2016.02.037
dc.relation.urihttps://doi.org/10.1007/s11356-015-5981-6
dc.relation.urihttps://doi.org/10.1007/s40430-016-0518-6
dc.relation.urihttps://doi.org/10.1016/j.enconman.2013.05.028
dc.relation.urihttps://doi.org/10.1155/2016/7869080
dc.relation.urihttps://doi.org/10.1016/j.jaap.2017.12.020
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2016.05.202
dc.relation.urihttps://doi.org/10.1016/j.tca.2018.09.016
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2018.03.117
dc.relation.urihttps://doi.org/10.1080/15435075.2014.880146
dc.relation.urihttps://doi.org/10.1016/j.egypro.2014.01.212
dc.relation.urihttps://doi.org/10.1016/S0926-860X(98)00022-2
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2005.01.006
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2009.01.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Jana S. K., Pattanayak S., Bhausaheb M. S., Ruidas B. C., Pal D. B., 2023
dc.subjectпластикові відходи
dc.subjectпаливо
dc.subjectтермогравіметричний аналіз
dc.subjectкаталіз і кінетика
dc.subjectвнутрішнє згоряння
dc.subjectwaste plastic
dc.subjecttubular reactor
dc.subjectfuel
dc.subjectthermogravimetric analysis
dc.subjectcatalysis and kinetics
dc.subjectinternal combustion
dc.titlePyrolysis of Waste Plastic to Fuel Conversion for Utilization in Internal Combustion Engine
dc.title.alternativeПіроліз пластикових відходів з перетворенням у паливо для використання в двигунах внутрішнього згоряння
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Jana_S_K-Pyrolysis_of_Waste_Plastic_438-449.pdf
Size:
706.63 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Jana_S_K-Pyrolysis_of_Waste_Plastic_438-449__COVER.png
Size:
554.25 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: