Numerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying

dc.citation.epage399
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage387
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГайвась, Б. І.
dc.contributor.authorМаркович, Б. М.
dc.contributor.authorДмитрук, А. А.
dc.contributor.authorГавран, М. В.
dc.contributor.authorДмитрук, В. А.
dc.contributor.authorGayvas, B. I.
dc.contributor.authorMarkovych, B. M.
dc.contributor.authorDmytruk, A. A.
dc.contributor.authorHavran, M. V.
dc.contributor.authorDmytruk, V. A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T10:28:07Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРозглянуто проблему кондуктивного (контактного) сушіння капіляро-пористого тіла в пароповітряному (газовому) середовищі передачею теплоти до матеріалу при контакті його з нагрітими поверхнями матеріалу. Отримано систему суттєво нелінійних диференціальних рівнянь тепломасоперенесення для опису такого процесу. Для розв’язування сформульованої задачі тепломасоперенесення (без врахування деформативності) застосовано методику розв’язування нелінійних крайових задач у вигляді ітераційного процесу, на кожному кроці якого розв’язується лінійна крайова задача. Проведено перевірку результатів методу двома способами. Вони добре узгоджуються. Проведено чисельний експеримент для матеріалів трьох видів пористості. Результати представлено графічно та таблично. Виведено закономірності контактного сушіння капіляро-пористих матеріалів в пароповітряному середовищі.
dc.description.abstractThe problem of conductive (contact) drying of a capillary-porous body in a steam-air (gas) environment by heat transfer to the material during its contact with the heated surfaces of the material is considered. A system of significantly nonlinear differential equations of heat and mass transfer to describe such a process is obtained. To solve the formulated problem of heat and mass transfer (without taking into account deformability), the method of solving nonlinear boundary value problems is applied in the form of an iterative process, at each step of which a linear boundary value problem is solved. The results of the application of the method are verified based on the popular numerical scheme used. They agree well. A numerical experiment is conducted for materials of three types of porosity. The results are presented graphically and tabularly. The regularities of contact drying of capillary-porous materials in a steam-air environment are deduced.
dc.format.extent387-399
dc.format.pages13
dc.identifier.citationNumerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying / B. I. Gayvas, B. M. Markovych, A. A. Dmytruk, M. V. Havran, V. A. Dmytruk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 387–399.
dc.identifier.citationenNumerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying / B. I. Gayvas, B. M. Markovych, A. A. Dmytruk, M. V. Havran, V. A. Dmytruk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 387–399.
dc.identifier.doi10.23939/mmc2023.02.387
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63401
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 2 (10), 2023
dc.relation.references[1] Tokarchuk M. V. Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids far from equilibrium. Mathematical Modeling and Computing. 10 (2), 272–287 (2023).
dc.relation.references[2] Tokarchuk M V. Kinetic description of ion transport in the system “ionic solution – porous environment”. Mathematical Modeling and Computing. 9 (3), 719–733 (2022).
dc.relation.references[3] Gera B., Kovalchuk V., Dmytruk V. Temperature field of metal structures of transport facilities with a thin protective coating. Mathematical Modeling and Computing. 9 (4), 950–958 (2022).
dc.relation.references[4] Gayvas B., Dmytruk V., Semerak M., Rymar T. Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing. 8 (2), 150–156 (2021).
dc.relation.references[5] Gnativ Z., Ivashchuk O., Hrynchuk Y., Reutskyy V., Koval I., Vashkurak Yu. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (1), 22–28 (2020).
dc.relation.references[6] Gayvas B., Dmytruk V. Investigation of drying the porous wood of a cylindrical shape. Mathematical Modeling and Computing. 9 (2), 399–415 (2022).
dc.relation.references[7] Gayvas B., Dmytruk V., Kaminska O., Pastyrska I., Dmytruk A., Nezgoda S. Simulation of Crack Resistance of Mustard in Pulsed Drying Mode. International Scientific and Technical Conference on Computer Sciences and Information Technologies. 2, 91–94 (2020).
dc.relation.references[8] Kostrobij P., Markovych B., Viznovych O., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6 (1), 58–68 (2019).
dc.relation.references[9] Kowalski S. J., Rybicki A. The vapour–liquid interface and stresses in dried bodies. Transport in Porous Media. 66, 43–58 (2007).
dc.relation.references[10] Chen F., Gao X., Xia X., Xu J. Using LSTM and PSO techniques for predicting moisture content of poplar fibers by Impulse-cyclone Drying. PLoS One. 17 (4), e0266186 (2022).
dc.relation.references[11] Welsh Z. G., Simpson J. M., Khan Md I. H., Karim M. A. Generalized moisture diffusivity for food drying through multiscale modeling. Journal of Food Engineering. 340, 111309 (2023).
dc.relation.references[12] Pidstryhach Ya. S. Selected works. National Academy ofSciences of Ukraine, Pidstryhach IAPMM. Kyiv, Naukova dumka (1995).
dc.relation.references[13] Luikov A. V. Heat and Mass Transfer in Capillary Porous Bodies. Pergamon Press, Oxford (1966).
dc.relation.references[14] Harvey T., Gray I. Flow measurement in gas drainage, in Naj Aziz and Bob Kininmonth (eds.). Proceedings of the 2019 Coal Operators Conference, Mining Engineering, University of Wollongong. 212–222 (2019).
dc.relation.references[15] Burak Ya. Yo. Selected works. Pidstryhach IAPMM. Lviv, Akhil (2001).
dc.relation.references[16] Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modeling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
dc.relation.references[17] Gaivas’ B. I., Yavors’ka I. V. Numerical modeling of heat and mass transfer processes in capillary-porous material. Journal of Mathematical Sciences. 96, 3065–3069 (1999).
dc.relation.references[18] Nikitenko N. I. Coupled and inverse problems of heat and mass transfer. Kyiv, Naukova dumka (1971), (in Ukrainian).
dc.relation.references[19] Luikov A. V. Systems of differential equations of heat and mass transfer in capillary-porous bodies. International Journal of Heat and Mass Tran
dc.relation.referencesen[1] Tokarchuk M. V. Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids far from equilibrium. Mathematical Modeling and Computing. 10 (2), 272–287 (2023).
dc.relation.referencesen[2] Tokarchuk M V. Kinetic description of ion transport in the system "ionic solution – porous environment". Mathematical Modeling and Computing. 9 (3), 719–733 (2022).
dc.relation.referencesen[3] Gera B., Kovalchuk V., Dmytruk V. Temperature field of metal structures of transport facilities with a thin protective coating. Mathematical Modeling and Computing. 9 (4), 950–958 (2022).
dc.relation.referencesen[4] Gayvas B., Dmytruk V., Semerak M., Rymar T. Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing. 8 (2), 150–156 (2021).
dc.relation.referencesen[5] Gnativ Z., Ivashchuk O., Hrynchuk Y., Reutskyy V., Koval I., Vashkurak Yu. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (1), 22–28 (2020).
dc.relation.referencesen[6] Gayvas B., Dmytruk V. Investigation of drying the porous wood of a cylindrical shape. Mathematical Modeling and Computing. 9 (2), 399–415 (2022).
dc.relation.referencesen[7] Gayvas B., Dmytruk V., Kaminska O., Pastyrska I., Dmytruk A., Nezgoda S. Simulation of Crack Resistance of Mustard in Pulsed Drying Mode. International Scientific and Technical Conference on Computer Sciences and Information Technologies. 2, 91–94 (2020).
dc.relation.referencesen[8] Kostrobij P., Markovych B., Viznovych O., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6 (1), 58–68 (2019).
dc.relation.referencesen[9] Kowalski S. J., Rybicki A. The vapour–liquid interface and stresses in dried bodies. Transport in Porous Media. 66, 43–58 (2007).
dc.relation.referencesen[10] Chen F., Gao X., Xia X., Xu J. Using LSTM and PSO techniques for predicting moisture content of poplar fibers by Impulse-cyclone Drying. PLoS One. 17 (4), e0266186 (2022).
dc.relation.referencesen[11] Welsh Z. G., Simpson J. M., Khan Md I. H., Karim M. A. Generalized moisture diffusivity for food drying through multiscale modeling. Journal of Food Engineering. 340, 111309 (2023).
dc.relation.referencesen[12] Pidstryhach Ya. S. Selected works. National Academy ofSciences of Ukraine, Pidstryhach IAPMM. Kyiv, Naukova dumka (1995).
dc.relation.referencesen[13] Luikov A. V. Heat and Mass Transfer in Capillary Porous Bodies. Pergamon Press, Oxford (1966).
dc.relation.referencesen[14] Harvey T., Gray I. Flow measurement in gas drainage, in Naj Aziz and Bob Kininmonth (eds.). Proceedings of the 2019 Coal Operators Conference, Mining Engineering, University of Wollongong. 212–222 (2019).
dc.relation.referencesen[15] Burak Ya. Yo. Selected works. Pidstryhach IAPMM. Lviv, Akhil (2001).
dc.relation.referencesen[16] Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modeling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
dc.relation.referencesen[17] Gaivas’ B. I., Yavors’ka I. V. Numerical modeling of heat and mass transfer processes in capillary-porous material. Journal of Mathematical Sciences. 96, 3065–3069 (1999).
dc.relation.referencesen[18] Nikitenko N. I. Coupled and inverse problems of heat and mass transfer. Kyiv, Naukova dumka (1971), (in Ukrainian).
dc.relation.referencesen[19] Luikov A. V. Systems of differential equations of heat and mass transfer in capillary-porous bodies. International Journal of Heat and Mass Tran
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectконтактне сушіння
dc.subjectкапілярно-пористий матеріал
dc.subjectсистема нелінійних диференціальних рівнянь
dc.subjectітераційний процес
dc.subjectлінійна крайова задача
dc.subjectcontact drying
dc.subjectcapillary-porous materia
dc.subjectsystem of nonlinear differential equations
dc.subjectiterative process
dc.subjectlinear boundary value problem
dc.titleNumerical modeling of heat and mass transfer processes in a capillary-porous body during contact drying
dc.title.alternativeЧислове моделювання процесів тепломасопереносу в капілярно-пористому тілі при контактному осушенні
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n2_Gayvas_B_I-Numerical_modeling_of_387-399.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n2_Gayvas_B_I-Numerical_modeling_of_387-399__COVER.png
Size:
471.99 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: