Bamboo-Containing Composites with Environmentally Friendly Binders

dc.citation.epage819
dc.citation.issue4
dc.citation.spage807
dc.contributor.affiliationIvane Javakhishvili’ Tbilisi State University
dc.contributor.affiliationSokhumi State University
dc.contributor.affiliationVladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
dc.contributor.authorMukbaniani, Omar
dc.contributor.authorTatrishvili, Tamara
dc.contributor.authorKvnikadze, Nikoloz
dc.contributor.authorBukia, Tinatini
dc.contributor.authorPirtskheliani, Nana
dc.contributor.authorMakharadze, Tamar
dc.contributor.authorPetriashvili, Gia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:09Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУперше синтезовано екологічно чисту в'яжучу речовину– полі[(триметокси)4-вінілфенетил)]силан за допомогою реакції алкілування Фріделя-Крафтса, яку проводили взаємодією полістирену з вінілтриметоксисиланом у присутності безводного AlCl3. Синтезований полімер було ідентифіковано за допомогою 1H, 13C, 1H COSY ЯМР і FTIR спектроскопії. Композити на основі бамбукової тирси з різними дисперсійними властивостями були створені з використанням синтетичного триметоксисилільованогополістирену (TMSPSt) та стирену з різним ступенем силілювання (5-10%). Композиційні матеріали на основі бамбукового порошку з різними органічними/неорганічними добавками, антипіренамий антиоксидантами були оброблені за різних температур і тисків методом гарячого пресування. Отримані композити досліджували методами інфрачервоної спектроскопії з перетворенням Фур'є (FTIR), оптичної та растрової електронної мікроскопії (SEM), а також енергодисперсійної рентгенівської спектроскопії (EDS). Термостабільність отриманих матеріалів визначали за допомогою термогравіметрії та методу Віка. Також досліджено водопоглинання та деякі механічні властивості.
dc.description.abstractThe environmentally friendly binder - poly[(trimethoxy)4-vinylphenethyl)] silane was synthesized for the first time via Friedel-Crafts alkylation reaction, which was conducted by the reaction of polystyrene with vinyltrimethoxysilane in the presence of anhydrous AlCl3.The synthesized polymer was identified using 1H, 13C, 1H COSY NMR, and FTIR spectroscopy. Bamboo sawdust-based composites with various dispersion properties have been created using synthetic trimethoxysilylated polystyrene (TMSPSt) and styrenewith various degrees of silylation (5-10%). Composite materialsbased on bamboo powder with various organic/inorganic additives, flame retardants, and antioxidants, were processed at different temperatures and pressures using the hot pressing method. Obtained compositeswere studied by Fourier transformation infrared spectroscopy (FTIR), optical and scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Thermal stability of the obtained materials was determined by thermogravimetry and the Vicat method. Also, water absorption and some mechanical properties were studied.
dc.format.extent807-819
dc.format.pages13
dc.identifier.citationBamboo-Containing Composites with Environmentally Friendly Binders / Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvnikadze, Tinatini Bukia, Nana Pirtskheliani, Tamar Makharadze, Gia Petriashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 807–819.
dc.identifier.citationenBamboo-Containing Composites with Environmentally Friendly Binders / Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvnikadze, Tinatini Bukia, Nana Pirtskheliani, Tamar Makharadze, Gia Petriashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 807–819.
dc.identifier.doidoi.org/10.23939/chcht17.04.807
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63691
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. MechanicalProperties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers2020,12, 2211. https://doi.org/10.3390/polym12102211
dc.relation.references[2] Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch Based Polyurethanes: A Critical Review Updating Recent Literature.Carbohydr. Polym.2015, 134, 784–798. https://doi.org/10.1016/j.carbpol.2015.08.034
dc.relation.references[3] Syafiq, R.; Sapuan, S.; Zuhri, M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm-Based Nano Cellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157. https://doi.org/10.1016/j.jmrt.2020.12.091
dc.relation.references[4] Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers2020, 12, 2403. https://doi.org/10.3390/polym12102403
dc.relation.references[5]Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Effect of Alkaline Treatment on Mechanical, Physical and Thermal Propertiesof Roselle/Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. Fibers Polym. 2019, 20, 847–855. https://doi.org/10.1007/s12221-019-1061-8
dc.relation.references[6]Nadlene, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Yusriah, L. A Review on Roselle Fiber and Its Composites. J. Nat. Fibers2016,13, 10–41. https://doi.org/10.1080/15440478.2014.984052
dc.relation.references[7]Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K.; Siregar, J.P. Sugar Palm (Arengapinnata): ItsFibres, Polymers and Composites. Carbohydr. Polym. 2013, 91, 699–710. https://doi.org/10.1016/j.carbpol.2012.07.073
dc.relation.references[8]Suhot, M.; Hassan, M.; Aziz, S.; Daud, M.M. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers2021, 13, 2391. https://doi.org/10.3390/polym13152391
dc.relation.references[9]Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Mechanical Performance of Roselle/Sugar Palm Fiber Hybrid ReinforcedPolyurethane Composites.Bioresources2018, 13, 6238–6249. https://doi.org/10.15376/biores.13.3.6238-6249
dc.relation.references[10] Ali, M.R.; Salit, M.S.; Jawaid, M.; Mansur, M.R.; Manap, M.F.A. Polyurethane-Based Biocomposites; Elsevier Inc.: Amsterdam,The Netherlands, 2017. https://doi.org/10.1016/B978-0-12-804065-2.00018-8
dc.relation.references[11]Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.; Zainudin, E.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi,A.M.; et al. Sugar Palm (Arengapinnata (Wurmb.) Merr) Cellulosic Fibre Hierarchy: A Comprehensive Approach from Macro to NanoScale. J. Mater. Res. Technol. 2019, 8, 2753–2766. https://doi.org/10.1016/j.jmrt.2019.04.011
dc.relation.references[12] Kasim, F.A.M.; Roslan, S.A.H.; Rasid, Z.A.; Yakub, F.; Hassan, M.Z.; Yahaya, H. Post-Buckling of Bamboo Reinforced CompositePlates. IOP Conference Series: Materials Science and Engineering 2021, 1051, 012040. https://doi.org/10.1088/1757-899X/1051/1/012040
dc.relation.references[13] Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The Effect of Water Immersion and Fibre Content on Properties of Corn Husk Fibres Reinforced Thermoset Polyester Composite. Polym Test2020, 91, 106751. https://doi.org/10.1016/j.polymertesting.2020.106751
dc.relation.references[14]Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential Application of GreenComposites for Cross Arm Component in Transmission Tower: A Brief Review. Int J PolymSci2020,2020, 8878300. https://doi.org/10.1155/2020/8878300
dc.relation.references[15]Venkatesha, B.; Saravanan, R.; Bavan, D.S. Review on Mechanical Properties and Fatigue Life of E-Glass/Bamboo Fiber ReinforcedPolymer Composites.International Journal of Engineering Sciences & Management2017, 7, 52–57.
dc.relation.references[16]Radzi A.M.; Zaki, S.A.; Hassan, M.Z.; Ilyas,R.A.; Jamaludin, K.R.; Md Daud, M.Y.; Aziz, S.A.Bamboo-Fiber-Reinforced Thermoset and Thermoplastic Polymer Composites: A Review of Properties, Fabrication, and Potential Applications. Polymers2022, 14, 1387. https://doi.org/10.3390/polym14071387
dc.relation.references[17]Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant Fibre Based Bio-Composites: Sustainable and Renewable Green Materials.Renew. Sust. Energ. Rev.2017, 79, 558–584. https://doi.org/10.1016/j.rser.2017.05.094
dc.relation.references[18]Martijanti, M.;Sutarno, S.;Juwono, A.L. Polymer Composite Fabrication Reinforced with Bamboo Fiberfor Particle Board Product Raw Material Application.Polymers2021, 13, 4377. https://doi.org/10.3390/polym13244377
dc.relation.references[19] Bamboo Fiber Composites; Processing, Properties and Applications; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore,2021.
dc.relation.references[20] Tomalang, F.N.; Lopez, A.R.;Semara, J.A.;Casin, R.F.;Espiloy, Z.B. Properties and Utilization of Philippine erect bamboo. In Bamboo research in Asia: proceedings of a workshop held in Singapore, 28-30 May 1980;IDRC, Ottawa, ON, CA,2008; pp266–275. http://hdl.handle.net/10625/16761
dc.relation.references[21] Lykidis, C.;Grigoriou, A. Hydrothermal Recycling of Waste and Performance of the Recycled Wooden Particleboards.Waste Manage. 2008, 28, 57–63. https://doi.org/10.1016/j.wasman.2006.11.016
dc.relation.references[22]Abdulkareem, S.A.;Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017,36,788–793. http://dx.doi.org/10.4314/njt.v36i3.18
dc.relation.references[23]Ramesh, M.;RajeshKumar, L.;Bhuvaneshwari, V. Bamboo Fiber Reinforced Composites. In Bamboo Fiber Composites; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore, 2021; pp 1–13.
dc.relation.references[24]. Mukbaniani, O.;Brostow, W.;HaggLobland, H.E.;Aneli, J.;Tatrishvili, T.;Markarashvili, E.;Dzidziguri, D.;Buzaladze, G.Composites Containing Bamboo with Different Binders.Pure Appl. Chem. 2018, 90, 1001–1009. https://doi.org/10.1515/pac-2017-0804
dc.relation.references[25] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209. https://doi.org/10.23939/chcht11.02.201
dc.relation.references[26]Tolentino, M.S.;Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Ser.: Mater. Sci. Eng.2017, 205,012024. https://doi.org/10.1088/1757-899X/205/1/012024
dc.relation.references[27] Mukbaniani, O.;Tatrishvili,T.;Markarashvili,E.; Londaridze,L.; Pachulia, Z.;Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)Silane With Alkylation Reaction ofVinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309–320.
dc.relation.references[28].Demchuk, Y.; Gunka, V.; Pyshyiv, S.;Sidun, Y.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256. https://doi.org/10.23939/chcht14.02.251
dc.relation.references[29] Bashta, B.;Astakhova, O.;Shyshchak, O.;Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8(3), 309–316. https://doi.org/10.23939/chcht08.03.309
dc.relation.references[30] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech.2015,5,33-41. https://doi.org/10.4236/wjm.2015.53004
dc.relation.references[31] Mukbaniani, O.;Brostow, W.;Aneli, J.;Londaridze, L.;Markarashvili, E.;Tatrishvili, T.;Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
dc.relation.references[32] Smith, B.C.Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy2016, 31, 36-39.
dc.relation.references[33] Swanson, N.Polybutadiene graft copolymers as coup¬ling agents in rubber compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, Akron, USA,2016.
dc.relation.references[34]ChemBioDraw Ultra 12. https://en.freedownloadmanager.org/users-choice/Chemdraw_Ultra_12.0_Free...
dc.relation.references[35] MestreNova. https://mestrelab.com/software/mnova/nmr/
dc.relation.references[36]Kyle A. Baseden and Jesse W. Tye.Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom.J. Chem. Educ. 2014, 12, 2116–2123. https://doi.org/10.1021/ed5004788
dc.relation.references[37]Tatrishvili, T.; Koberidze, Kh.;Mukbaniani, O.Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Bull. Georgian National Acad. Sci.2007, 3, 297-300.
dc.relation.references[38]Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calculations for Hydrosilylation Re¬a¬c¬tion ofMethyldimethoxysilane with Hexane-1. Bull. Georgian National Acad. Sci. 2006, 32, 109–114.
dc.relation.references[39]. Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O.AM1 Calculations for Hydride Addition Rea¬c¬¬tion of Methyldimethoxysilane with Styrene.Georgia Chemical Jo¬ur¬nal2006, 6, 58–59.
dc.relation.references[40] Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S.Hydrosi¬ly¬la¬ti¬onReactions of α,ω-bis(Trimethylsiloxy)methylhydridesiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal2006, 6, 254–255.
dc.relation.references[41]Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication Limited, London,1995.
dc.relation.references[42]Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu, K.Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng.1997, 28, 13–20. https://doi.org/10.1016/S1359-8368(96)00020-0
dc.relation.references[43] Mukbaniani, O.;Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504–2511. https://doi.org/10.1002/pat.4965
dc.relation.references[44] Chang, H.-T.; Yeh, T.-F.; Hsu, F.-L.; Kuo-Huang, L.-L.; Lee, C.-M.; Huang, Y.-S.; Chang, S.-T. Profiling the Chemical Composition and Growth Strain of Giant Bamboo, (Dendrocalamusgiganteus Munro). Bioresource2015,10, 1260-1270. https://doi.org/10.15376/biores.10.1.1260–1270
dc.relation.references[45]Muraganatham, S.;Anbalagan, G.; Ramamurthy, N. FT-IR and Semeds Comparative Analysis of Medicinal Plants. EcliptaalbaHassk and EcliptaprostrateLinn. Rom J. Biophys. 2009, 19, 285–294.
dc.relation.references[46] Mukbaniani,O.;Aneli,J.;Tatrishvili, T.;Markarashvili, E.;Londaridze, L.;Kvinikadze, N.;Kakalashvili, L. Wood Polymer Composite Based On A Styrene And Triethoxy(Vinylphenethyl)silane.Chem. Chem. Technol. 2023,17, 35–44. https://doi.org/10.23939/chcht17.01.035
dc.relation.references[47]Mukbaniani, O.;Aneli, J.;Buzaladze, G.;Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with some Organic and Inorganic Binders. Oxid. Commun. 2016,39, 2763–2777.
dc.relation.referencesen[1] Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. MechanicalProperties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers2020,12, 2211. https://doi.org/10.3390/polym12102211
dc.relation.referencesen[2] Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch Based Polyurethanes: A Critical Review Updating Recent Literature.Carbohydr. Polym.2015, 134, 784–798. https://doi.org/10.1016/j.carbpol.2015.08.034
dc.relation.referencesen[3] Syafiq, R.; Sapuan, S.; Zuhri, M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm-Based Nano Cellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157. https://doi.org/10.1016/j.jmrt.2020.12.091
dc.relation.referencesen[4] Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial Activities of Starch-Based Biopolymers and Biocomposites Incorporated with Plant Essential Oils: A Review. Polymers2020, 12, 2403. https://doi.org/10.3390/polym12102403
dc.relation.referencesen[5]Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Effect of Alkaline Treatment on Mechanical, Physical and Thermal Propertiesof Roselle/Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Hybrid Composites. Fibers Polym. 2019, 20, 847–855. https://doi.org/10.1007/s12221-019-1061-8
dc.relation.referencesen[6]Nadlene, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Yusriah, L. A Review on Roselle Fiber and Its Composites. J. Nat. Fibers2016,13, 10–41. https://doi.org/10.1080/15440478.2014.984052
dc.relation.referencesen[7]Ishak, M.R.; Sapuan, S.M.; Leman, Z.; Rahman, M.Z.A.; Anwar, U.M.K.; Siregar, J.P. Sugar Palm (Arengapinnata): ItsFibres, Polymers and Composites. Carbohydr. Polym. 2013, 91, 699–710. https://doi.org/10.1016/j.carbpol.2012.07.073
dc.relation.referencesen[8]Suhot, M.; Hassan, M.; Aziz, S.; Daud, M.M. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers2021, 13, 2391. https://doi.org/10.3390/polym13152391
dc.relation.referencesen[9]Radzi, A.M.; Sapuan, S.M.; Jawaid, M.; Mansor, M.R. Mechanical Performance of Roselle/Sugar Palm Fiber Hybrid ReinforcedPolyurethane Composites.Bioresources2018, 13, 6238–6249. https://doi.org/10.15376/biores.13.3.6238-6249
dc.relation.referencesen[10] Ali, M.R.; Salit, M.S.; Jawaid, M.; Mansur, M.R.; Manap, M.F.A. Polyurethane-Based Biocomposites; Elsevier Inc., Amsterdam,The Netherlands, 2017. https://doi.org/10.1016/B978-0-12-804065-2.00018-8
dc.relation.referencesen[11]Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.; Zainudin, E.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi,A.M.; et al. Sugar Palm (Arengapinnata (Wurmb.) Merr) Cellulosic Fibre Hierarchy: A Comprehensive Approach from Macro to NanoScale. J. Mater. Res. Technol. 2019, 8, 2753–2766. https://doi.org/10.1016/j.jmrt.2019.04.011
dc.relation.referencesen[12] Kasim, F.A.M.; Roslan, S.A.H.; Rasid, Z.A.; Yakub, F.; Hassan, M.Z.; Yahaya, H. Post-Buckling of Bamboo Reinforced CompositePlates. IOP Conference Series: Materials Science and Engineering 2021, 1051, 012040. https://doi.org/10.1088/1757-899X/1051/1/012040
dc.relation.referencesen[13] Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The Effect of Water Immersion and Fibre Content on Properties of Corn Husk Fibres Reinforced Thermoset Polyester Composite. Polym Test2020, 91, 106751. https://doi.org/10.1016/j.polymertesting.2020.106751
dc.relation.referencesen[14]Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential Application of GreenComposites for Cross Arm Component in Transmission Tower: A Brief Review. Int J PolymSci2020,2020, 8878300. https://doi.org/10.1155/2020/8878300
dc.relation.referencesen[15]Venkatesha, B.; Saravanan, R.; Bavan, D.S. Review on Mechanical Properties and Fatigue Life of E-Glass/Bamboo Fiber ReinforcedPolymer Composites.International Journal of Engineering Sciences & Management2017, 7, 52–57.
dc.relation.referencesen[16]Radzi A.M.; Zaki, S.A.; Hassan, M.Z.; Ilyas,R.A.; Jamaludin, K.R.; Md Daud, M.Y.; Aziz, S.A.Bamboo-Fiber-Reinforced Thermoset and Thermoplastic Polymer Composites: A Review of Properties, Fabrication, and Potential Applications. Polymers2022, 14, 1387. https://doi.org/10.3390/polym14071387
dc.relation.referencesen[17]Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant Fibre Based Bio-Composites: Sustainable and Renewable Green Materials.Renew. Sust. Energ. Rev.2017, 79, 558–584. https://doi.org/10.1016/j.rser.2017.05.094
dc.relation.referencesen[18]Martijanti, M.;Sutarno, S.;Juwono, A.L. Polymer Composite Fabrication Reinforced with Bamboo Fiberfor Particle Board Product Raw Material Application.Polymers2021, 13, 4377. https://doi.org/10.3390/polym13244377
dc.relation.referencesen[19] Bamboo Fiber Composites; Processing, Properties and Applications; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore,2021.
dc.relation.referencesen[20] Tomalang, F.N.; Lopez, A.R.;Semara, J.A.;Casin, R.F.;Espiloy, Z.B. Properties and Utilization of Philippine erect bamboo. In Bamboo research in Asia: proceedings of a workshop held in Singapore, 28-30 May 1980;IDRC, Ottawa, ON, CA,2008; pp266–275. http://hdl.handle.net/10625/16761
dc.relation.referencesen[21] Lykidis, C.;Grigoriou, A. Hydrothermal Recycling of Waste and Performance of the Recycled Wooden Particleboards.Waste Manage. 2008, 28, 57–63. https://doi.org/10.1016/j.wasman.2006.11.016
dc.relation.referencesen[22]Abdulkareem, S.A.;Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017,36,788–793. http://dx.doi.org/10.4314/njt.v36i3.18
dc.relation.referencesen[23]Ramesh, M.;RajeshKumar, L.;Bhuvaneshwari, V. Bamboo Fiber Reinforced Composites. In Bamboo Fiber Composites; Jawaid, M.;Rangappa, S.M.;Siengchin, S., Eds.; Springer Singapore, 2021; pp 1–13.
dc.relation.referencesen[24]. Mukbaniani, O.;Brostow, W.;HaggLobland, H.E.;Aneli, J.;Tatrishvili, T.;Markarashvili, E.;Dzidziguri, D.;Buzaladze, G.Composites Containing Bamboo with Different Binders.Pure Appl. Chem. 2018, 90, 1001–1009. https://doi.org/10.1515/pac-2017-0804
dc.relation.referencesen[25] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201–209. https://doi.org/10.23939/chcht11.02.201
dc.relation.referencesen[26]Tolentino, M.S.;Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Ser., Mater. Sci. Eng.2017, 205,012024. https://doi.org/10.1088/1757-899X/205/1/012024
dc.relation.referencesen[27] Mukbaniani, O.;Tatrishvili,T.;Markarashvili,E.; Londaridze,L.; Pachulia, Z.;Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)Silane With Alkylation Reaction ofVinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309–320.
dc.relation.referencesen[28].Demchuk, Y.; Gunka, V.; Pyshyiv, S.;Sidun, Y.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin.Chem. Chem. Technol. 2020, 14, 251–256. https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesen[29] Bashta, B.;Astakhova, O.;Shyshchak, O.;Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8(3), 309–316. https://doi.org/10.23939/chcht08.03.309
dc.relation.referencesen[30] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech.2015,5,33-41. https://doi.org/10.4236/wjm.2015.53004
dc.relation.referencesen[31] Mukbaniani, O.;Brostow, W.;Aneli, J.;Londaridze, L.;Markarashvili, E.;Tatrishvili, T.;Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
dc.relation.referencesen[32] Smith, B.C.Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy2016, 31, 36-39.
dc.relation.referencesen[33] Swanson, N.Polybutadiene graft copolymers as coup¬ling agents in rubber compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, Akron, USA,2016.
dc.relation.referencesen[34]ChemBioDraw Ultra 12. https://en.freedownloadmanager.org/users-choice/Chemdraw_Ultra_12.0_Free...
dc.relation.referencesen[35] MestreNova. https://mestrelab.com/software/mnova/nmr/
dc.relation.referencesen[36]Kyle A. Baseden and Jesse W. Tye.Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom.J. Chem. Educ. 2014, 12, 2116–2123. https://doi.org/10.1021/ed5004788
dc.relation.referencesen[37]Tatrishvili, T.; Koberidze, Kh.;Mukbaniani, O.Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Bull. Georgian National Acad. Sci.2007, 3, 297-300.
dc.relation.referencesen[38]Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calculations for Hydrosilylation Re¬a¬c¬tion ofMethyldimethoxysilane with Hexane-1. Bull. Georgian National Acad. Sci. 2006, 32, 109–114.
dc.relation.referencesen[39]. Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O.AM1 Calculations for Hydride Addition Rea¬c¬¬tion of Methyldimethoxysilane with Styrene.Georgia Chemical Jo¬ur¬nal2006, 6, 58–59.
dc.relation.referencesen[40] Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S.Hydrosi¬ly¬la¬ti¬onReactions of α,o-bis(Trimethylsiloxy)methylhydridesiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal2006, 6, 254–255.
dc.relation.referencesen[41]Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication Limited, London,1995.
dc.relation.referencesen[42]Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu, K.Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng.1997, 28, 13–20. https://doi.org/10.1016/S1359-8368(96)00020-0
dc.relation.referencesen[43] Mukbaniani, O.;Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504–2511. https://doi.org/10.1002/pat.4965
dc.relation.referencesen[44] Chang, H.-T.; Yeh, T.-F.; Hsu, F.-L.; Kuo-Huang, L.-L.; Lee, C.-M.; Huang, Y.-S.; Chang, S.-T. Profiling the Chemical Composition and Growth Strain of Giant Bamboo, (Dendrocalamusgiganteus Munro). Bioresource2015,10, 1260-1270. https://doi.org/10.15376/biores.10.1.1260–1270
dc.relation.referencesen[45]Muraganatham, S.;Anbalagan, G.; Ramamurthy, N. FT-IR and Semeds Comparative Analysis of Medicinal Plants. EcliptaalbaHassk and EcliptaprostrateLinn. Rom J. Biophys. 2009, 19, 285–294.
dc.relation.referencesen[46] Mukbaniani,O.;Aneli,J.;Tatrishvili, T.;Markarashvili, E.;Londaridze, L.;Kvinikadze, N.;Kakalashvili, L. Wood Polymer Composite Based On A Styrene And Triethoxy(Vinylphenethyl)silane.Chem. Chem. Technol. 2023,17, 35–44. https://doi.org/10.23939/chcht17.01.035
dc.relation.referencesen[47]Mukbaniani, O.;Aneli, J.;Buzaladze, G.;Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with some Organic and Inorganic Binders. Oxid. Commun. 2016,39, 2763–2777.
dc.relation.urihttps://doi.org/10.3390/polym12102211
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2015.08.034
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2020.12.091
dc.relation.urihttps://doi.org/10.3390/polym12102403
dc.relation.urihttps://doi.org/10.1007/s12221-019-1061-8
dc.relation.urihttps://doi.org/10.1080/15440478.2014.984052
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.07.073
dc.relation.urihttps://doi.org/10.3390/polym13152391
dc.relation.urihttps://doi.org/10.15376/biores.13.3.6238-6249
dc.relation.urihttps://doi.org/10.1016/B978-0-12-804065-2.00018-8
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2019.04.011
dc.relation.urihttps://doi.org/10.1088/1757-899X/1051/1/012040
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2020.106751
dc.relation.urihttps://doi.org/10.1155/2020/8878300
dc.relation.urihttps://doi.org/10.3390/polym14071387
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.05.094
dc.relation.urihttps://doi.org/10.3390/polym13244377
dc.relation.urihttp://hdl.handle.net/10625/16761
dc.relation.urihttps://doi.org/10.1016/j.wasman.2006.11.016
dc.relation.urihttp://dx.doi.org/10.4314/njt.v36i3.18
dc.relation.urihttps://doi.org/10.1515/pac-2017-0804
dc.relation.urihttps://doi.org/10.23939/chcht11.02.201
dc.relation.urihttps://doi.org/10.1088/1757-899X/205/1/012024
dc.relation.urihttps://doi.org/10.23939/chcht14.02.251
dc.relation.urihttps://doi.org/10.23939/chcht08.03.309
dc.relation.urihttps://doi.org/10.4236/wjm.2015.53004
dc.relation.urihttps://doi.org/10.23939/chcht16.03.377
dc.relation.urihttps://en.freedownloadmanager.org/users-choice/Chemdraw_Ultra_12.0_Free..
dc.relation.urihttps://mestrelab.com/software/mnova/nmr/
dc.relation.urihttps://doi.org/10.1021/ed5004788
dc.relation.urihttps://doi.org/10.1016/S1359-8368(96)00020-0
dc.relation.urihttps://doi.org/10.1002/pat.4965
dc.relation.urihttps://doi.org/10.15376/biores.10.1.1260–1270
dc.relation.urihttps://doi.org/10.23939/chcht17.01.035
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Mukbaniani O., Tatrishvili N., Kvnikadze N., Bukia T., Pirtskheliani N., Makharadze T., Petriashvili G., 2023
dc.subjectреакція Фріделя-Крафтса
dc.subjectсилільований полістирен
dc.subjectантипірен
dc.subjectбамбуковий порошок
dc.subjectFTIR і ЯМР спектроскопія
dc.subjectмеханічні властивості
dc.subjectFriedel-Crafts reaction
dc.subjectsilylated polystyrene
dc.subjectantipirene
dc.subjectbamboo powder
dc.subjectFTIR and NMR spectroscopy
dc.subjectmechanical properties
dc.titleBamboo-Containing Composites with Environmentally Friendly Binders
dc.title.alternativeБамбуковмісні композити з екологічно чистими в'яжучими речовинами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Mukbaniani_O-Bamboo_Containing_Composites_807-819.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Mukbaniani_O-Bamboo_Containing_Composites_807-819__COVER.png
Size:
526.79 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: