Simulation of Change in Density and Viscosity of Crude Oil When Mixing
dc.citation.epage | 474 | |
dc.citation.issue | 3 | |
dc.citation.spage | 469 | |
dc.contributor.affiliation | State Higher Educational Institution "Ukrainian State University of Chemical Technology" | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Zamikula, Konstantin | |
dc.contributor.author | Tertyshna, Olena | |
dc.contributor.author | Tertyshny, Oleg | |
dc.contributor.author | Topilnytskyy, Petro | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T12:00:09Z | |
dc.date.available | 2024-01-22T12:00:09Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Розглянуто відхилення значень густини та в’язкості нафтових сумішей від розрахованих за правилом адитивності. Розроблено математичні моделі визначення даних властивостей сумішей різного складу з урахуванням групового складу вихідних компонентів. Встановлено, що для сумішей, які містять компоненти з великим вмістом алканів та малим вмістом аренів характерні екстремальні відхилення густини в бік максимуму та кінематичної в’язкості в бік мінімуму. Проведено перевірку створених моделей на адекватність та порівняння із існуючими методами опису фізико-хімічних властивостей нафти. Запропоновано підхід до створення оптимальних, із технологічної точки зору, рецептур компаундування нафти різних типів. | |
dc.description.abstract | The deviation of density and viscosity values of oil mixtures from those calculated according to the additivity rule has been examined. Mathematical models have been developed for determining the properties of mixtures with different compositions taking into account the group composition of the source components. Mixtures containing components with a high content of alkanes and a low content of arenes have been found to be characterized by extreme deviations of density towards the maximum and kinematic viscosity towards the minimum. The created models were validated and compared with existing methods of describing the oil physicochemical properties. An approach to the creation of optimal from a technological point of view formulation for compounding oil of different types is proposed. | |
dc.format.extent | 469-474 | |
dc.format.pages | 6 | |
dc.identifier.citation | Simulation of Change in Density and Viscosity of Crude Oil When Mixing / Konstantin Zamikula, Olena Tertyshna, Oleg Tertyshny, Petro Topilnytskyy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 469–474. | |
dc.identifier.citationen | Simulation of Change in Density and Viscosity of Crude Oil When Mixing / Konstantin Zamikula, Olena Tertyshna, Oleg Tertyshny, Petro Topilnytskyy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 469–474. | |
dc.identifier.doi | doi.org/10.23939/chcht16.03.469 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60994 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (16), 2022 | |
dc.relation.references | [1] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15 (3), 423-431. https://doi.org/10.23939/chcht15.03.423 | |
dc.relation.references | [2] Tertyshna, O.; Zamikula, K.; Tertyshny, O.; Zinchenko, O.; Topilnytskyy, P. Phase Equilibrium of Petroleum Dispersion Systems in Terms of Thermodynamics and Kinetics. Chem. Chem. Technol. 2021, 15 (1), 132-141. https://doi.org/10.23939/chcht15.01.132 | |
dc.relation.references | [3] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14 (3), 412-419. https://doi.org/10.23939/chcht14.03.412 | |
dc.relation.references | [4] Tertyshna, O.; Martynenko, V.; Zamikula, K.; Topilnytskyy, P.; Holych Y. Forming of Crude Oil Mixtures with Increased Yield of Target Fractions. Chem. Chem. Technol. 2017, 11 (3), 383-386. https://doi.org/10.23939/chcht11.03.383 | |
dc.relation.references | [5] Centeno, G.; Sánchez-Reyna, G.; Ancheyta, J.; Muñoz, A.D.; Cardona N. Testing Various Mixing Rules for Calculation of Viscosity of Petroleum Blends. Fuel 2011, 90, 3561–3570. https://doi.org/10.1016/j.fuel.2011.02.028 | |
dc.relation.references | [6] Arrhenius, S.A. Uber die Dissociation der in Wasser gelosten Stoffe. Z. Phys. Chem. 1887, 1, 631-648. https://doi.org/10.1515/zpch-1887-0164 | |
dc.relation.references | [7] Bratychak, M.; Zemke, V.; Chopyk, N. The Features and Tribological Behaviour of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15 (4), 486-492. https://doi.org/10.23939/chcht15.04.486 | |
dc.relation.references | [8] Bingham, E.C. The Viscosity of Binary Mixtures. J. Phys. Chem. 1914, 18, 157-165. https://doi.org/10.1021/j150146a005 | |
dc.relation.references | [9] Kendall, J.; Monroe, K. The Viscosity of Liquids II. The Viscosity-Composition Curve for Ideal Liquid Mixtures. Am. Chem. J. 1917, 9, 1787-1802. https://doi.org/10.1021/ja02254a001 | |
dc.relation.references | [10] Miadonye, A.; Latour, N.; Puttagunta, V.R. A Correlation for Viscosity and Solvent Mass Fraction of Bitumen-Diluent Mixtures. Pet. Sci. Technol. 2000, 18, 1-14. https://doi.org/10.1080/10916460008949828 | |
dc.relation.references | [11] Ishikawa, T. The Viscosity of Ideal Solutions. Bull. Chem. Soc. Japan 1958, 31, 791-796. https://doi.org/10.1246/bcsj.31.791 | |
dc.relation.references | [12] Mehrotra, A.K. Development of Mixing Rules for Predicting the Viscosity of Bitumen and its Fractions Blended with Toluene. Can. J. Chem. Eng. 1990, 68, 839-848. https://doi.org/10.1002/cjce.5450680515 | |
dc.relation.references | [13] Mehrotra, A.K. A Generalized Viscosity Equation for Pure Heavy Hydrocarbons. Ind. Eng. Chem. Res. 1991, 30, 420-427. https://doi.org/10.1021/ie00050a021 | |
dc.relation.references | [14] Baled, H.O.; Gamwo, I.K.; Enick, R.M.; McHugh, M.A. Viscosity Models for Pure Hydrocarbons at Extreme Conditions: A Review and Comparative Study. Fuel 2018, 218, 89-111 https://doi.org/10.1016/j.fuel.2018.01.002 | |
dc.relation.references | [15] Mago, A.L. Adequate Description of Heavy Oil Viscosities and a Method to Assess Optimal Steam Cyclic Periods for Thermal Reservoir Simulation. PhD thesis; A&D University of Texas, 2006. | |
dc.relation.references | [16] Bratychak, M.M.; Hunka, V.M. Khimiia Nafty ta Gazu. Lviv: Vydavnytstvo Lvivskoi politekhniky, 2020. | |
dc.relation.references | [17] Kravtsov, A.V.; Svarovskaya, N.A.; Marasanova, I.V. Studies on the Behaviour of Liquid Hydrocarbon. React. Kinet. Cotol. Lett. 1995, 55 (1), 59-67. | |
dc.relation.references | [18] Tertyshna, O.; Zamikula, K.; Tertyshnyi, O. Kompiuterna prohrama «Rozrakhuvannia hustyny ta viazkosti sumishevykh palyv z urakhuvanniam hrupovoho skladu». Ukraina svidotstvo 111554, zaiavl. 14.01.2022, reiestr. 02.02.2022. | |
dc.relation.references | [19] Kononiuk, A.E. Osnovy Nauchnykh Issledovaniy (Obshchaia Teoriya Eksperimenta) K.3. Monohrafyia; Osvita Ukrainy, 2011. | |
dc.relation.references | [20] Brown, L.J. General Blending Models for Mixture Experiments: Design and Analysis. PhD thesis; University of Manchester, 2014. | |
dc.relation.referencesen | [1] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15 (3), 423-431. https://doi.org/10.23939/chcht15.03.423 | |
dc.relation.referencesen | [2] Tertyshna, O.; Zamikula, K.; Tertyshny, O.; Zinchenko, O.; Topilnytskyy, P. Phase Equilibrium of Petroleum Dispersion Systems in Terms of Thermodynamics and Kinetics. Chem. Chem. Technol. 2021, 15 (1), 132-141. https://doi.org/10.23939/chcht15.01.132 | |
dc.relation.referencesen | [3] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14 (3), 412-419. https://doi.org/10.23939/chcht14.03.412 | |
dc.relation.referencesen | [4] Tertyshna, O.; Martynenko, V.; Zamikula, K.; Topilnytskyy, P.; Holych Y. Forming of Crude Oil Mixtures with Increased Yield of Target Fractions. Chem. Chem. Technol. 2017, 11 (3), 383-386. https://doi.org/10.23939/chcht11.03.383 | |
dc.relation.referencesen | [5] Centeno, G.; Sánchez-Reyna, G.; Ancheyta, J.; Muñoz, A.D.; Cardona N. Testing Various Mixing Rules for Calculation of Viscosity of Petroleum Blends. Fuel 2011, 90, 3561–3570. https://doi.org/10.1016/j.fuel.2011.02.028 | |
dc.relation.referencesen | [6] Arrhenius, S.A. Uber die Dissociation der in Wasser gelosten Stoffe. Z. Phys. Chem. 1887, 1, 631-648. https://doi.org/10.1515/zpch-1887-0164 | |
dc.relation.referencesen | [7] Bratychak, M.; Zemke, V.; Chopyk, N. The Features and Tribological Behaviour of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15 (4), 486-492. https://doi.org/10.23939/chcht15.04.486 | |
dc.relation.referencesen | [8] Bingham, E.C. The Viscosity of Binary Mixtures. J. Phys. Chem. 1914, 18, 157-165. https://doi.org/10.1021/j150146a005 | |
dc.relation.referencesen | [9] Kendall, J.; Monroe, K. The Viscosity of Liquids II. The Viscosity-Composition Curve for Ideal Liquid Mixtures. Am. Chem. J. 1917, 9, 1787-1802. https://doi.org/10.1021/ja02254a001 | |
dc.relation.referencesen | [10] Miadonye, A.; Latour, N.; Puttagunta, V.R. A Correlation for Viscosity and Solvent Mass Fraction of Bitumen-Diluent Mixtures. Pet. Sci. Technol. 2000, 18, 1-14. https://doi.org/10.1080/10916460008949828 | |
dc.relation.referencesen | [11] Ishikawa, T. The Viscosity of Ideal Solutions. Bull. Chem. Soc. Japan 1958, 31, 791-796. https://doi.org/10.1246/bcsj.31.791 | |
dc.relation.referencesen | [12] Mehrotra, A.K. Development of Mixing Rules for Predicting the Viscosity of Bitumen and its Fractions Blended with Toluene. Can. J. Chem. Eng. 1990, 68, 839-848. https://doi.org/10.1002/cjce.5450680515 | |
dc.relation.referencesen | [13] Mehrotra, A.K. A Generalized Viscosity Equation for Pure Heavy Hydrocarbons. Ind. Eng. Chem. Res. 1991, 30, 420-427. https://doi.org/10.1021/ie00050a021 | |
dc.relation.referencesen | [14] Baled, H.O.; Gamwo, I.K.; Enick, R.M.; McHugh, M.A. Viscosity Models for Pure Hydrocarbons at Extreme Conditions: A Review and Comparative Study. Fuel 2018, 218, 89-111 https://doi.org/10.1016/j.fuel.2018.01.002 | |
dc.relation.referencesen | [15] Mago, A.L. Adequate Description of Heavy Oil Viscosities and a Method to Assess Optimal Steam Cyclic Periods for Thermal Reservoir Simulation. PhD thesis; A&D University of Texas, 2006. | |
dc.relation.referencesen | [16] Bratychak, M.M.; Hunka, V.M. Khimiia Nafty ta Gazu. Lviv: Vydavnytstvo Lvivskoi politekhniky, 2020. | |
dc.relation.referencesen | [17] Kravtsov, A.V.; Svarovskaya, N.A.; Marasanova, I.V. Studies on the Behaviour of Liquid Hydrocarbon. React. Kinet. Cotol. Lett. 1995, 55 (1), 59-67. | |
dc.relation.referencesen | [18] Tertyshna, O.; Zamikula, K.; Tertyshnyi, O. Kompiuterna prohrama "Rozrakhuvannia hustyny ta viazkosti sumishevykh palyv z urakhuvanniam hrupovoho skladu". Ukraina svidotstvo 111554, zaiavl. 14.01.2022, reiestr. 02.02.2022. | |
dc.relation.referencesen | [19] Kononiuk, A.E. Osnovy Nauchnykh Issledovaniy (Obshchaia Teoriya Eksperimenta) K.3. Monohrafyia; Osvita Ukrainy, 2011. | |
dc.relation.referencesen | [20] Brown, L.J. General Blending Models for Mixture Experiments: Design and Analysis. PhD thesis; University of Manchester, 2014. | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.423 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.01.132 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.412 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.03.383 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2011.02.028 | |
dc.relation.uri | https://doi.org/10.1515/zpch-1887-0164 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.486 | |
dc.relation.uri | https://doi.org/10.1021/j150146a005 | |
dc.relation.uri | https://doi.org/10.1021/ja02254a001 | |
dc.relation.uri | https://doi.org/10.1080/10916460008949828 | |
dc.relation.uri | https://doi.org/10.1246/bcsj.31.791 | |
dc.relation.uri | https://doi.org/10.1002/cjce.5450680515 | |
dc.relation.uri | https://doi.org/10.1021/ie00050a021 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2018.01.002 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Zamikula K., Tertyshna O., Tertyshny O., Topilnytskyy P., 2022 | |
dc.subject | густина | |
dc.subject | кінематична в’язкість | |
dc.subject | змішування нафти | |
dc.subject | математична модель | |
dc.subject | груповий склад | |
dc.subject | density | |
dc.subject | kinematic viscosity | |
dc.subject | oil mixing | |
dc.subject | mathematical model | |
dc.subject | group composition | |
dc.title | Simulation of Change in Density and Viscosity of Crude Oil When Mixing | |
dc.title.alternative | Моделювання зміни густини та в’язкості нафтової сировини при змішуванні | |
dc.type | Article |
Files
License bundle
1 - 1 of 1