Simulation of Change in Density and Viscosity of Crude Oil When Mixing

dc.citation.epage474
dc.citation.issue3
dc.citation.spage469
dc.contributor.affiliationState Higher Educational Institution "Ukrainian State University of Chemical Technology"
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorZamikula, Konstantin
dc.contributor.authorTertyshna, Olena
dc.contributor.authorTertyshny, Oleg
dc.contributor.authorTopilnytskyy, Petro
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T12:00:09Z
dc.date.available2024-01-22T12:00:09Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractРозглянуто відхилення значень густини та в’язкості нафтових сумішей від розрахованих за правилом адитивності. Розроблено математичні моделі визначення даних властивостей сумішей різного складу з урахуванням групового складу вихідних компонентів. Встановлено, що для сумішей, які містять компоненти з великим вмістом алканів та малим вмістом аренів характерні екстремальні відхилення густини в бік максимуму та кінематичної в’язкості в бік мінімуму. Проведено перевірку створених моделей на адекватність та порівняння із існуючими методами опису фізико-хімічних властивостей нафти. Запропоновано підхід до створення оптимальних, із технологічної точки зору, рецептур компаундування нафти різних типів.
dc.description.abstractThe deviation of density and viscosity values of oil mixtures from those calculated according to the additivity rule has been examined. Mathematical models have been developed for determining the properties of mixtures with different compositions taking into account the group composition of the source components. Mixtures containing components with a high content of alkanes and a low content of arenes have been found to be characterized by extreme deviations of density towards the maximum and kinematic viscosity towards the minimum. The created models were validated and compared with existing methods of describing the oil physicochemical properties. An approach to the creation of optimal from a technological point of view formulation for compounding oil of different types is proposed.
dc.format.extent469-474
dc.format.pages6
dc.identifier.citationSimulation of Change in Density and Viscosity of Crude Oil When Mixing / Konstantin Zamikula, Olena Tertyshna, Oleg Tertyshny, Petro Topilnytskyy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 469–474.
dc.identifier.citationenSimulation of Change in Density and Viscosity of Crude Oil When Mixing / Konstantin Zamikula, Olena Tertyshna, Oleg Tertyshny, Petro Topilnytskyy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 469–474.
dc.identifier.doidoi.org/10.23939/chcht16.03.469
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60994
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (16), 2022
dc.relation.references[1] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15 (3), 423-431. https://doi.org/10.23939/chcht15.03.423
dc.relation.references[2] Tertyshna, O.; Zamikula, K.; Tertyshny, O.; Zinchenko, O.; Topilnytskyy, P. Phase Equilibrium of Petroleum Dispersion Systems in Terms of Thermodynamics and Kinetics. Chem. Chem. Technol. 2021, 15 (1), 132-141. https://doi.org/10.23939/chcht15.01.132
dc.relation.references[3] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14 (3), 412-419. https://doi.org/10.23939/chcht14.03.412
dc.relation.references[4] Tertyshna, O.; Martynenko, V.; Zamikula, K.; Topilnytskyy, P.; Holych Y. Forming of Crude Oil Mixtures with Increased Yield of Target Fractions. Chem. Chem. Technol. 2017, 11 (3), 383-386. https://doi.org/10.23939/chcht11.03.383
dc.relation.references[5] Centeno, G.; Sánchez-Reyna, G.; Ancheyta, J.; Muñoz, A.D.; Cardona N. Testing Various Mixing Rules for Calculation of Viscosity of Petroleum Blends. Fuel 2011, 90, 3561–3570. https://doi.org/10.1016/j.fuel.2011.02.028
dc.relation.references[6] Arrhenius, S.A. Uber die Dissociation der in Wasser gelosten Stoffe. Z. Phys. Chem. 1887, 1, 631-648. https://doi.org/10.1515/zpch-1887-0164
dc.relation.references[7] Bratychak, M.; Zemke, V.; Chopyk, N. The Features and Tribological Behaviour of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15 (4), 486-492. https://doi.org/10.23939/chcht15.04.486
dc.relation.references[8] Bingham, E.C. The Viscosity of Binary Mixtures. J. Phys. Chem. 1914, 18, 157-165. https://doi.org/10.1021/j150146a005
dc.relation.references[9] Kendall, J.; Monroe, K. The Viscosity of Liquids II. The Viscosity-Composition Curve for Ideal Liquid Mixtures. Am. Chem. J. 1917, 9, 1787-1802. https://doi.org/10.1021/ja02254a001
dc.relation.references[10] Miadonye, A.; Latour, N.; Puttagunta, V.R. A Correlation for Viscosity and Solvent Mass Fraction of Bitumen-Diluent Mixtures. Pet. Sci. Technol. 2000, 18, 1-14. https://doi.org/10.1080/10916460008949828
dc.relation.references[11] Ishikawa, T. The Viscosity of Ideal Solutions. Bull. Chem. Soc. Japan 1958, 31, 791-796. https://doi.org/10.1246/bcsj.31.791
dc.relation.references[12] Mehrotra, A.K. Development of Mixing Rules for Predicting the Viscosity of Bitumen and its Fractions Blended with Toluene. Can. J. Chem. Eng. 1990, 68, 839-848. https://doi.org/10.1002/cjce.5450680515
dc.relation.references[13] Mehrotra, A.K. A Generalized Viscosity Equation for Pure Heavy Hydrocarbons. Ind. Eng. Chem. Res. 1991, 30, 420-427. https://doi.org/10.1021/ie00050a021
dc.relation.references[14] Baled, H.O.; Gamwo, I.K.; Enick, R.M.; McHugh, M.A. Viscosity Models for Pure Hydrocarbons at Extreme Conditions: A Review and Comparative Study. Fuel 2018, 218, 89-111 https://doi.org/10.1016/j.fuel.2018.01.002
dc.relation.references[15] Mago, A.L. Adequate Description of Heavy Oil Viscosities and a Method to Assess Optimal Steam Cyclic Periods for Thermal Reservoir Simulation. PhD thesis; A&D University of Texas, 2006.
dc.relation.references[16] Bratychak, M.M.; Hunka, V.M. Khimiia Nafty ta Gazu. Lviv: Vydavnytstvo Lvivskoi politekhniky, 2020.
dc.relation.references[17] Kravtsov, A.V.; Svarovskaya, N.A.; Marasanova, I.V. Studies on the Behaviour of Liquid Hydrocarbon. React. Kinet. Cotol. Lett. 1995, 55 (1), 59-67.
dc.relation.references[18] Tertyshna, O.; Zamikula, K.; Tertyshnyi, O. Kompiuterna prohrama «Rozrakhuvannia hustyny ta viazkosti sumishevykh palyv z urakhuvanniam hrupovoho skladu». Ukraina svidotstvo 111554, zaiavl. 14.01.2022, reiestr. 02.02.2022.
dc.relation.references[19] Kononiuk, A.E. Osnovy Nauchnykh Issledovaniy (Obshchaia Teoriya Eksperimenta) K.3. Monohrafyia; Osvita Ukrainy, 2011.
dc.relation.references[20] Brown, L.J. General Blending Models for Mixture Experiments: Design and Analysis. PhD thesis; University of Manchester, 2014.
dc.relation.referencesen[1] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15 (3), 423-431. https://doi.org/10.23939/chcht15.03.423
dc.relation.referencesen[2] Tertyshna, O.; Zamikula, K.; Tertyshny, O.; Zinchenko, O.; Topilnytskyy, P. Phase Equilibrium of Petroleum Dispersion Systems in Terms of Thermodynamics and Kinetics. Chem. Chem. Technol. 2021, 15 (1), 132-141. https://doi.org/10.23939/chcht15.01.132
dc.relation.referencesen[3] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska, H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14 (3), 412-419. https://doi.org/10.23939/chcht14.03.412
dc.relation.referencesen[4] Tertyshna, O.; Martynenko, V.; Zamikula, K.; Topilnytskyy, P.; Holych Y. Forming of Crude Oil Mixtures with Increased Yield of Target Fractions. Chem. Chem. Technol. 2017, 11 (3), 383-386. https://doi.org/10.23939/chcht11.03.383
dc.relation.referencesen[5] Centeno, G.; Sánchez-Reyna, G.; Ancheyta, J.; Muñoz, A.D.; Cardona N. Testing Various Mixing Rules for Calculation of Viscosity of Petroleum Blends. Fuel 2011, 90, 3561–3570. https://doi.org/10.1016/j.fuel.2011.02.028
dc.relation.referencesen[6] Arrhenius, S.A. Uber die Dissociation der in Wasser gelosten Stoffe. Z. Phys. Chem. 1887, 1, 631-648. https://doi.org/10.1515/zpch-1887-0164
dc.relation.referencesen[7] Bratychak, M.; Zemke, V.; Chopyk, N. The Features and Tribological Behaviour of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15 (4), 486-492. https://doi.org/10.23939/chcht15.04.486
dc.relation.referencesen[8] Bingham, E.C. The Viscosity of Binary Mixtures. J. Phys. Chem. 1914, 18, 157-165. https://doi.org/10.1021/j150146a005
dc.relation.referencesen[9] Kendall, J.; Monroe, K. The Viscosity of Liquids II. The Viscosity-Composition Curve for Ideal Liquid Mixtures. Am. Chem. J. 1917, 9, 1787-1802. https://doi.org/10.1021/ja02254a001
dc.relation.referencesen[10] Miadonye, A.; Latour, N.; Puttagunta, V.R. A Correlation for Viscosity and Solvent Mass Fraction of Bitumen-Diluent Mixtures. Pet. Sci. Technol. 2000, 18, 1-14. https://doi.org/10.1080/10916460008949828
dc.relation.referencesen[11] Ishikawa, T. The Viscosity of Ideal Solutions. Bull. Chem. Soc. Japan 1958, 31, 791-796. https://doi.org/10.1246/bcsj.31.791
dc.relation.referencesen[12] Mehrotra, A.K. Development of Mixing Rules for Predicting the Viscosity of Bitumen and its Fractions Blended with Toluene. Can. J. Chem. Eng. 1990, 68, 839-848. https://doi.org/10.1002/cjce.5450680515
dc.relation.referencesen[13] Mehrotra, A.K. A Generalized Viscosity Equation for Pure Heavy Hydrocarbons. Ind. Eng. Chem. Res. 1991, 30, 420-427. https://doi.org/10.1021/ie00050a021
dc.relation.referencesen[14] Baled, H.O.; Gamwo, I.K.; Enick, R.M.; McHugh, M.A. Viscosity Models for Pure Hydrocarbons at Extreme Conditions: A Review and Comparative Study. Fuel 2018, 218, 89-111 https://doi.org/10.1016/j.fuel.2018.01.002
dc.relation.referencesen[15] Mago, A.L. Adequate Description of Heavy Oil Viscosities and a Method to Assess Optimal Steam Cyclic Periods for Thermal Reservoir Simulation. PhD thesis; A&D University of Texas, 2006.
dc.relation.referencesen[16] Bratychak, M.M.; Hunka, V.M. Khimiia Nafty ta Gazu. Lviv: Vydavnytstvo Lvivskoi politekhniky, 2020.
dc.relation.referencesen[17] Kravtsov, A.V.; Svarovskaya, N.A.; Marasanova, I.V. Studies on the Behaviour of Liquid Hydrocarbon. React. Kinet. Cotol. Lett. 1995, 55 (1), 59-67.
dc.relation.referencesen[18] Tertyshna, O.; Zamikula, K.; Tertyshnyi, O. Kompiuterna prohrama "Rozrakhuvannia hustyny ta viazkosti sumishevykh palyv z urakhuvanniam hrupovoho skladu". Ukraina svidotstvo 111554, zaiavl. 14.01.2022, reiestr. 02.02.2022.
dc.relation.referencesen[19] Kononiuk, A.E. Osnovy Nauchnykh Issledovaniy (Obshchaia Teoriya Eksperimenta) K.3. Monohrafyia; Osvita Ukrainy, 2011.
dc.relation.referencesen[20] Brown, L.J. General Blending Models for Mixture Experiments: Design and Analysis. PhD thesis; University of Manchester, 2014.
dc.relation.urihttps://doi.org/10.23939/chcht15.03.423
dc.relation.urihttps://doi.org/10.23939/chcht15.01.132
dc.relation.urihttps://doi.org/10.23939/chcht14.03.412
dc.relation.urihttps://doi.org/10.23939/chcht11.03.383
dc.relation.urihttps://doi.org/10.1016/j.fuel.2011.02.028
dc.relation.urihttps://doi.org/10.1515/zpch-1887-0164
dc.relation.urihttps://doi.org/10.23939/chcht15.04.486
dc.relation.urihttps://doi.org/10.1021/j150146a005
dc.relation.urihttps://doi.org/10.1021/ja02254a001
dc.relation.urihttps://doi.org/10.1080/10916460008949828
dc.relation.urihttps://doi.org/10.1246/bcsj.31.791
dc.relation.urihttps://doi.org/10.1002/cjce.5450680515
dc.relation.urihttps://doi.org/10.1021/ie00050a021
dc.relation.urihttps://doi.org/10.1016/j.fuel.2018.01.002
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Zamikula K., Tertyshna O., Tertyshny O., Topilnytskyy P., 2022
dc.subjectгустина
dc.subjectкінематична в’язкість
dc.subjectзмішування нафти
dc.subjectматематична модель
dc.subjectгруповий склад
dc.subjectdensity
dc.subjectkinematic viscosity
dc.subjectoil mixing
dc.subjectmathematical model
dc.subjectgroup composition
dc.titleSimulation of Change in Density and Viscosity of Crude Oil When Mixing
dc.title.alternativeМоделювання зміни густини та в’язкості нафтової сировини при змішуванні
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n3_Zamikula_K-Simulation_of_Change_in_469-474.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n3_Zamikula_K-Simulation_of_Change_in_469-474__COVER.png
Size:
522.95 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: