Compositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite

dc.citation.epage607
dc.citation.issue3
dc.citation.spage601
dc.contributor.affiliationJSC "Institute of chemical sciences after A. B. Bekturov"
dc.contributor.authorUmerzakova, Maira
dc.contributor.authorJumadilov, Talkybek
dc.contributor.authorKondaurov, Ruslan
dc.contributor.authorSarieva, Rakhima
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:51:58Z
dc.date.available2024-02-12T08:51:58Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі наведено результати досліджень з отримання та вивчення властивостей композиційних матеріалів на основі композицій арилаліциклічного кополііміду й алкільованого монтморилоніту (АММ), модифікованого полі-етиленгліколем, для підвищення спорідненості природного мінералу до полімерної матриці. Встановлено, що підвищення сумісності компонентів композиції відбувається завдяки додаванню до розчину кополііміду попередньо приготованої суміші алкільованого монтморилоніту в 5 %- та 2 %-ному розчині поліетиленгліколю в метилпіролідоні. На основі ІЧ-спектроскопії отриманих сумішей і літературних даних зроблено припущення щодо певного механізм формування композиції. Визначено сполуки кополіімідних композицій з модифікованим монтморилонітом. Встановлено, що загальний вміст алкільованого монтморилоніту та поліетиленгліколю не повинен перевищувати 12,5 мас. % у разі кополііміду – 1 мас. %, а у випадку кополііміду-2 – 4 мас. %. Знайдено оптимальні умови отримання на їхній основі прозорих композитних плівок з гладкою поверхнею методом механічного змішування. Визначено їхні основні термодеструктивні та механічні властивості. Показано, що матеріали мають високі термодеструктивні та міцнісні властивості: температура початку розкладу становить 409-421°С, а міцність на розрив лежить у межах 140-168 МПа. Найкращі термодеструктивні властивості та міцність на розрив мають плівки, отримані з потрійних сумішей вихідного складу 87,5 SPI1 + 7 PEG + 5,5 AMM та 97 SPI2 + 2 PEG + 1 AMM, при цьому еластичність матеріалу залишилася на прийнятному рівні.
dc.description.abstractThe results of studies on the preparation and study of the properties of composite materials based on compositions of arylalicyclic copolyimide and alkylated montmorillonite (AMM) modified with polyethylene glycol to increase the affinity of a natural mineral to polymer matrix are presented in the work. It was found that an increase in the compatibility of composition’s components is due to the addition to copolyimide solution of previously prepared mixture of alkylated montmorillonite in 5 % and 2 % polyethylene glycol solution in methylpyrrolidone. Based on IR-spectroscopy of the obtained mixtures and literature data, an assumption about specified composition mechanism was made. Compounds of copolyimide compositions with modified montmorillonite were determined. Found that the total content of alkylated montmorillonite and polyethylene glycol should not exceed 12.5 wt. % in the case of copolyimide – 1 wt. % and in case of copolyimide-2 – 4 wt. %. The optimal conditions for obtaining on their basis transparent composite films with a smooth surface by a mechanical mixing method are found. Their basic thermodestructive and mechanical properties were determined. It was shown that the materials have high thermodestructive and strength properties: the temperature of decomposition onset is 409-421°C, the tensile strength is in the range of 140-168 MPa. The best thermodestructive properties and tensile strength are possessed by films obtained from ternary mixtures of the initial composition 87.5 SPI1 + 7 PEG + 5.5 AMM and 97 SPI2 + 2 PEG + 1 AMM, while the elasticity of the material remained at an acceptable level.
dc.format.extent601-607
dc.format.pages7
dc.identifier.citationCompositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite / Maira Umerzakova, Talkybek Jumadilov, Ruslan Kondaurov, Rakhima Sarieva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 601–607.
dc.identifier.citationenCompositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite / Maira Umerzakova, Talkybek Jumadilov, Ruslan Kondaurov, Rakhima Sarieva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 601–607.
dc.identifier.doidoi.org/10.23939/chcht17.03.601
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61265
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/Montmorillonite Nanocomposites with Improved Thermal Properties: Part I. Factors Influencing Thermal Stability and Mechanisms of Thermal Stability Improvement. Thermochim. Acta 2007, 453, 75-96. https://doi.org/10.1016/j.tca.2006.11.002
dc.relation.references[2] Jumadilov, T.; Yskak, L.; Imangazy, A.; Suberlyak, O. Ion Exchange Dynamics in Cerium Nitrate Solution Regulated by Re-motely Activated Industrial Ion Exchangers. Materials 2021, 14, 3491. https://doi.org/10.3390/ma14133491
dc.relation.references[3] Shin, H.I.,; Chang, J.-H. Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers 2020, 12, 135. https://doi.org/10.3390/polym12010135
dc.relation.references[4] Imangazy, A.; Smagulova, G.; Kaidar, B.; Mansurov, Z.; Kerimkulova, A.; Umbetkaliev, K.; Zakhidov, A.; Vorobyev, P.; Jumadilov, T. Compositional Fibers Based on Coal Tar Mesophase Pitch Obtained by Electrospinning Method. Chem. Chem. Technol. 2021, 15, 403-407. https://doi.org/10.23939/chcht15.03.403
dc.relation.references[5] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312-317. https://doi.org/10.23939/chcht14.03.312
dc.relation.references[6] Nesterivska, S.; Makogon, V.; Yatsyshyn, M.; Saldan, I.; Reshetnyak, O.; German, N.; Stadnyk, Y. Properties of the Compo-sites Made of Glauconite and Polyaniline in Aqueous Solutions of Phosphoric Acid. Chem. Chem. Technol. 2020, 14, 487-495. https://doi.org/10.23939/chcht14.04.487
dc.relation.references[7] Bratychak, M.; Astakhova, O.; Shyshchak, O. Epoxy Composites Filled with Natural Calcium Carbonate. 3. Epoxy Composites Obtained in the Presence of Monocarboxylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 504-513. https://doi.org/10.23939/chcht14.04.504
dc.relation.references[8] Sroog, C.E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694. https://doi.org/10.1016/0079-6700(91)90010-i
dc.relation.references[9] Tsai, C.-L.; Yen, H.-J.; Liou, G.-S. Highly Transparent Po-lyimide Hybrids for Optoelectronic Applications. React. Funct. Polym. 2016, 108, 2–30. https://doi.org/10.1016/j.reactfunctpolym.2016.04.021
dc.relation.references[10] Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide-Based Materials for Space Appli-cations. Adv. Mater. 2019, 31, 1807738. https://doi.org/10.1002/adma.201807738
dc.relation.references[11] Umerzakova, M.B.; Donenov, B.K.; Kainarbaeva, Z.N.; Kartay, A.M.; Sarieva, R.B. Pilot Production of Spirulina Biomass and Obtaining of Novel Biodegradable Surfactants. Eurasian Che-mico-Technological Journal 2020, 22, 219-226.
dc.relation.references[12] Matsumoto, T.; Ishiguro, E.; Nakagama, S.J. Alicyclic Polyi-mides Derived from Alkanone bis-Spironorbornanetetracarboxylic Dianhydrides. J. Photopolym. Sci. Technol. 2013, 26, 361-365.
dc.relation.references[13] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B.; Yespen-betov, A.S. Kompozytsii na osnove alitsyklicheskoho sopoliimida i alkilirovannoho montmorillonita. Khimicheskii zhurnal Kazakhsta-na 2020, 2, 198.
dc.relation.references[14] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B. Izuchenie svoistv kompozytsii na ocnove sopoliimidov s dobavkami alkiliro-vannoho montmorillonita. Khimicheskii zhurnal Kazakhstana 2020, 3, 107.
dc.relation.references[15] Umerzakova, M.; Sarieva, R.; Yespenbetov, A.; Kainarbaye-va, Z. Composition Based on Alicyclic Copolymide and Polyethy-lene Terephthalate. Chemical Bulletin of Kazakh National Universi-ty 2022, 104, 12-21. https://doi.org/10.15328/cb1248
dc.relation.references[16] Cheng, C.-F.; Cheng, H.-H.; Cheng, P.-W.; Lee, Y.-J. Effect of Reactive Channel Functional Groups and Nanoporosity of Na-noscale Mesoporous Silica on Properties of Polyimide Composite. Macromolecules 2006, 39, 7583-7590. https://doi.org/10.1021/ma060990u
dc.relation.references[17] Zhubanov, B.A.; Umerzakova M.B.; Kravtsova, V.D.; Iska-kov, P.M.; Boiko, H.I.; Mukhamedova, R.F.; Almabekov, О.А.; Zainullina, A.Sh.; Sarieva, R.B. Kataliticheskii sintez alitsykli-cheskikh poliimidov. Khimicheskii zhurnal Kazakhstana 2018, 4, 304.
dc.relation.references[18] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B., Kainar-bayeva Zh.N. Kompozitsionnye materialy na osnove arilalitsikli-cheskoho sopoliimida s dobavkami polietilenhlikolya. Khimicheskii zhurnal Kazakhstana 2018, 2, 165.
dc.relation.references[19] Bekturov, E.; Tolendina, A.; Shaikhutdinov, Y.; Dzhumadi-lov, T. Complexation of poly(Ethylene glycol) with Some Salts of Alkali-Earth Metals. Polym. Adv. Technol. 1993, 4, 564-566. https://doi.org/10.1002/pat.1993.220040907
dc.relation.references[20] Al-Sahly, M.; El-Hamshary, H.; Al-Deyab, S.S. Impact of Chain Length on Release Behavior of Modified Polyethylene Gly-col Intercalated-Montmorillonite Nanocomposite. J. Nanosci. Nano-technol. 2020, 20, 5546-5554. https://doi.org/10.1166/jnn.2020.17860
dc.relation.references[21] Satoh, A.; Morikawa, A. Synthesis and Characterization of Aromatic Polyimides containing Trifluoromethyl Group from Bis(4-amino-2-trifluoromethylphenyl)ether and Aromatic Tetracarboxylic Dianhydrides. High Perform. Polym. 2010, 22, 412. https://doi.org/10.1177/0954008309336324
dc.relation.references[22] Kamunur, K.; Jandosov, J.; Abdulkarimova, R.; Hori, K.; Yelemessova, Zh.K. Combustion Study of Different Transitional Metal Oxide based on AN/MgAl Composites Gas Generators. Eurasian Chemico-Technological Journal 2017, 19, 341-346. https://doi.org/10.18321/ectj682
dc.relation.referencesen[1] Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/Montmorillonite Nanocomposites with Improved Thermal Properties: Part I. Factors Influencing Thermal Stability and Mechanisms of Thermal Stability Improvement. Thermochim. Acta 2007, 453, 75-96. https://doi.org/10.1016/j.tca.2006.11.002
dc.relation.referencesen[2] Jumadilov, T.; Yskak, L.; Imangazy, A.; Suberlyak, O. Ion Exchange Dynamics in Cerium Nitrate Solution Regulated by Re-motely Activated Industrial Ion Exchangers. Materials 2021, 14, 3491. https://doi.org/10.3390/ma14133491
dc.relation.referencesen[3] Shin, H.I.,; Chang, J.-H. Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers 2020, 12, 135. https://doi.org/10.3390/polym12010135
dc.relation.referencesen[4] Imangazy, A.; Smagulova, G.; Kaidar, B.; Mansurov, Z.; Kerimkulova, A.; Umbetkaliev, K.; Zakhidov, A.; Vorobyev, P.; Jumadilov, T. Compositional Fibers Based on Coal Tar Mesophase Pitch Obtained by Electrospinning Method. Chem. Chem. Technol. 2021, 15, 403-407. https://doi.org/10.23939/chcht15.03.403
dc.relation.referencesen[5] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312-317. https://doi.org/10.23939/chcht14.03.312
dc.relation.referencesen[6] Nesterivska, S.; Makogon, V.; Yatsyshyn, M.; Saldan, I.; Reshetnyak, O.; German, N.; Stadnyk, Y. Properties of the Compo-sites Made of Glauconite and Polyaniline in Aqueous Solutions of Phosphoric Acid. Chem. Chem. Technol. 2020, 14, 487-495. https://doi.org/10.23939/chcht14.04.487
dc.relation.referencesen[7] Bratychak, M.; Astakhova, O.; Shyshchak, O. Epoxy Composites Filled with Natural Calcium Carbonate. 3. Epoxy Composites Obtained in the Presence of Monocarboxylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 504-513. https://doi.org/10.23939/chcht14.04.504
dc.relation.referencesen[8] Sroog, C.E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694. https://doi.org/10.1016/0079-6700(91)90010-i
dc.relation.referencesen[9] Tsai, C.-L.; Yen, H.-J.; Liou, G.-S. Highly Transparent Po-lyimide Hybrids for Optoelectronic Applications. React. Funct. Polym. 2016, 108, 2–30. https://doi.org/10.1016/j.reactfunctpolym.2016.04.021
dc.relation.referencesen[10] Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide-Based Materials for Space Appli-cations. Adv. Mater. 2019, 31, 1807738. https://doi.org/10.1002/adma.201807738
dc.relation.referencesen[11] Umerzakova, M.B.; Donenov, B.K.; Kainarbaeva, Z.N.; Kartay, A.M.; Sarieva, R.B. Pilot Production of Spirulina Biomass and Obtaining of Novel Biodegradable Surfactants. Eurasian Che-mico-Technological Journal 2020, 22, 219-226.
dc.relation.referencesen[12] Matsumoto, T.; Ishiguro, E.; Nakagama, S.J. Alicyclic Polyi-mides Derived from Alkanone bis-Spironorbornanetetracarboxylic Dianhydrides. J. Photopolym. Sci. Technol. 2013, 26, 361-365.
dc.relation.referencesen[13] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B.; Yespen-betov, A.S. Kompozytsii na osnove alitsyklicheskoho sopoliimida i alkilirovannoho montmorillonita. Khimicheskii zhurnal Kazakhsta-na 2020, 2, 198.
dc.relation.referencesen[14] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B. Izuchenie svoistv kompozytsii na ocnove sopoliimidov s dobavkami alkiliro-vannoho montmorillonita. Khimicheskii zhurnal Kazakhstana 2020, 3, 107.
dc.relation.referencesen[15] Umerzakova, M.; Sarieva, R.; Yespenbetov, A.; Kainarbaye-va, Z. Composition Based on Alicyclic Copolymide and Polyethy-lene Terephthalate. Chemical Bulletin of Kazakh National Universi-ty 2022, 104, 12-21. https://doi.org/10.15328/cb1248
dc.relation.referencesen[16] Cheng, C.-F.; Cheng, H.-H.; Cheng, P.-W.; Lee, Y.-J. Effect of Reactive Channel Functional Groups and Nanoporosity of Na-noscale Mesoporous Silica on Properties of Polyimide Composite. Macromolecules 2006, 39, 7583-7590. https://doi.org/10.1021/ma060990u
dc.relation.referencesen[17] Zhubanov, B.A.; Umerzakova M.B.; Kravtsova, V.D.; Iska-kov, P.M.; Boiko, H.I.; Mukhamedova, R.F.; Almabekov, O.A.; Zainullina, A.Sh.; Sarieva, R.B. Kataliticheskii sintez alitsykli-cheskikh poliimidov. Khimicheskii zhurnal Kazakhstana 2018, 4, 304.
dc.relation.referencesen[18] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B., Kainar-bayeva Zh.N. Kompozitsionnye materialy na osnove arilalitsikli-cheskoho sopoliimida s dobavkami polietilenhlikolya. Khimicheskii zhurnal Kazakhstana 2018, 2, 165.
dc.relation.referencesen[19] Bekturov, E.; Tolendina, A.; Shaikhutdinov, Y.; Dzhumadi-lov, T. Complexation of poly(Ethylene glycol) with Some Salts of Alkali-Earth Metals. Polym. Adv. Technol. 1993, 4, 564-566. https://doi.org/10.1002/pat.1993.220040907
dc.relation.referencesen[20] Al-Sahly, M.; El-Hamshary, H.; Al-Deyab, S.S. Impact of Chain Length on Release Behavior of Modified Polyethylene Gly-col Intercalated-Montmorillonite Nanocomposite. J. Nanosci. Nano-technol. 2020, 20, 5546-5554. https://doi.org/10.1166/jnn.2020.17860
dc.relation.referencesen[21] Satoh, A.; Morikawa, A. Synthesis and Characterization of Aromatic Polyimides containing Trifluoromethyl Group from Bis(4-amino-2-trifluoromethylphenyl)ether and Aromatic Tetracarboxylic Dianhydrides. High Perform. Polym. 2010, 22, 412. https://doi.org/10.1177/0954008309336324
dc.relation.referencesen[22] Kamunur, K.; Jandosov, J.; Abdulkarimova, R.; Hori, K.; Yelemessova, Zh.K. Combustion Study of Different Transitional Metal Oxide based on AN/MgAl Composites Gas Generators. Eurasian Chemico-Technological Journal 2017, 19, 341-346. https://doi.org/10.18321/ectj682
dc.relation.urihttps://doi.org/10.1016/j.tca.2006.11.002
dc.relation.urihttps://doi.org/10.3390/ma14133491
dc.relation.urihttps://doi.org/10.3390/polym12010135
dc.relation.urihttps://doi.org/10.23939/chcht15.03.403
dc.relation.urihttps://doi.org/10.23939/chcht14.03.312
dc.relation.urihttps://doi.org/10.23939/chcht14.04.487
dc.relation.urihttps://doi.org/10.23939/chcht14.04.504
dc.relation.urihttps://doi.org/10.1016/0079-6700(91)90010-i
dc.relation.urihttps://doi.org/10.1016/j.reactfunctpolym.2016.04.021
dc.relation.urihttps://doi.org/10.1002/adma.201807738
dc.relation.urihttps://doi.org/10.15328/cb1248
dc.relation.urihttps://doi.org/10.1021/ma060990u
dc.relation.urihttps://doi.org/10.1002/pat.1993.220040907
dc.relation.urihttps://doi.org/10.1166/jnn.2020.17860
dc.relation.urihttps://doi.org/10.1177/0954008309336324
dc.relation.urihttps://doi.org/10.18321/ectj682
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Umerzakova M., Jumadilov T., Kondaurov R., Sarieva R., 2023
dc.subjectарилаліциклічний кополіімід
dc.subjectполіетиленгліколь
dc.subjectалкільований монтморилоніт
dc.subjectкомпозиція
dc.subjectмеханізм
dc.subjectплівка
dc.subjectвластивості
dc.subjectarylalicyclic copolyimide
dc.subjectpolyethylene glycol
dc.subjectalkylated montmorillonite
dc.subjectcomposition
dc.subjectmechanism
dc.subjectfilm
dc.subjectproperties
dc.titleCompositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite
dc.title.alternativeКомпозиції арилаліциклічного кополііміду з алкільованим монтморилонітом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Umerzakova_M-Compositions_of_Arylalicyclic_601-607.pdf
Size:
367.59 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Umerzakova_M-Compositions_of_Arylalicyclic_601-607__COVER.png
Size:
569.34 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: