The investigation of the porous structure of carbon sorbents based on β-cyclodextrin for use in environmental protection technologies

dc.citation.epage116
dc.citation.issue2
dc.citation.spage108
dc.contributor.affiliationCzestochowa University of Technology
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorBordun, Ihor
dc.contributor.authorMalovanyy, Myroslav
dc.contributor.authorSzymczykiewicz, Ewelina
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-08T08:43:48Z
dc.date.available2024-02-08T08:43:48Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractIn this paper, the porous structure of three types of β-cyclodextrin (β-CD) carbons was synthesized and investigated. The first carbon was obtained from pure β-CD, the second carbon was synthesized from β-CD using the KOH activator, and the third carbon was synthesized from pure β-CD with additional ultrasonic treatment in the non-cavitation mode at the last stage. It was found that the carbon from pure β-CD has a micromesoporous structure with a small specific surface area (~35 m2/g). Activation with KOH causes a significant increase in the specific surface area (~654 m2/g) due to an increase in the content of micropores with an average size of 1,25 nm. The ultrasonic treatment causes mechanical grinding and oxidation of the carbon surface. It has been shown that such treatment increases the mesopore content and significantly changes the mesopore size distribution. It has been established that the oxidation of the β-CD carbon surface after ultrasonic treatment causes an increase in its hydrophilicity of up to 83,1%. The increase in hydrophilicity will allow more efficient use of synthesized carbon and composites based on it in solving the problems of environmental safety in water environments.
dc.format.extent108-116
dc.format.pages9
dc.identifier.citationBordun I. The investigation of the porous structure of carbon sorbents based on β-cyclodextrin for use in environmental protection technologies / Ihor Bordun, Myroslav Malovanyy, Ewelina Szymczykiewicz // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 108–116.
dc.identifier.citationenBordun I. The investigation of the porous structure of carbon sorbents based on β-cyclodextrin for use in environmental protection technologies / Ihor Bordun, Myroslav Malovanyy, Ewelina Szymczykiewicz // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 2. — P. 108–116.
dc.identifier.doidoi.org/10.23939/ep2023.02.108
dc.identifier.issn2414-5955
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61166
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 2 (8), 2023
dc.relation.referencesAlmeida, L., Felzenszwalb, I., Marques, M., & Cruz, C. (2020). Nanotechnology activities: Environmental Protection Regulatory Issues Data. Heliyon, 6(10). doi: https://doi.org/10.1016/j.heliyon.2020.e05303
dc.relation.referencesAriga, K. (2021). Nanoarchitectonics can save our planet: Nanoarchitectonics for energy and environment. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), 2243–2244. doi: https://doi.org/10.1007/s10904-021-02002-4
dc.relation.referencesAriga, K., Jackman, J. A., Cho, N. J., Hsu, S., Shrestha, L. K., Mori, T., & Takeya, J. (2018). Nanoarchitectonic‐based material platforms for environmental and bioprocessing applications. The Chemical Record, 19(9), 1891–1912. doi: https://doi.org/10.1002/tcr.201800103
dc.relation.referencesAriga, K., Li, M., Richards, G. J., & Hill, J. P. (2011). Nanoarchitectonics: A conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. Journal of Nanoscience and Nanotechnology, 11(1), 1–13. doi: https://doi.org/10.1166/jnn.2011.3839
dc.relation.referencesBalaban, O. V., Venhryn, B. Ya., Grygorchak, I. I., Mudry, S. I., Kulyk, Yu. O., Rachiy, B. I., & Lisovskiy, R. P. (2014) Size Effects at Ultrasonic Treatment of Nanoporous Carbon and Improved characteristics of Supercapacitors on Its Base. Nanosystems, Nanomaterials, Nanotechnologies, 12(2), 225–238.
dc.relation.referencesBaranov, A. P., Shtejnberg, G. V., & Bagockij, V. S. (1971) Issledovanie gidrofobizirovannogo aktivnogo sloja gazodiffuzionnogo jelektroda. Elektrohimija, 7(3), 387–390.
dc.relation.referencesBirkett, G. R., & Do, D. D. (2006). The adsorption of water in finite carbon pores. Molecular Physics, 104(4), 623–637. doi: https://doi.org/10.1080/00268970500500583
dc.relation.referencesBordun, І. M., Korec'kij, R. M., Ptashnyk, V. V., & Sadova, M. M. (2014) Zmіna granulometrichnogo skladu ta gіdrofіl'nostі aktivovanogo vugіllja pіslja UZ opromіnennja u dokavіtacіjnomu rezhimі. Fіzichna іnzhenerіja poverhnі, 12(2), 246–252.
dc.relation.referencesBruns, C. J. (2019). Exploring and exploiting the symmetry-breaking effect of cyclodextrins in mechanomolecules. Symmetry, 11(10), 1249. doi: https://doi.org/10.3390/sym11101249
dc.relation.referencesChabecki, P. (2022). Quantum energy storage in dielectric porous clathrates. Energies, 15(16), 6069. https://doi.org/10.3390/en15166069
dc.relation.referencesChen, G., & Jiang, M. (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews, 40(5), 2254. doi: https://doi.org/10.1039/c0cs00153h
dc.relation.referencesGoncharuk, V. V., Malyarenko, V. V., & Yaremenko, V. A. (2004). O mehanizme vozdejstvija ul'trazvuka na vodnye sistemy. Himija i tehnologija vody, 26(3), 275–284.
dc.relation.referencesGrygorchak, I., Shvets, R., Kityk, I. V., Kityk, A. V., Wielgosz, R., Hryhorchak, O., & Shchur, I. (2019). Photosensitive carbon supercapacitor: Cavitated nanoporous carbon from iodine doped β–cyclodextryn. Physica E: Low-Dimensional Systems and Nanostructures, 108, 164–168. doi: https://doi.org/10.1016/j.physe.2018.12.009
dc.relation.referencesGrygorchak, I., Borysyuk, A., Shvets, R., Matulka, D., & Hryhorchak, O. (2018) Supramolecular design of carbons for energy storage with the Reactanse-sensor functional hybridity. East European Journal of Physics, 4, 48-57. doi: https://doi.org/10.26565/2312-4334-2018-4-06 [in Ukrainian]
dc.relation.referencesGu, W., & Yushin, G. (2013). Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424–473. doi: https://doi.org/10.1002/wene.102
dc.relation.referencesHe, Y., Fu, P., Shen, X., & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron, 39(5), 495–516. doi: https://doi.org/10.1016/j.micron.2007.06.017
dc.relation.referencesHu, M., Reboul, J., Furukawa, S., Torad, N. L., Ji, Q., Srinivasu, P., Ariga, K., Kitagawa, S., & Yamauchi, Y. (2012). Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. Journal of the American Chemical Society, 134(6), 2864–2867. doi: https://doi.org/10.1021/ja208940u
dc.relation.referencesHu, Q.-D., Tang, G.-P., & Chu, P. K. (2014). Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: From design to applications. Accounts of Chemical Research, 47(7), 2017–2025. doi: https://doi.org/10.1021/ar500055s
dc.relation.referencesJeong, J. H., Kim, Y. A., & Kim, B.-H. (2020). Electrospun polyacrylonitrile/cyclodextrin-derived Hierarchical Porous Carbon Nanofiber/MnO2 Composites for supercapacitor applications. Carbon, 164, 296–304. doi: https://doi.org/10.1016/j.carbon.2020.03.052
dc.relation.referencesLarcher, D., & Tarascon, J.-M. (2014). Towards greener and more sustainable batteries for Electrical Energy Storage. Nature Chemistry, 7(1), 19–29. doi: https://doi.org/10.1038/nchem.2085
dc.relation.referencesLillo-Ródenas, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and Koh. Carbon, 41(2), 267–275. doi: https://doi.org/10.1016/s0008-6223(02)00279-8
dc.relation.referencesMahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPS) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi: https://doi.org/10.1016/j.ultsonch.2009.09.005
dc.relation.referencesMaksymych, V., Klapchuk, M., Borysiuk, A., Kulyk, Y., Stadnyk, V., Bordun, I., Kohut, Z., & Ivashchyshyn, F. (2023). Hierarchical heterostructure built on the basis of SiO2 dielectric matrix and supramolecular complex β-cyclodextrin-ferrocene: Fabrication, physical properties and applications. Materials Research Bulletin, 163, 112220. doi: https://doi.org/10.1016/j.materresbull.2023.112220
dc.relation.referencesMane, G. P., Talapaneni, S. N., Anand, C., Varghese, S., Iwai, H., Ji, Q., Ariga, K., Mori, T., & Vinu, A. (2012). Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Advanced Functional Materials, 22(17), 3596–3604. doi: https://doi.org/10.1002/adfm.201200207
dc.relation.referencesPtashnyk, V., Bordun, I., Malovanyy, M., Chabecki, P., & Pieshkov, T. (2020). The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation. Applied Nanoscience, 10(12), 4891–4899. doi: https://doi.org/10.1007/s13204-020-01393-z
dc.relation.referencesRouquerol Françoise. (2014). Adsorption by powders and porous solids: Principles, methodology and applications. Academic press.
dc.relation.referencesShvets, R. Y., Grygorchak, I. I., Borysyuk, A. K., Shvachko, S. G., Kondyr, A. I., Baluk, V. I., Kurepa, A. S., & Rachiy, B. I. (2014). New nanoporous biocarbons with Iron and silicon impurities: Synthesis, properties, and application to supercapacitors. Physics of the Solid State, 56(10), 2021–2027. doi: https://doi.org/10.1134/s1063783414100266
dc.relation.referencesSupramolecular design of carbons for energy storage with the Reactanse-sensor functional hybridity. (2018). East European Journal of Physics, (4). doi: https://doi.org/10.26565/2312-4334-2018-4-06
dc.relation.referencesThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 87(9-10), 1051–1069. doi: https://doi.org/10.1515/pac-2014-1117
dc.relation.referencesVance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780. doi: https://doi.org/10.3762/bjnano.6.181
dc.relation.referencesYamaguchi, J., & Itami, K. (2017). Toward an ideal synthesis of (bio)molecules through direct arene assembling reactions. Bulletin of the Chemical Society of Japan, 90(4), 367–383. https://doi.org/10.1246/bcsj.20160365
dc.relation.referencesYoshida, K.-ichi, Shimomura, T., Ito, K., & Hayakawa, R. (1999). Inclusion Complex Formation of Cyclodextrin and polyaniline. Langmuir, 15(4), 910–913. doi: https://doi.org/10.1021/la9812471
dc.relation.referencesZhang, Y. J., Huang, M. X., Zhang, Y. P., Armstrong, D. W., Breitbach, Z. S., & Ryoo, J. J. (2013). Use of sulfated cyclofructan 6 and sulfated cyclodextrins for the chiral separation of four basic pharmaceuticals by capillary electrophoresis. Chirality, 25(11), 735–742. doi: https://doi.org/10.1002/chir.22206
dc.relation.referencesZhong, Y., Chen, Z., Chen, G., Luo, Y., Zhang, L., Hua, B., Li, J., & Sun, Y. (2021). Β-cyclodextrin-assisted fabrication of hierarchically porous carbon sheet with O/N defects for electrical double-layer supercapacitor. Journal of Materials Science: Materials in Electronics, 32(11), 15046–15058. doi: https://doi.org/10.1007/s10854-021-06057-4
dc.relation.referencesenAlmeida, L., Felzenszwalb, I., Marques, M., & Cruz, C. (2020). Nanotechnology activities: Environmental Protection Regulatory Issues Data. Heliyon, 6(10). doi: https://doi.org/10.1016/j.heliyon.2020.e05303
dc.relation.referencesenAriga, K. (2021). Nanoarchitectonics can save our planet: Nanoarchitectonics for energy and environment. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), 2243–2244. doi: https://doi.org/10.1007/s10904-021-02002-4
dc.relation.referencesenAriga, K., Jackman, J. A., Cho, N. J., Hsu, S., Shrestha, L. K., Mori, T., & Takeya, J. (2018). Nanoarchitectonic‐based material platforms for environmental and bioprocessing applications. The Chemical Record, 19(9), 1891–1912. doi: https://doi.org/10.1002/tcr.201800103
dc.relation.referencesenAriga, K., Li, M., Richards, G. J., & Hill, J. P. (2011). Nanoarchitectonics: A conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. Journal of Nanoscience and Nanotechnology, 11(1), 1–13. doi: https://doi.org/10.1166/jnn.2011.3839
dc.relation.referencesenBalaban, O. V., Venhryn, B. Ya., Grygorchak, I. I., Mudry, S. I., Kulyk, Yu. O., Rachiy, B. I., & Lisovskiy, R. P. (2014) Size Effects at Ultrasonic Treatment of Nanoporous Carbon and Improved characteristics of Supercapacitors on Its Base. Nanosystems, Nanomaterials, Nanotechnologies, 12(2), 225–238.
dc.relation.referencesenBaranov, A. P., Shtejnberg, G. V., & Bagockij, V. S. (1971) Issledovanie gidrofobizirovannogo aktivnogo sloja gazodiffuzionnogo jelektroda. Elektrohimija, 7(3), 387–390.
dc.relation.referencesenBirkett, G. R., & Do, D. D. (2006). The adsorption of water in finite carbon pores. Molecular Physics, 104(4), 623–637. doi: https://doi.org/10.1080/00268970500500583
dc.relation.referencesenBordun, I. M., Korec'kij, R. M., Ptashnyk, V. V., & Sadova, M. M. (2014) Zmina granulometrichnogo skladu ta gidrofil'nosti aktivovanogo vugillja pislja UZ oprominennja u dokavitacijnomu rezhimi. Fizichna inzhenerija poverhni, 12(2), 246–252.
dc.relation.referencesenBruns, C. J. (2019). Exploring and exploiting the symmetry-breaking effect of cyclodextrins in mechanomolecules. Symmetry, 11(10), 1249. doi: https://doi.org/10.3390/sym11101249
dc.relation.referencesenChabecki, P. (2022). Quantum energy storage in dielectric porous clathrates. Energies, 15(16), 6069. https://doi.org/10.3390/en15166069
dc.relation.referencesenChen, G., & Jiang, M. (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews, 40(5), 2254. doi: https://doi.org/10.1039/P.0cs00153h
dc.relation.referencesenGoncharuk, V. V., Malyarenko, V. V., & Yaremenko, V. A. (2004). O mehanizme vozdejstvija ul'trazvuka na vodnye sistemy. Himija i tehnologija vody, 26(3), 275–284.
dc.relation.referencesenGrygorchak, I., Shvets, R., Kityk, I. V., Kityk, A. V., Wielgosz, R., Hryhorchak, O., & Shchur, I. (2019). Photosensitive carbon supercapacitor: Cavitated nanoporous carbon from iodine doped b–cyclodextryn. Physica E: Low-Dimensional Systems and Nanostructures, 108, 164–168. doi: https://doi.org/10.1016/j.physe.2018.12.009
dc.relation.referencesenGrygorchak, I., Borysyuk, A., Shvets, R., Matulka, D., & Hryhorchak, O. (2018) Supramolecular design of carbons for energy storage with the Reactanse-sensor functional hybridity. East European Journal of Physics, 4, 48-57. doi: https://doi.org/10.26565/2312-4334-2018-4-06 [in Ukrainian]
dc.relation.referencesenGu, W., & Yushin, G. (2013). Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdisciplinary Reviews: Energy and Environment, 3(5), 424–473. doi: https://doi.org/10.1002/wene.102
dc.relation.referencesenHe, Y., Fu, P., Shen, X., & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron, 39(5), 495–516. doi: https://doi.org/10.1016/j.micron.2007.06.017
dc.relation.referencesenHu, M., Reboul, J., Furukawa, S., Torad, N. L., Ji, Q., Srinivasu, P., Ariga, K., Kitagawa, S., & Yamauchi, Y. (2012). Direct carbonization of al-based porous coordination polymer for synthesis of nanoporous carbon. Journal of the American Chemical Society, 134(6), 2864–2867. doi: https://doi.org/10.1021/ja208940u
dc.relation.referencesenHu, Q.-D., Tang, G.-P., & Chu, P. K. (2014). Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: From design to applications. Accounts of Chemical Research, 47(7), 2017–2025. doi: https://doi.org/10.1021/ar500055s
dc.relation.referencesenJeong, J. H., Kim, Y. A., & Kim, B.-H. (2020). Electrospun polyacrylonitrile/cyclodextrin-derived Hierarchical Porous Carbon Nanofiber/MnO2 Composites for supercapacitor applications. Carbon, 164, 296–304. doi: https://doi.org/10.1016/j.carbon.2020.03.052
dc.relation.referencesenLarcher, D., & Tarascon, J.-M. (2014). Towards greener and more sustainable batteries for Electrical Energy Storage. Nature Chemistry, 7(1), 19–29. doi: https://doi.org/10.1038/nchem.2085
dc.relation.referencesenLillo-Ródenas, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and Koh. Carbon, 41(2), 267–275. doi: https://doi.org/10.1016/s0008-6223(02)00279-8
dc.relation.referencesenMahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPS) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi: https://doi.org/10.1016/j.ultsonch.2009.09.005
dc.relation.referencesenMaksymych, V., Klapchuk, M., Borysiuk, A., Kulyk, Y., Stadnyk, V., Bordun, I., Kohut, Z., & Ivashchyshyn, F. (2023). Hierarchical heterostructure built on the basis of SiO2 dielectric matrix and supramolecular complex b-cyclodextrin-ferrocene: Fabrication, physical properties and applications. Materials Research Bulletin, 163, 112220. doi: https://doi.org/10.1016/j.materresbull.2023.112220
dc.relation.referencesenMane, G. P., Talapaneni, S. N., Anand, C., Varghese, S., Iwai, H., Ji, Q., Ariga, K., Mori, T., & Vinu, A. (2012). Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Advanced Functional Materials, 22(17), 3596–3604. doi: https://doi.org/10.1002/adfm.201200207
dc.relation.referencesenPtashnyk, V., Bordun, I., Malovanyy, M., Chabecki, P., & Pieshkov, T. (2020). The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation. Applied Nanoscience, 10(12), 4891–4899. doi: https://doi.org/10.1007/s13204-020-01393-z
dc.relation.referencesenRouquerol Françoise. (2014). Adsorption by powders and porous solids: Principles, methodology and applications. Academic press.
dc.relation.referencesenShvets, R. Y., Grygorchak, I. I., Borysyuk, A. K., Shvachko, S. G., Kondyr, A. I., Baluk, V. I., Kurepa, A. S., & Rachiy, B. I. (2014). New nanoporous biocarbons with Iron and silicon impurities: Synthesis, properties, and application to supercapacitors. Physics of the Solid State, 56(10), 2021–2027. doi: https://doi.org/10.1134/s1063783414100266
dc.relation.referencesenSupramolecular design of carbons for energy storage with the Reactanse-sensor functional hybridity. (2018). East European Journal of Physics, (4). doi: https://doi.org/10.26565/2312-4334-2018-4-06
dc.relation.referencesenThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry, 87(9-10), 1051–1069. doi: https://doi.org/10.1515/pac-2014-1117
dc.relation.referencesenVance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780. doi: https://doi.org/10.3762/bjnano.6.181
dc.relation.referencesenYamaguchi, J., & Itami, K. (2017). Toward an ideal synthesis of (bio)molecules through direct arene assembling reactions. Bulletin of the Chemical Society of Japan, 90(4), 367–383. https://doi.org/10.1246/bcsj.20160365
dc.relation.referencesenYoshida, K.-ichi, Shimomura, T., Ito, K., & Hayakawa, R. (1999). Inclusion Complex Formation of Cyclodextrin and polyaniline. Langmuir, 15(4), 910–913. doi: https://doi.org/10.1021/la9812471
dc.relation.referencesenZhang, Y. J., Huang, M. X., Zhang, Y. P., Armstrong, D. W., Breitbach, Z. S., & Ryoo, J. J. (2013). Use of sulfated cyclofructan 6 and sulfated cyclodextrins for the chiral separation of four basic pharmaceuticals by capillary electrophoresis. Chirality, 25(11), 735–742. doi: https://doi.org/10.1002/chir.22206
dc.relation.referencesenZhong, Y., Chen, Z., Chen, G., Luo, Y., Zhang, L., Hua, B., Li, J., & Sun, Y. (2021). B-cyclodextrin-assisted fabrication of hierarchically porous carbon sheet with O/N defects for electrical double-layer supercapacitor. Journal of Materials Science: Materials in Electronics, 32(11), 15046–15058. doi: https://doi.org/10.1007/s10854-021-06057-4
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2020.e05303
dc.relation.urihttps://doi.org/10.1007/s10904-021-02002-4
dc.relation.urihttps://doi.org/10.1002/tcr.201800103
dc.relation.urihttps://doi.org/10.1166/jnn.2011.3839
dc.relation.urihttps://doi.org/10.1080/00268970500500583
dc.relation.urihttps://doi.org/10.3390/sym11101249
dc.relation.urihttps://doi.org/10.3390/en15166069
dc.relation.urihttps://doi.org/10.1039/c0cs00153h
dc.relation.urihttps://doi.org/10.1016/j.physe.2018.12.009
dc.relation.urihttps://doi.org/10.26565/2312-4334-2018-4-06
dc.relation.urihttps://doi.org/10.1002/wene.102
dc.relation.urihttps://doi.org/10.1016/j.micron.2007.06.017
dc.relation.urihttps://doi.org/10.1021/ja208940u
dc.relation.urihttps://doi.org/10.1021/ar500055s
dc.relation.urihttps://doi.org/10.1016/j.carbon.2020.03.052
dc.relation.urihttps://doi.org/10.1038/nchem.2085
dc.relation.urihttps://doi.org/10.1016/s0008-6223(02)00279-8
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2009.09.005
dc.relation.urihttps://doi.org/10.1016/j.materresbull.2023.112220
dc.relation.urihttps://doi.org/10.1002/adfm.201200207
dc.relation.urihttps://doi.org/10.1007/s13204-020-01393-z
dc.relation.urihttps://doi.org/10.1134/s1063783414100266
dc.relation.urihttps://doi.org/10.1515/pac-2014-1117
dc.relation.urihttps://doi.org/10.3762/bjnano.6.181
dc.relation.urihttps://doi.org/10.1246/bcsj.20160365
dc.relation.urihttps://doi.org/10.1021/la9812471
dc.relation.urihttps://doi.org/10.1002/chir.22206
dc.relation.urihttps://doi.org/10.1007/s10854-021-06057-4
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Bordun I., Malovanyy M., Szymczykiewicz E., 2023
dc.subjectactivated carbon
dc.subjectβ-cyclodextrin
dc.subjectadsorption/desorption isotherm
dc.subjectspecific surface
dc.subjectpore volume
dc.subjectpore size distribution
dc.subjecthydrophilicity
dc.titleThe investigation of the porous structure of carbon sorbents based on β-cyclodextrin for use in environmental protection technologies
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n2_Bordun_I-The_investigation_of_the_108-116.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n2_Bordun_I-The_investigation_of_the_108-116__COVER.png
Size:
1.18 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: