Examination of the thermal efficiency of the solar collector integrated into the light transparent building facade

dc.citation.epage37
dc.citation.issue1
dc.citation.spage30
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШаповал, С. П.
dc.contributor.authorЖелих, В. М.
dc.contributor.authorВенгрин, І. І.
dc.contributor.authorМиронюк, Х. В.
dc.contributor.authorГенсецький, М. П.
dc.contributor.authorShapoval, Stepan
dc.contributor.authorZhelykh, Vasyl
dc.contributor.authorVenhryn, Iryna
dc.contributor.authorMyroniuk, Khrystyna
dc.contributor.authorGensetskyi, Mykola
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-12-13T12:37:22Z
dc.date.available2020-12-13T12:37:22Z
dc.date.created2020-02-10
dc.date.issued2020-02-10
dc.description.abstractОписано перспективність розвитку напрямку сонячної енергетики в Україні. Інтерес до ефективного використання сонячного випромінювання сонячними колекторами обґрунтовує актуальність і доцільність досліджень з проблеми використання в них такої енергії. Проаналізовано, що сонячна енергетика залишається найперспективнішим напрямком для генерації теплової енергії внаслідок: встановленого обсягу надходження сонячного випромінювання на територію України та зношеність технологічного обладнання, що працють на традиційному органічному паливі. Окрім цього, враховуючи тенденцію побудови скляних фасадів у галузі будівництва, в праці запропонованого сонячний колектор інтегрований в світлопрозорий фасад будівлі з метою економії площі, на яку встановлюються установки сонячних колекторів та збереження викопних видів палива. За інтенсивності імітованого сонячного випромінювання 900 Вт/м2, що потрапляло на поглинаючу поверхню сонячного колектора, температура на виході із сонячного колектора досягала 22,9 ºС. Порівнюючи зміни миттєвої потужності сонячного колектора Qск, Вт/м2 встановлено, що на 60 хв експерименту за інтенсивності імітованого сонячного випромінювання 900 Вт/м2, вона була більшою за 250 Вт/м2. Коефіцієнт корисної дії експериментального сонячного колектора в режимі прямотечії теплоносія в системі за інтенсивності імітованого сонячного випромінювання 900 Вт/м2 досягав ≈33 %. Встановлено, що запропонований сонячний колектор за інтенсивностей, що відповідатимуть потужності сонячного випромінювання в літній період року, в рeжимі прямотечії теплоносія через конструкцію соячного колектора є ефективним джерелом низькопотенційного тепло- постачання. Перспективним напрямом подальших досліджень залишається встановлення ефективності такого колектора за інших інтенсивностей імітованого сонячного випромінювання та за інших режимів роботи теплоносія через конструкцію сонячного колектора в системі сонячного теплопостачання.
dc.description.abstractThe work describes the prospects for the development of solar energy in Ukraine. Interest in the effective use of solar radiation by solar collectors justifies the relevance and expediency of research on the problem of using such energy in them. It is analyzed that solar energy remains a promising direction for generating thermal energy due to: the increased volume of solar radiation entering the territory of Ukraine and the wear or tear of technological equipment running on traditional organic fuel. Also, if taking into account the trend of building glass facades in the field of construction, in the work proposed solar collector which was integrated into the light transparent facade of the building. The solar collector model was developed for the purpose of in order to save space where solar collectors should be installed and to save fossil fuels. The temperature at the outlet of the solar collector reached 22.9 °C according to the intensity of the simulated solar radiation of 900 W/m2, which fell on the absorbing surface of the solar collector. Comparing the changes in the instantaneous power of the solar collector QSC, W/m2, it was found that at 60 minutes of the experiment was greater than 250 W/m2 under the intensity of the simulated solar radiation of 900W/m2. The efficiency of the experimental solar collector reached ≈33% in the direct heat carrier mode in the system according to the intensity of the simulated solar radiation. It was established, that the proposed solar collector in the mode of direct heat carrier was the effective source of low potential heat supply under intensities which could correspond to the power of solar radiation at summer time of the year. The promising direction for further research will be the efficiency establishing of the collector under simulated intensities of the solar radiation and other modes of operation of the heat carrier.
dc.format.extent30-37
dc.format.pages8
dc.identifier.citationExamination of the thermal efficiency of the solar collector integrated into the light transparent building facade / Stepan Shapoval, Vasyl Zhelykh, Iryna Venhryn, Khrystyna Myroniuk, Mykola Gensetskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 30–37.
dc.identifier.citationenExamination of the thermal efficiency of the solar collector integrated into the light transparent building facade / Stepan Shapoval, Vasyl Zhelykh, Iryna Venhryn, Khrystyna Myroniuk, Mykola Gensetskyi // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 30–37.
dc.identifier.doidoi.org/10.23939/jtbp2020.01.030
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55663
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (2), 2020
dc.relation.referencesZolotko, K. (1998) Development of calculation methods and selection of rational parameters of heat supply
dc.relation.referencessystems with flat solar collectors. (Doctoral dissertation), 207. (in Russian)
dc.relation.referencesMysak, Y., Vozniak, О., Datsko, О., Shapoval, S. (2014) Solar energy: theory and practice. Lviv Politechnic
dc.relation.referencesNational University, 340. (in Ukrainian)
dc.relation.referencesKutnyi, B., Osipa, M. (2014). Results of experimental studies of the solar collector. Collection of scientific
dc.relation.referencespapers, series: industrial engineering, construction of Poltava national technical University named after Yuri
dc.relation.referencesKondratyuk, 1(40), 6. (in Ukrainian)
dc.relation.referencesSalvi, Swapnil & Bhalla, Vishal & Taylor, Robert & Khullar, Vikrant & Otanicar, Todd & Phelan, Patrick &
dc.relation.referencesTyagi, Himanshu. (2018). Technological Advances to Maximize Solar Collector Energy Output: A Review. Journal
dc.relation.referencesof Electronic Packaging, 140. (in English)
dc.relation.referencesVozniak, О., Shapoval, S., Pona, O., Venhryn, I. (2014) Influence of the direction and speed of the air flow
dc.relation.referenceson the operation of the solar collector without a transparent coating. Construction and technogenic safety, 50, 49–52.
dc.relation.references(in Ukrainian)
dc.relation.referencesPasichnyk, P., Pryimak, O. (2013) Analysis of the properties of textile materials for the absorbing element of
dc.relation.referencesthe solar energy collector. Energy efficiency in construction and architecture, 4, 201–204. (in Ukrainian)
dc.relation.referencesSyvoraksha, V., Zolotko, K., Markov, V., Petrov, B. (2001) Influence of the heat-sensing element design on
dc.relation.referencesthe efficiency of the solar collector. Ecotechnologies and resource conservation, 2, 70–73. (in Russian)
dc.relation.referencesZhelykh, V., Piznak, B. (2013) Comparative analysis of calculated models of polymer solar collectors.
dc.relation.referencesEnergy efficiency in construction and architecture, 4, 109–113. (in Ukrainian)
dc.relation.referencesShapoval, S., Zhelykh, V., Venhryn, I., & Kozak, K. (2020). Simulation of thermal processes in the solar
dc.relation.referencescollector which is combined with external fence of an energy efficient house. Proceedings of CEE 2019, Advances
dc.relation.referencesin Resource-saving Technologies and Materials in Civil and Environmental Engineering, 510–517. (in English)
dc.relation.referencesFilipowicz, M., Przenzak, E., Figaj, R. D. (2019). Building solar cooling systems based on thermally driven
dc.relation.referenceschillers as an alternative approach to classic electrical cooling systems. Construction of optimized energy potential, (1), 67–76. (in English)
dc.relation.referencesKhotin, S. (2001) Development and research of a concentrating collector with vacuumed heat sinks.
dc.relation.references(Doctoral dissertation). (in Ukrainian)
dc.relation.referencesBuonomano, A., Calise, F., Palombo, A. (2018). Solar heating and cooling systems by ab-sorption and
dc.relation.referencesadsorption chillers driven by stationary and concentrating photovolta-ic/thermal solar collectors: Modelling and
dc.relation.referencessimulation. Renewable and Sustainable Energy Reviews 82 (2), 1874–1908. (in English)
dc.relation.referencesLamnatou, C., Mondol, J., Chemisana, D., Maurer C. (2015). Modelling and simulation of Building-
dc.relation.referencesIntegrated solar thermal systems: Behaviour of the system. Renewable and Sus-tainable Energy Reviews 45, 36–51.
dc.relation.references(in English)
dc.relation.referencesShapoval, S., Shapoval, P., Zhelykh, V., Pona, O., Spodyniuk, N., Gulai, B., Myroniuk, K. (2017).
dc.relation.referencesEcological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry and
dc.relation.referencesChemical Technology, 11(4), 503–508. (in English)
dc.relation.referencesVenhryn, I. (2019) Research of solar collectors integrated into the construction of the glass facade of a
dc.relation.referencesbuilding / construction: necessity and features. Theory and Building Practice, 38–46. (in Ukrainian)
dc.relation.referencesenZolotko, K. (1998) Development of calculation methods and selection of rational parameters of heat supply
dc.relation.referencesensystems with flat solar collectors. (Doctoral dissertation), 207. (in Russian)
dc.relation.referencesenMysak, Y., Vozniak, O., Datsko, O., Shapoval, S. (2014) Solar energy: theory and practice. Lviv Politechnic
dc.relation.referencesenNational University, 340. (in Ukrainian)
dc.relation.referencesenKutnyi, B., Osipa, M. (2014). Results of experimental studies of the solar collector. Collection of scientific
dc.relation.referencesenpapers, series: industrial engineering, construction of Poltava national technical University named after Yuri
dc.relation.referencesenKondratyuk, 1(40), 6. (in Ukrainian)
dc.relation.referencesenSalvi, Swapnil & Bhalla, Vishal & Taylor, Robert & Khullar, Vikrant & Otanicar, Todd & Phelan, Patrick &
dc.relation.referencesenTyagi, Himanshu. (2018). Technological Advances to Maximize Solar Collector Energy Output: A Review. Journal
dc.relation.referencesenof Electronic Packaging, 140. (in English)
dc.relation.referencesenVozniak, O., Shapoval, S., Pona, O., Venhryn, I. (2014) Influence of the direction and speed of the air flow
dc.relation.referencesenon the operation of the solar collector without a transparent coating. Construction and technogenic safety, 50, 49–52.
dc.relation.referencesen(in Ukrainian)
dc.relation.referencesenPasichnyk, P., Pryimak, O. (2013) Analysis of the properties of textile materials for the absorbing element of
dc.relation.referencesenthe solar energy collector. Energy efficiency in construction and architecture, 4, 201–204. (in Ukrainian)
dc.relation.referencesenSyvoraksha, V., Zolotko, K., Markov, V., Petrov, B. (2001) Influence of the heat-sensing element design on
dc.relation.referencesenthe efficiency of the solar collector. Ecotechnologies and resource conservation, 2, 70–73. (in Russian)
dc.relation.referencesenZhelykh, V., Piznak, B. (2013) Comparative analysis of calculated models of polymer solar collectors.
dc.relation.referencesenEnergy efficiency in construction and architecture, 4, 109–113. (in Ukrainian)
dc.relation.referencesenShapoval, S., Zhelykh, V., Venhryn, I., & Kozak, K. (2020). Simulation of thermal processes in the solar
dc.relation.referencesencollector which is combined with external fence of an energy efficient house. Proceedings of CEE 2019, Advances
dc.relation.referencesenin Resource-saving Technologies and Materials in Civil and Environmental Engineering, 510–517. (in English)
dc.relation.referencesenFilipowicz, M., Przenzak, E., Figaj, R. D. (2019). Building solar cooling systems based on thermally driven
dc.relation.referencesenchillers as an alternative approach to classic electrical cooling systems. Construction of optimized energy potential, (1), 67–76. (in English)
dc.relation.referencesenKhotin, S. (2001) Development and research of a concentrating collector with vacuumed heat sinks.
dc.relation.referencesen(Doctoral dissertation). (in Ukrainian)
dc.relation.referencesenBuonomano, A., Calise, F., Palombo, A. (2018). Solar heating and cooling systems by ab-sorption and
dc.relation.referencesenadsorption chillers driven by stationary and concentrating photovolta-ic/thermal solar collectors: Modelling and
dc.relation.referencesensimulation. Renewable and Sustainable Energy Reviews 82 (2), 1874–1908. (in English)
dc.relation.referencesenLamnatou, C., Mondol, J., Chemisana, D., Maurer C. (2015). Modelling and simulation of Building-
dc.relation.referencesenIntegrated solar thermal systems: Behaviour of the system. Renewable and Sus-tainable Energy Reviews 45, 36–51.
dc.relation.referencesen(in English)
dc.relation.referencesenShapoval, S., Shapoval, P., Zhelykh, V., Pona, O., Spodyniuk, N., Gulai, B., Myroniuk, K. (2017).
dc.relation.referencesenEcological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry and
dc.relation.referencesenChemical Technology, 11(4), 503–508. (in English)
dc.relation.referencesenVenhryn, I. (2019) Research of solar collectors integrated into the construction of the glass facade of a
dc.relation.referencesenbuilding, construction: necessity and features. Theory and Building Practice, 38–46. (in Ukrainian)
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Shapoval S., Zhelykh V., Venhryn I., Myroniuk Kh., Gensetskyi M., 2020
dc.subjectсонячне випромінювання
dc.subjectсонячний колектор
dc.subjectсвітлопрозорий фасад
dc.subjectsolar radiation
dc.subjectsolar collector
dc.subjectlight transparent facade
dc.titleExamination of the thermal efficiency of the solar collector integrated into the light transparent building facade
dc.title.alternativeВизначення теплової ефективності сонячного колектора інтегрованого в світлопрозорий фасад будівлі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v2n1_Shapoval_S-Examination_of_the_thermal_30-37.pdf
Size:
549.99 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v2n1_Shapoval_S-Examination_of_the_thermal_30-37__COVER.png
Size:
423.12 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.13 KB
Format:
Plain Text
Description: