Implementation of smart irrigation using IoT and Artificial Intelligence

dc.citation.epage582
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage575
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationБагатодисциплінарна лабораторія досліджень та інновацій (LPRI), EMSI Касабланка
dc.contributor.affiliationHassan II of Casablanca University
dc.contributor.affiliationPluridisciplinary Research and Innovation Laboratory (LPRI), EMSI Casablanca
dc.contributor.authorТейс, Ю.
dc.contributor.authorЕльфілалі, С.
dc.contributor.authorТабаа, М.
dc.contributor.authorЛегріс, К.
dc.contributor.authorTace, Y.
dc.contributor.authorElfilali, S.
dc.contributor.authorTabaa, M.
dc.contributor.authorLeghris, C.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T10:28:14Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractКерування водними ресурсами має вирішальне значення для сільського господарства, оскільки це основне джерело зрошення сільськогосподарських культур. Ефективне керування водними ресурсами може допомогти фермерам підвищити врожайність, зменшити витрати води та підвищити стійкість до посухи. Це може включати такі практики, як точне зрошення, яке використовує датчики та технологію для доставки води лише туди і тоді, коли це необхідно, і консерваційна обробка ґрунту, яка допомагає зменшити випаровування та зберегти вологу в ґрунті. Крім того, фермери можуть застосовувати методи економії води, такі як вибір культур, сівозміна та збереження ґрунту, щоб зменшити споживання води. Отже, з роками зросла кількість досліджень, спрямованих на економію використання води в процесі поливу. У цьому дослідженні пропонується використовувати передові технології, такі як IoT та AI, для управління зрошенням таким чином, щоб максимізувати врожайність сільськогосподарських культур і мінімізувати споживання води відповідно до принципів Agriculture 4.0. Використовуючи датчики в контрольованому середовищі, дані про ріст рослин були швидко зібрані. Завдяки аналізу та тренуванню цих даних між декількома моделями, серед яких знаходимо K-найближчі сусіди (KNN), метод опорних векторів (SVM) та наївний Байєс (NB), KNN показало цікаві результати з рівнем точності 98.4 і 0.016 середньоквадратичною помилкою (RMSE).
dc.description.abstractWater management is crucial for agriculture, as it is the primary source of irrigation for crops. Effective water management can help farmers to improve crop yields, reduce water waste, and increase resilience to drought. This can include practices such as precision irrigation, using sensors and technology to deliver water only where and when it is needed, and conservation tillage, which helps to reduce evaporation and retain moisture in the soil. Additionally, farmers can implement water-saving techniques such as crop selection, crop rotation, and soil conservation to reduce their water use. Thus, studies aimed at saving the use of water in the irrigation process have increased over the years. This research suggests using advanced technologies such as IoT and AI to manage irrigation in a way that maximizes crop yield while minimizing water consumption, in line with Agriculture 4.0 principles. Using sensors in controlled environments, data on plant growth was quickly collected. Thanks to the analysis and training of these data between several models among them, we find the K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Naive Bayes (NB), the KNN has shown interesting results with 98.4 accuracy rate and 0.016 root mean squared error (RMSE).
dc.format.extent575-582
dc.format.pages8
dc.identifier.citationImplementation of smart irrigation using IoT and Artificial Intelligence / Y. Tace, S. Elfilali, M. Tabaa, C. Leghris // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 575–582.
dc.identifier.citationenImplementation of smart irrigation using IoT and Artificial Intelligence / Y. Tace, S. Elfilali, M. Tabaa, C. Leghris // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 575–582.
dc.identifier.doidoi.org/10.23939/mmc2023.02.575
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63419
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 2 (10), 2023
dc.relation.references[1] Madakam S., Uchiya T. Industrial Internet of Things (IIoT): Principles, Processes and Protocols. The Internet of Things in the Industrial Sector. Computer Communications and Networks. Springer, Cham. (2019).
dc.relation.references[2] Eli-Chukwu N. C. Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research. 9 (4), 4377–4383 (2019).
dc.relation.references[3] Rehman T. U., Mahmud M. S., Chang Y. K., Jin J., Shin J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and electronics in agriculture. 156, 585–605 (2019).
dc.relation.references[4] Lowry G. V., Avellan A., Gilbertson L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology. 14 (6), 517–522 (2019).
dc.relation.references[5] Mahmood Khan Pathan S., Firoj Ali M. Implementation of Faster R-CNN in Paddy Plant Disease Recognition System. 2019 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh. 189–192 (2019).
dc.relation.references[6] Gore S., Nagtilak S., Joshi A., Kulkarni S., Labade N. Smart Irrigation System for Agriculture using IOT and ML. International Journal of Contemporary Architecture The New ARCH. 8 (2), 1200–1206 (2021).
dc.relation.references[7] Goap A., Sharma D., Shukla A. K., Rama Krishna C. An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture. 155, 41–49 (2018).
dc.relation.references[8] Soliman M., Usami T., Imamura S., Yano K., Ballal H., Abbas A. M., Abdel Fattah T., El-Kafrawy S., ElSayed H., El-Shafie A. Synthesis of Geospatial Database and Interdisciplinary to Achieve NSDS for Downtown Alexandria, Egypt Vision 2030. Proceedings of the International Cartographic Association. 4, 101 (2021).
dc.relation.references[9] Belgiu M., Dr˘agu¸t L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 114, 24–31 (2016).
dc.relation.references[10] Sharif M., Khan M. A., Iqbal Z., Azam M. F., Ikram U. L. M., Javed M. Y. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture. 150, 220–234 (2018).
dc.relation.references[11] K¨afer P., Souza da Rocha N., Ribeiro Diaz L., Kaiser E., Santos D., Veeck G., Rob´erti D., Rolim S., Oliveira G. Artificial neural networks model based on remote sensing to retrieve evapotranspiration over the Brazilian Pampa. Journal of Applied Remote Sensing. 14 (3), 038504 (2020).
dc.relation.references[12] Maimaitijiang M., Ghulam A., Sidike P., Hartling S., Maimaitiyiming M., Peterson K., Kadam S., Burken J., Fritschi F. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS Journal of Photogrammetry and Remote Sensing. 134, 43–58 (2017).
dc.relation.references[13] Kumar S., Mishra S., Khanna P., Pragya. Precision Sugarcane Monitoring Using SVM Classifier. Procedia Computer Science. 122, 881–887 (2017).
dc.relation.references[14] Thanh Noi P., Kappas M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors. 18 (1), 18 (2018).
dc.relation.references[15] Chlingaryan A., Sukkarieh S., Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture. 151, 61–69 (2018).
dc.relation.references[16] Yassin M. A., Alazba A. A., Mattar M. A. Modelling daily evapotranspiration using artificial neural networks under hyper arid conditions. Pakistan Journal of Agricultural Sciences. 53 (3), 695–712 (2016).
dc.relation.references[17] Choi Y., Kim M., O’Shaughnessy S., Jeon J., Kim Y., Song W. J. Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration. Journal of The Korean Society of Agricultural Engineers. 60 (6), 43–54 (2018).
dc.relation.references[18] Wu M., Feng Q., Wen X., Deo R. C., Yin Z., Yang L., Sheng D. Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research. 51 (4), 648–665 (2020).
dc.relation.references[19] Nalepa J., Kawulok M. Selecting training sets for support vector machines: a review. Artificial Intelligence Review. 52 (2), 857–900 (2019).
dc.relation.references[20] Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 workshop on empirical methods in artificial intelligenc. 3 (22), 41–46 (2001).
dc.relation.references[21] Cunningham P., Delany S. J. k-Nearest neighbour classifiers – A Tutorial. ACM computing surveys. 54 (6), 1–25 (2021).
dc.relation.referencesen[1] Madakam S., Uchiya T. Industrial Internet of Things (IIoT): Principles, Processes and Protocols. The Internet of Things in the Industrial Sector. Computer Communications and Networks. Springer, Cham. (2019).
dc.relation.referencesen[2] Eli-Chukwu N. C. Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research. 9 (4), 4377–4383 (2019).
dc.relation.referencesen[3] Rehman T. U., Mahmud M. S., Chang Y. K., Jin J., Shin J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and electronics in agriculture. 156, 585–605 (2019).
dc.relation.referencesen[4] Lowry G. V., Avellan A., Gilbertson L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology. 14 (6), 517–522 (2019).
dc.relation.referencesen[5] Mahmood Khan Pathan S., Firoj Ali M. Implementation of Faster R-CNN in Paddy Plant Disease Recognition System. 2019 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), Rajshahi, Bangladesh. 189–192 (2019).
dc.relation.referencesen[6] Gore S., Nagtilak S., Joshi A., Kulkarni S., Labade N. Smart Irrigation System for Agriculture using IOT and ML. International Journal of Contemporary Architecture The New ARCH. 8 (2), 1200–1206 (2021).
dc.relation.referencesen[7] Goap A., Sharma D., Shukla A. K., Rama Krishna C. An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture. 155, 41–49 (2018).
dc.relation.referencesen[8] Soliman M., Usami T., Imamura S., Yano K., Ballal H., Abbas A. M., Abdel Fattah T., El-Kafrawy S., ElSayed H., El-Shafie A. Synthesis of Geospatial Database and Interdisciplinary to Achieve NSDS for Downtown Alexandria, Egypt Vision 2030. Proceedings of the International Cartographic Association. 4, 101 (2021).
dc.relation.referencesen[9] Belgiu M., Dr˘agu¸t L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 114, 24–31 (2016).
dc.relation.referencesen[10] Sharif M., Khan M. A., Iqbal Z., Azam M. F., Ikram U. L. M., Javed M. Y. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture. 150, 220–234 (2018).
dc.relation.referencesen[11] K¨afer P., Souza da Rocha N., Ribeiro Diaz L., Kaiser E., Santos D., Veeck G., Rob´erti D., Rolim S., Oliveira G. Artificial neural networks model based on remote sensing to retrieve evapotranspiration over the Brazilian Pampa. Journal of Applied Remote Sensing. 14 (3), 038504 (2020).
dc.relation.referencesen[12] Maimaitijiang M., Ghulam A., Sidike P., Hartling S., Maimaitiyiming M., Peterson K., Kadam S., Burken J., Fritschi F. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS Journal of Photogrammetry and Remote Sensing. 134, 43–58 (2017).
dc.relation.referencesen[13] Kumar S., Mishra S., Khanna P., Pragya. Precision Sugarcane Monitoring Using SVM Classifier. Procedia Computer Science. 122, 881–887 (2017).
dc.relation.referencesen[14] Thanh Noi P., Kappas M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors. 18 (1), 18 (2018).
dc.relation.referencesen[15] Chlingaryan A., Sukkarieh S., Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture. 151, 61–69 (2018).
dc.relation.referencesen[16] Yassin M. A., Alazba A. A., Mattar M. A. Modelling daily evapotranspiration using artificial neural networks under hyper arid conditions. Pakistan Journal of Agricultural Sciences. 53 (3), 695–712 (2016).
dc.relation.referencesen[17] Choi Y., Kim M., O’Shaughnessy S., Jeon J., Kim Y., Song W. J. Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration. Journal of The Korean Society of Agricultural Engineers. 60 (6), 43–54 (2018).
dc.relation.referencesen[18] Wu M., Feng Q., Wen X., Deo R. C., Yin Z., Yang L., Sheng D. Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research. 51 (4), 648–665 (2020).
dc.relation.referencesen[19] Nalepa J., Kawulok M. Selecting training sets for support vector machines: a review. Artificial Intelligence Review. 52 (2), 857–900 (2019).
dc.relation.referencesen[20] Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 workshop on empirical methods in artificial intelligenc. 3 (22), 41–46 (2001).
dc.relation.referencesen[21] Cunningham P., Delany S. J. k-Nearest neighbour classifiers – A Tutorial. ACM computing surveys. 54 (6), 1–25 (2021).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectштучний інтелект
dc.subjectAgriTech
dc.subjectінтернет речей
dc.subjectрозумне сільське господарство
dc.subjectрозумне зрошення
dc.subjectartificial intelligence
dc.subjectAgriTech
dc.subjectinternet of things
dc.subjectsmart agriculture
dc.subjectsmart irrigation
dc.titleImplementation of smart irrigation using IoT and Artificial Intelligence
dc.title.alternativeВпровадження розумного зрошення з використанням інтернету речей та штучного інтелекту
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n2_Tace_Y-Implementation_of_smart_irrigation_575-582.pdf
Size:
779.64 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n2_Tace_Y-Implementation_of_smart_irrigation_575-582__COVER.png
Size:
444.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: