Isolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization

dc.citation.epage141
dc.citation.issue1
dc.citation.spage133
dc.contributor.affiliationTribhuvan University
dc.contributor.affiliationTri-Chandra M. Campus
dc.contributor.authorParajuli, Kshama
dc.contributor.authorMalla, Komal Prasad
dc.contributor.authorPanchen, Nicodemus
dc.contributor.authorGanga, G. C.
dc.contributor.authorAdhikari, Rameshwar
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:30Z
dc.date.available2024-01-22T10:41:30Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractМетодом термічного розкладу з біовідходів (кісток буйвола) виділені наночастинкигідроксиапатиту (HAp). Отриманий білий порошкоподібний матеріал охарактеризований за допомогою інфрачервоної спектроскопії з перетворенням Фур’є (FTIR), дифракції рентгенівських променів (XRD), скануючої електронної мікроскопії (SEM) та енергодисперсійного рентгенівського аналізу (EDX). За допомогою FTIR підтверджено, що термічне оброблення кісткового порошку при температурі 1223 К або вище видаляє органічні частини, що призводить до утворення чистого неорганічного біомінералу. Рентгенофазовий аналіз показав, що отриманий матеріал єнанокристалічнимHAp (nano-HAp) із середнім діаметром зерен 25 нм, а їх паличкоподібні частинки з щільно агломерованою морфологією підтверджені аналізом SEM. Крім кальцію (Ca), фосфору (P) і кисню (O), слідові кількості алюмінію (Al), магнію (Mg), міді (Cu), цирконію (Zr) і вуглецю (C) виявлені за допомогою EDX. Антибактеріальну активність nano-HAp проти шести стандартних штамів досліджували методом дифузії. В інтервалі досліджуваних концентрацій встановлено, що найбільшу активність nano-HAp виявляє доAcinetobacterbaumannii, меншу активність доEscherichiacoli, Pseudomonasaeruginosa та Staphylococcusaureus, і зовсім неактивний щодо Salmonellatyphi та Staphylococcusaureus, стійкого до метициліну (MRSA). Показано, щонано-HAp потенційно можна застосовувати в біомедицині.
dc.description.abstractHydroxyapatite nanoparticles were isolated from a biowaste, buffalo bone, via the thermal decomposition method. The resulting white powdered material was characterized by Fourier Transformed Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis. The FTIR spectra confirmed that a heat treatment of the bone powder at the temperature at or above 1223 K removed the organic moieties leading to the formation of a pure inorganic biomineral. The XRD analyses showed that the obtained material was nanocrystalline HAp (nano-HAp) with an average grain diameter of 25 nm, while their rod-shaped particles with their tightly agglomerated morphology were confirmed by the SEM analysis. Besides Calcium (Ca), Phosphorous (P), and Oxygen (O), trace amounts of Aluminum (Al), Magnesium (Mg), Copper (Cu), Zirconium (Zr) and Carbon (C) were also found by EDX analysis. Antibacterial activity of nano-HAp against six standard isolates was investigated by the agar well diffusion method and found to be more susceptible to Acinetobacter baumannii while other standard strains such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus showed lesser susceptibility and no antibacterial activity was noticed against Salmonella typhi and Methicillin resistant Staphylococcus aureus (MRSA) with the analysed concentration of nano-HAp suggesting its potential application in biomedical fields.
dc.format.extent133-141
dc.format.pages9
dc.identifier.citationIsolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization / Kshama Parajuli, Komal Prasad Malla, Nicodemus Panchen, G. C. Ganga, Rameshwar Adhikari // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 133–141.
dc.identifier.citationenIsolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization / Kshama Parajuli, Komal Prasad Malla, Nicodemus Panchen, G. C. Ganga, Rameshwar Adhikari // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 133–141.
dc.identifier.doidoi.org/10.23939/chcht16.01.133
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60950
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Manalu, J.L.; Soegijono, B.; Indrani, D.J. Characterization of Hydroxyapatite Derived from Bovine Bone. Asian J. Appl. Sci.2015, 3 (4), 758–765.
dc.relation.references[2] Lim, K.T.; Kim, J.W.; Kim, J.; Chung, J.H. Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones. J. Biosyst. Eng.2014, 39, 227–234. https://doi.org/10.5307/jbe.2014.39.3.227
dc.relation.references[3] Ooi, C.Y.; Hamdi, M.; Ramesh, S. Properties of Hydroxyapatite Produced by Annealing of Bovine Bone. Ceram. Int.2007, 33, 1171–1177. https://doi.org/10.1016/j.ceramint.2006.04.001
dc.relation.references[4] Kolmas, J.; Groszyk, E.; Kwiatkowska, R.D. Substituted Hydroxyapatites with Antibacterial Properties. Biomed Res. Int.2014, 2014,Article ID 178123. https://doi.org/10.1155/2014/178123
dc.relation.references[5] Rana, M.; Akhtar, N.; Rahman, S.; Hasan, Z. Extraction and Characterization of Hydroxyapatite from Bovine Cortical Bone and Effect of Radiation. Int. J. Biosci.2017, 11, 20–30. https://doi.org/10.12692/ijb/11.3.20-30
dc.relation.references[6] Balu, S.; Sundaradoss, M. V.; Andra, S.; Jeevanandam, J. Facile Biogenic Fabrication of Hydroxyapatite Nanorods Using Cuttlefish Bone and Their Bactericidal and Biocompatibility Study. Beilstein J. Nanotechnol.2020, 11, 285–295. https://doi.org/10.3762/bjnano.11.21.
dc.relation.references[7] Savvova, O. Biocide Apatite Glass-Ceramic Materials for Bone Endoprosthetics. Chem. Chem. Technol. 2013, 7, 109-112.https://doi.org/10.23939/chcht07.01.109
dc.relation.references[8] Savvova, О.; Babich, O.; Fesenko, O. Investigation of Structure Formation in Calciumsilicophosphate Glass-Ceramic Coatings for Dental Implants. Chem. Chem. Technol. 2018, 12, 244-250. https://doi.org/10.23939/chcht12.02.244
dc.relation.references[9] Nur, A.; Budiman, A. W.; Jumari, A.; Nazriati, N.; Fajaroh.; F. Electrosynthesis of Ni-Co/Hydroxyapatite As a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride [NaBH4] Solutions. Chem. Chem. Technol. 2021, 15, 389-394.https://doi.org/10.23939/chcht15.03.389
dc.relation.references[10] Singh, G.; Singh, R.P.; Jolly, S.S. Customized Hydroxyapatites for Bone-Tissue Engineering and Drug Delivery Applications: A Review. J. Sol-Gel Sci. Technol.2020, 94, 505–530. https://doi.org/10.1007/s10971-020-05222-1
dc.relation.references[11] Fathi, M.H.; Hanifi, A.; Mortazavi, V. Preparation and Bioactivity Evaluation of Bone-like Hydroxyapatite Nanopowder. J. Mater. Process. Technol.2008, 202(1-3), 536–542. https://doi.org/10.1016/j.jmatprotec.2007.10.004
dc.relation.references[12] Eshtiagh-Hosseini, H.; Housaindokht, M.R.; Chahkandi, M. Effects of Parameters of Sol-Gel Process on the Phase Evolution of Sol-Gel-Derived Hydroxyapatite. Mater. Chem. Phys.2007, 106(2–3), 310–316. https://doi.org/10.1016/j.matchemphys.2007.06.002
dc.relation.references[13] Han, Y.C.; Wang, X.Y.; Li, S.P. Change of Phase Composition and Morphology of Sonochemically Synthesised Hydroxyapatite Nanoparticles with Glycosaminoglycans during Thermal Treatment. Adv. Appl. Ceram.2009, 108, 400–405. https://doi.org/10.1179/174367609X414134
dc.relation.references[14] Giardina, M.A.; Fanovich, M.A. Synthesis of Nanocrystalline Hydroxyapatite from Ca[OH]2 and H3PO4 Assisted by Ultrasonic Irradiation. Ceram. Int.2010, 36, 1961–1969. https://doi.org/10.1016/j.ceramint.2010.05.008
dc.relation.references[15] Barakat, N.A.M.; Khil, M.S.; Omran, A.M.; Sheikh, F.A.; Kim, H.Y. Extraction of Pure Natural Hydroxyapatite from the Bovine Bones Bio Waste by Three Different Methods. J. Mater. Process. Technol.2009, 209(7), 3408–3415. https://doi.org/10.1016/j.jmatprotec.2008.07.040
dc.relation.references[16] Neira, I.S.; Guitián, F.; Taniguchi, T.; Watanabe, T.; Yoshimura, M. Hydrothermal Synthesis of Hydroxyapatite Whiskers with Sharp Faceted Hexagonal Morphology. J. Mater. Sci.2008, 43(7), 2171–2178. https://doi.org/10.1007/s10853-007-2032-9
dc.relation.references[17] Iqbal, N.; Abdul Kadir, M.R.; Nik Malek, N.A.N.; Humaimi Mahmood, N.; Raman Murali, M.; Kamarul, T. Rapid Microwave Assisted Synthesis and Characterization of Nanosized Silver-Doped Hydroxyapatite with Antibacterial Properties. Mater. Lett.2012, 89, 118–122. https://doi.org/10.1016/j.matlet.2012.08.057
dc.relation.references[18] Hassan, M.N.; Mahmoud, M.M.; El-Fattah, A.A.; Kandil, S. Microwave-Assisted Preparation of Nano-Hydroxyapatite for Bone Substitutes. Ceram. Int.2016, 42(3), 3725–3744. https://doi.org/10.1016/j.ceramint.2015.11.044
dc.relation.references[19] Ronan, K.; Kannan, M.B. Novel Sustainable Route for Synthesis of Hydroxyapatite Biomaterial from Biowastes. ACS Sustain. Chem. Eng.2017, 5(3), 2237–2245. https://doi.org/10.1021/acssuschemeng.6b02515
dc.relation.references[20] Abdulrahman, I.; Tijani, H.I.; Mohammed, B.A.; Saidu, H.; Yusuf, H.; Ndejiko Jibrin, M.; Mohammed, S. From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite. J. Mater.2014, 2014, Article ID 802467. https://doi.org/10.1155/2014/802467
dc.relation.references[21] Rajesh, R.; Hariharasubramanian, A.; Ravichandran, Y.D. Chicken Bone as a Bioresource for the Bioceramic [Hydroxyapatite]. Phosphorus, Sulfur Silicon Relat. Elem.2012, 187(8), 914–925. https://doi.org/10.1080/10426507.2011.650806
dc.relation.references[22] Malla, K.P.; Regmi, S.; Nepal, A.; Bhattarai, S.; Yadav, R. J.; Sakurai, S.; Adhikari, R. Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone. Int. J. Biomater.2020, 2020,Article ID 1690178. https://doi.org/10.1155/2020/1690178
dc.relation.references[23] Fara, A.N.K.A.; Abdullah, H.Z. Characterization of Derived Natural Hydroxyapatite [HAp] Obtained from Different Types of Tilapia Fish Bones and Scales. AIP Conf. Proc.2015, 1669, 020071-0200776. https://doi.org/10.1063/1.4919215
dc.relation.references[24] Venkatesan, J.; Lowe, B.; Manivasagan, P.; Kang, K.H.; Chalisserry, E.P.; Anil, S.; Kim, D.G.; Kim, S.K. Isolation and Characterization of Nano-Hydroxyapatite from Salmon Fish Bone. Materials2015, 8(8), 5426–5439. https://doi.org/10.3390/ma8085253
dc.relation.references[25] Pandey, G.; Dhakal, K.N.; Singh, A.K.; Dhungel, S.K.; Adhikari, R. Facile Methods of Preparing Pure Hydroxyapatite Nanoparticles in Ordinary Laboratories. Bibechana2021, 18(1), 83–90. https://doi.org/10.3126/bibechana.v18i1.29600
dc.relation.references[26] Laonapakul, T. Synthesis of Hydroxyapatite from Biogenic Wastes. KKU Eng. J.2015, 42(3), 269–275. https://doi.org/10.14456/kkuenj.2015.30
dc.relation.references[27] Odusote, J.K.; Danyuo, Y.; Baruwa, A.D.; Azeez, A.A. Synthesis and Characterization of Hydroxyapatite from Bovine Bone for Production of Dental Implants. J. Appl. Biomater. Funct. Mater.2019, 17, 1-7 https://doi.org/10.1177/2280800019836829
dc.relation.references[28] Mohd Pu’ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon2019, 5, 1-14. https://doi.org/10.1016/j.heliyon.2019.e01588
dc.relation.references[29] Ramesh, S.; Loo, Z.Z.; Tan, C.Y.; Chew, W.J.K.; Ching, Y.C.; Tarlochan, F.; Chandran, H.; Krishnasamy, S.; Bang, L.T.; Sarhan, A.A.D. Characterization of Biogenic Hydroxyapatite Derived from Animal Bones for Biomedical Applications. Ceram. Int.2018, 44(9), 10525–10530. https://doi.org/10.1016/j.ceramint.2018.03.072
dc.relation.references[30] Uskoković, V.; Iyer, M.A.; Wu, V.M. One Ion to Rule Them All: The Combined Antibacterial, Osteoinductive and Anticancer Properties of Selenite-Incorporated Hydroxyapatite. J. Mater. Chem. B.2017, 5(7), 1430–1445. https://doi.org/10.1039/c6tb03387c
dc.relation.references[31] Zhang, X.; Chaimayo, W.; Yang, C.; Yao, J.; Miller, B.L.; Yates, M.Z. Silver-Hydroxyapatite Composite Coatings with Enhanced Antimicrobial Activities through Heat Treatment. Surf. Coatings Technol.2017, 325, 39–45. https://doi.org/10.1016/j.surfcoat.2017.06.013.
dc.relation.references[32] Ajduković, Z R.; Mihajilov-Krstev, T.M.; Ignjatović, N.L.; Stojanović, Z.; Mladenović-Antić, S.B.; Kocić, B.D.; Najman, S.; Petrović, N.D.; Uskoković, D.P. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties. J. Nanosci. Nanotechnol.2016, 16, 1420–1428. https://doi.org/10.1166/jnn.2016.10699
dc.relation.references[33] Padmanabhan, V.P.; Kulandaivelu, R.; Nellaiappan, S.N.T.S.; Lakshmipathy, M.; Sagadevan, S.; Johan, M.R. Facile Fabrication of Phase Transformed Cerium[IV] Doped Hydroxyapatite for Biomedical Applications – A Health Care Approach. Ceram. Int.2020, 46, 2510–2522. https://doi.org/10.1016/j.ceramint.2019.09.245
dc.relation.references[34] Jenifer, A.; Sakthivel, P.; Senthilarasan, K.; Sivaprakash, P.; Arumugam, S. In Vitro Analysis of Nickel Doped Hydroxyapatite for Biomedical Applications. Int. J. Sci. Technol. Res.2019, 8(11), 781–787.
dc.relation.references[35] Resmim, C.M.; Dalpasquale, M.; Vielmo, N.I.C.; Mariani, F.Q.; Villalba, J.C.; Anaissi, F.J.; Caetano, M.M.; Tusi, M.M. Study of Physico-Chemical Properties and in Vitro Antimicrobial Activity of Hydroxyapatites Obtained from Bone Calcination. Prog. Biomater.2019, 8, 1–9. https://doi.org/10.1007/s40204-018-0105-2
dc.relation.references[36] Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine2017, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956
dc.relation.references[37] Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Do Thi Thuy, N.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the Economic Cost of Antimicrobial Resistance per Antibiotic Consumed to Inform the Evaluation of Interventions Affecting Their Use. Antimicrob. Resist. Infect. Control2018, 7, Article number 98. https://doi.org/10.1186/s13756-018-0384-3
dc.relation.references[38] Ciobanu, C.S.; Iconaru, S.L.; Chifiriuc, M.C.; Costescu, A.; Le Coustumer, P.; Predoi, D. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles. Biomed Res. Int.2013, 2013, Article ID 916218. https://doi.org/10.1155/2013/916218
dc.relation.references[39] Swetha, M.; Sahithi, K.; Moorthi, A.; Saranya, N.; Saravanan, S.; Ramasamy, K.; Srinivasan, N.; Selvamurugan, N. Synthesis, Characterization, and Antimicrobial Activity of Nano-Hydroxyapatite-Zinc for Bone Tissue Engineering Applications. J. Nanosci. Nanotechnol.2012, 12, 167–172. https://doi.org/10.1166/jnn.2012.5142
dc.relation.references[40] Venkatesan, J.; Kim, S.K. Effect of Temperature on Isolation and Characterization of Hydroxyapatite from Tuna [Thunnus Obesus] Bone. Materials 2010, 3, 4761–4772. https://doi.org/10.3390/ma3104761
dc.relation.references[41] Magaldi, S.; Mata-Essayag, S.; Hartung De Capriles, C.; Perez, C.; Colella, M. T.; Olaizola, C.; Ontiveros, Y. Well Diffusion for Antifungal Susceptibility Testing. Int. J. Infect. Dis.2004, 8, 39–45. https://doi.org/10.1016/j.ijid.2003.03.002
dc.relation.references[42] Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal.2016, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
dc.relation.references[43] Poralan, G.M.; Gambe, J.E.; Alcantara, E.M.; Vequizo, R.M. X-Ray Diffraction and Infrared Spectroscopy Analyses on the Crystallinity of Engineered Biological Hydroxyapatite for Medical Application. IOP Conf. Ser. Mater. Sci. Eng.2015, 79, 1-7. https://doi.org/10.1088/1757-899X/79/1/012028
dc.relation.references[44] Sobczak-Kupiec, A.; Wzorek, Z. The Influence of Calcination Parameters on Free Calcium Oxide Content in Natural Hydroxyapatite. Ceram. Int.2012, 38, 641–647. https://doi.org/10.1016/j.ceramint.2011.06.065
dc.relation.references[45] Fleet, M.E. Infrared Spectra of Carbonate Apatites: Evidence for a Connection between Bone Mineral and Body Fluids. Am. Mineral.2017, 102, 149–157. https://doi.org/10.2138/am-2017-5704
dc.relation.references[46] Khoo, W.; Nor, F.M.; Ardhyananta, H.; Kurniawan, D. Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures. Procedia Manuf.2015, 2, 196–201. https://doi.org/10.1016/j.promfg.2015.07.034
dc.relation.references[47] Bahrololoom, M.E.; Javidi, M.; Javadpour, S.; Ma, J. Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash. J. Ceram. Process. Res.2009, 10(2), 129–138. https://doi.org/10.36410/jcpr.2009.10.2.129
dc.relation.references[48] Ofudje, E.A.; Rajendran, A.; Adeogun, A.I.; Idowu, M.A.; Kareem, S.O.; Pattanayak, D.K. Synthesis of Organic Derived Hydroxyapatite Scaffold from Pig Bone Waste for Tissue Engineering Applications. Adv. Powder Technol.2018, 29, 1–8. https://doi.org/10.1016/j.apt.2017.09.008
dc.relation.references[49] Liu, P.; Li, Z.; Yuan, L.; Sun, X.; Zhou, Y. Pourbaix-Guided Mineralization and Site-Selective Photoluminescence Properties of Rare Earth Substituted B-Type Carbonated Hydroxyapatite Nanocrystals. Molecules2021, 26 (3), 540. https://doi.org/10.3390/molecules26030540
dc.relation.references[50] Sofronia, A.M.; Baies, R.; Anghel, E.M.; Marinescu, C.A.; Tanasescu, S. Thermal and Structural Characterization of Synthetic and Natural Nanocrystalline Hydroxyapatite. Mater. Sci. Eng. C.2014, 43, 153–163. https://doi.org/10.1016/j.msec.2014.07.023
dc.relation.references[51] Markovic, M. Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material Volume. J. Res. Natl. Inst. Stand. Technol. 2004, 109,253–568. https://doi.org/10.1097/00000658-199102000-00001
dc.relation.references[52] Walters, M.A.; Leung, Y.C.; Blumenthal, N.C.; Konsker, K.A.; LeGeros, R.Z.A Raman and Infrared Spectroscopic Investigation of Biological Hydroxyapatite. J. Inorg. Biochem.1990, 39(3), 193-200. https://doi.org/10.1016/0162-0134[90]84002-7
dc.relation.references[53] Jaber, H.L.; Hammood, A.S.; Parvin, N. Synthesis and Characterization of Hydroxyapatite Powder from Natural Camelus Bone. J. Aust. Ceram. Soc.2018, 54, 1-10. https://doi.org/10.1007/s41779-017-0120-0
dc.relation.references[54] Esmaeilkhanian, A.; Sharifianjazi, F.; Abouchenari, A.; Rouhani, A.; Parvin, N.; Irani, M. Synthesis and Characterization of Natural Nano-Hydroxyapatite Derived from Turkey Femur-Bone Waste. Appl. Biochem. Biotechnol.2019, 189, 919–932. https://doi.org/10.1007/s12010-019-03046-6
dc.relation.references[55] Hariani, P.L.; Muryati, M.; Said, M.; Salni, S. Synthesis of Nano-Hydroxyapatite from Snakehead [Channa Striata] Fish Bone and Its Antibacterial Properties. Key Eng. Mater.2020, 840, 293–299. https://doi.org/10.4028/www.scientific.net/kem.840.293
dc.relation.references[56] Bano, N.; Jikan, S.S.; Basri, H.; Adzila, S.; Zago, D.M. XRD and FTIR Study of A&B Type Carbonated Hydroxyapatite Extracted from Bovine Bone. AIP Conf. Proc.2019, 2068, 0201001-0201006. https://doi.org/10.1063/1.5089399
dc.relation.references[57] Shavandi, A.; Bekhit, A.E.D.A.; Ali, A.; Sun, Z. Synthesis of Nano-Hydroxyapatite [NHA] from Waste Mussel Shells Using a Rapid Microwave Method. Mater. Chem. Phys.2015, 149, 607–616. https://doi.org/10.1016/j.matchemphys.2014.11.016
dc.relation.references[58] Gayathri, B.; Muthukumarasamy, N.; Velauthapillai, D.; Santhosh, S.B. Magnesium Incorporated Hydroxyapatite Nanoparticles : Preparation, Characterization, Antibacterial and Larvicidal Activity. Arab. J. Chem.2018, 11, 645–654. https://doi.org/10.1016/j.arabjc.2016.05.010
dc.relation.references[59] Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone. Curr. Appl. Phys.2008, 8(2-3), 270–272. https://doi.org/10.1016/j.cap.2007.10.076
dc.relation.references[60] Akhavan, A.; Sheikh, N.; Khoylou, F.; Naimian, F.; Ataeivarjovi, E. Synthesis of Antimicrobial Silver/Hydroxyapatite Nanocomposite by Gamma Irradiation. Radiat. Phys. Chem.2014, 98, 46–50. https://doi.org/10.1016/j.radphyschem.2014.01.004
dc.relation.references[61] Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus. J. Biomed. Mater. Res.2000, 52, 662–668. https://doi.org/10.1002/1097-4636[20001215]52:4<662::AID-JBM10>3.0.CO;2-3
dc.relation.references[62] Varkey, A.J. Antibacterial Properties of Some Metals and Alloys in Combating Coliforms in Contaminated Water. Sci. Res. Essays.2010, 5 (24), 3834–3839.
dc.relation.referencesen[1] Manalu, J.L.; Soegijono, B.; Indrani, D.J. Characterization of Hydroxyapatite Derived from Bovine Bone. Asian J. Appl. Sci.2015, 3 (4), 758–765.
dc.relation.referencesen[2] Lim, K.T.; Kim, J.W.; Kim, J.; Chung, J.H. Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones. J. Biosyst. Eng.2014, 39, 227–234. https://doi.org/10.5307/jbe.2014.39.3.227
dc.relation.referencesen[3] Ooi, C.Y.; Hamdi, M.; Ramesh, S. Properties of Hydroxyapatite Produced by Annealing of Bovine Bone. Ceram. Int.2007, 33, 1171–1177. https://doi.org/10.1016/j.ceramint.2006.04.001
dc.relation.referencesen[4] Kolmas, J.; Groszyk, E.; Kwiatkowska, R.D. Substituted Hydroxyapatites with Antibacterial Properties. Biomed Res. Int.2014, 2014,Article ID 178123. https://doi.org/10.1155/2014/178123
dc.relation.referencesen[5] Rana, M.; Akhtar, N.; Rahman, S.; Hasan, Z. Extraction and Characterization of Hydroxyapatite from Bovine Cortical Bone and Effect of Radiation. Int. J. Biosci.2017, 11, 20–30. https://doi.org/10.12692/ijb/11.3.20-30
dc.relation.referencesen[6] Balu, S.; Sundaradoss, M. V.; Andra, S.; Jeevanandam, J. Facile Biogenic Fabrication of Hydroxyapatite Nanorods Using Cuttlefish Bone and Their Bactericidal and Biocompatibility Study. Beilstein J. Nanotechnol.2020, 11, 285–295. https://doi.org/10.3762/bjnano.11.21.
dc.relation.referencesen[7] Savvova, O. Biocide Apatite Glass-Ceramic Materials for Bone Endoprosthetics. Chem. Chem. Technol. 2013, 7, 109-112.https://doi.org/10.23939/chcht07.01.109
dc.relation.referencesen[8] Savvova, O.; Babich, O.; Fesenko, O. Investigation of Structure Formation in Calciumsilicophosphate Glass-Ceramic Coatings for Dental Implants. Chem. Chem. Technol. 2018, 12, 244-250. https://doi.org/10.23939/chcht12.02.244
dc.relation.referencesen[9] Nur, A.; Budiman, A. W.; Jumari, A.; Nazriati, N.; Fajaroh.; F. Electrosynthesis of Ni-Co/Hydroxyapatite As a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride [NaBH4] Solutions. Chem. Chem. Technol. 2021, 15, 389-394.https://doi.org/10.23939/chcht15.03.389
dc.relation.referencesen[10] Singh, G.; Singh, R.P.; Jolly, S.S. Customized Hydroxyapatites for Bone-Tissue Engineering and Drug Delivery Applications: A Review. J. Sol-Gel Sci. Technol.2020, 94, 505–530. https://doi.org/10.1007/s10971-020-05222-1
dc.relation.referencesen[11] Fathi, M.H.; Hanifi, A.; Mortazavi, V. Preparation and Bioactivity Evaluation of Bone-like Hydroxyapatite Nanopowder. J. Mater. Process. Technol.2008, 202(1-3), 536–542. https://doi.org/10.1016/j.jmatprotec.2007.10.004
dc.relation.referencesen[12] Eshtiagh-Hosseini, H.; Housaindokht, M.R.; Chahkandi, M. Effects of Parameters of Sol-Gel Process on the Phase Evolution of Sol-Gel-Derived Hydroxyapatite. Mater. Chem. Phys.2007, 106(2–3), 310–316. https://doi.org/10.1016/j.matchemphys.2007.06.002
dc.relation.referencesen[13] Han, Y.C.; Wang, X.Y.; Li, S.P. Change of Phase Composition and Morphology of Sonochemically Synthesised Hydroxyapatite Nanoparticles with Glycosaminoglycans during Thermal Treatment. Adv. Appl. Ceram.2009, 108, 400–405. https://doi.org/10.1179/174367609X414134
dc.relation.referencesen[14] Giardina, M.A.; Fanovich, M.A. Synthesis of Nanocrystalline Hydroxyapatite from Ca[OH]2 and H3PO4 Assisted by Ultrasonic Irradiation. Ceram. Int.2010, 36, 1961–1969. https://doi.org/10.1016/j.ceramint.2010.05.008
dc.relation.referencesen[15] Barakat, N.A.M.; Khil, M.S.; Omran, A.M.; Sheikh, F.A.; Kim, H.Y. Extraction of Pure Natural Hydroxyapatite from the Bovine Bones Bio Waste by Three Different Methods. J. Mater. Process. Technol.2009, 209(7), 3408–3415. https://doi.org/10.1016/j.jmatprotec.2008.07.040
dc.relation.referencesen[16] Neira, I.S.; Guitián, F.; Taniguchi, T.; Watanabe, T.; Yoshimura, M. Hydrothermal Synthesis of Hydroxyapatite Whiskers with Sharp Faceted Hexagonal Morphology. J. Mater. Sci.2008, 43(7), 2171–2178. https://doi.org/10.1007/s10853-007-2032-9
dc.relation.referencesen[17] Iqbal, N.; Abdul Kadir, M.R.; Nik Malek, N.A.N.; Humaimi Mahmood, N.; Raman Murali, M.; Kamarul, T. Rapid Microwave Assisted Synthesis and Characterization of Nanosized Silver-Doped Hydroxyapatite with Antibacterial Properties. Mater. Lett.2012, 89, 118–122. https://doi.org/10.1016/j.matlet.2012.08.057
dc.relation.referencesen[18] Hassan, M.N.; Mahmoud, M.M.; El-Fattah, A.A.; Kandil, S. Microwave-Assisted Preparation of Nano-Hydroxyapatite for Bone Substitutes. Ceram. Int.2016, 42(3), 3725–3744. https://doi.org/10.1016/j.ceramint.2015.11.044
dc.relation.referencesen[19] Ronan, K.; Kannan, M.B. Novel Sustainable Route for Synthesis of Hydroxyapatite Biomaterial from Biowastes. ACS Sustain. Chem. Eng.2017, 5(3), 2237–2245. https://doi.org/10.1021/acssuschemeng.6b02515
dc.relation.referencesen[20] Abdulrahman, I.; Tijani, H.I.; Mohammed, B.A.; Saidu, H.; Yusuf, H.; Ndejiko Jibrin, M.; Mohammed, S. From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite. J. Mater.2014, 2014, Article ID 802467. https://doi.org/10.1155/2014/802467
dc.relation.referencesen[21] Rajesh, R.; Hariharasubramanian, A.; Ravichandran, Y.D. Chicken Bone as a Bioresource for the Bioceramic [Hydroxyapatite]. Phosphorus, Sulfur Silicon Relat. Elem.2012, 187(8), 914–925. https://doi.org/10.1080/10426507.2011.650806
dc.relation.referencesen[22] Malla, K.P.; Regmi, S.; Nepal, A.; Bhattarai, S.; Yadav, R. J.; Sakurai, S.; Adhikari, R. Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone. Int. J. Biomater.2020, 2020,Article ID 1690178. https://doi.org/10.1155/2020/1690178
dc.relation.referencesen[23] Fara, A.N.K.A.; Abdullah, H.Z. Characterization of Derived Natural Hydroxyapatite [HAp] Obtained from Different Types of Tilapia Fish Bones and Scales. AIP Conf. Proc.2015, 1669, 020071-0200776. https://doi.org/10.1063/1.4919215
dc.relation.referencesen[24] Venkatesan, J.; Lowe, B.; Manivasagan, P.; Kang, K.H.; Chalisserry, E.P.; Anil, S.; Kim, D.G.; Kim, S.K. Isolation and Characterization of Nano-Hydroxyapatite from Salmon Fish Bone. Materials2015, 8(8), 5426–5439. https://doi.org/10.3390/ma8085253
dc.relation.referencesen[25] Pandey, G.; Dhakal, K.N.; Singh, A.K.; Dhungel, S.K.; Adhikari, R. Facile Methods of Preparing Pure Hydroxyapatite Nanoparticles in Ordinary Laboratories. Bibechana2021, 18(1), 83–90. https://doi.org/10.3126/bibechana.v18i1.29600
dc.relation.referencesen[26] Laonapakul, T. Synthesis of Hydroxyapatite from Biogenic Wastes. KKU Eng. J.2015, 42(3), 269–275. https://doi.org/10.14456/kkuenj.2015.30
dc.relation.referencesen[27] Odusote, J.K.; Danyuo, Y.; Baruwa, A.D.; Azeez, A.A. Synthesis and Characterization of Hydroxyapatite from Bovine Bone for Production of Dental Implants. J. Appl. Biomater. Funct. Mater.2019, 17, 1-7 https://doi.org/10.1177/2280800019836829
dc.relation.referencesen[28] Mohd Pu’ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon2019, 5, 1-14. https://doi.org/10.1016/j.heliyon.2019.e01588
dc.relation.referencesen[29] Ramesh, S.; Loo, Z.Z.; Tan, C.Y.; Chew, W.J.K.; Ching, Y.C.; Tarlochan, F.; Chandran, H.; Krishnasamy, S.; Bang, L.T.; Sarhan, A.A.D. Characterization of Biogenic Hydroxyapatite Derived from Animal Bones for Biomedical Applications. Ceram. Int.2018, 44(9), 10525–10530. https://doi.org/10.1016/j.ceramint.2018.03.072
dc.relation.referencesen[30] Uskoković, V.; Iyer, M.A.; Wu, V.M. One Ion to Rule Them All: The Combined Antibacterial, Osteoinductive and Anticancer Properties of Selenite-Incorporated Hydroxyapatite. J. Mater. Chem. B.2017, 5(7), 1430–1445. https://doi.org/10.1039/P.6tb03387c
dc.relation.referencesen[31] Zhang, X.; Chaimayo, W.; Yang, C.; Yao, J.; Miller, B.L.; Yates, M.Z. Silver-Hydroxyapatite Composite Coatings with Enhanced Antimicrobial Activities through Heat Treatment. Surf. Coatings Technol.2017, 325, 39–45. https://doi.org/10.1016/j.surfcoat.2017.06.013.
dc.relation.referencesen[32] Ajduković, Z R.; Mihajilov-Krstev, T.M.; Ignjatović, N.L.; Stojanović, Z.; Mladenović-Antić, S.B.; Kocić, B.D.; Najman, S.; Petrović, N.D.; Uskoković, D.P. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties. J. Nanosci. Nanotechnol.2016, 16, 1420–1428. https://doi.org/10.1166/jnn.2016.10699
dc.relation.referencesen[33] Padmanabhan, V.P.; Kulandaivelu, R.; Nellaiappan, S.N.T.S.; Lakshmipathy, M.; Sagadevan, S.; Johan, M.R. Facile Fabrication of Phase Transformed Cerium[IV] Doped Hydroxyapatite for Biomedical Applications – A Health Care Approach. Ceram. Int.2020, 46, 2510–2522. https://doi.org/10.1016/j.ceramint.2019.09.245
dc.relation.referencesen[34] Jenifer, A.; Sakthivel, P.; Senthilarasan, K.; Sivaprakash, P.; Arumugam, S. In Vitro Analysis of Nickel Doped Hydroxyapatite for Biomedical Applications. Int. J. Sci. Technol. Res.2019, 8(11), 781–787.
dc.relation.referencesen[35] Resmim, C.M.; Dalpasquale, M.; Vielmo, N.I.C.; Mariani, F.Q.; Villalba, J.C.; Anaissi, F.J.; Caetano, M.M.; Tusi, M.M. Study of Physico-Chemical Properties and in Vitro Antimicrobial Activity of Hydroxyapatites Obtained from Bone Calcination. Prog. Biomater.2019, 8, 1–9. https://doi.org/10.1007/s40204-018-0105-2
dc.relation.referencesen[36] Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine2017, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956
dc.relation.referencesen[37] Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Do Thi Thuy, N.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the Economic Cost of Antimicrobial Resistance per Antibiotic Consumed to Inform the Evaluation of Interventions Affecting Their Use. Antimicrob. Resist. Infect. Control2018, 7, Article number 98. https://doi.org/10.1186/s13756-018-0384-3
dc.relation.referencesen[38] Ciobanu, C.S.; Iconaru, S.L.; Chifiriuc, M.C.; Costescu, A.; Le Coustumer, P.; Predoi, D. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles. Biomed Res. Int.2013, 2013, Article ID 916218. https://doi.org/10.1155/2013/916218
dc.relation.referencesen[39] Swetha, M.; Sahithi, K.; Moorthi, A.; Saranya, N.; Saravanan, S.; Ramasamy, K.; Srinivasan, N.; Selvamurugan, N. Synthesis, Characterization, and Antimicrobial Activity of Nano-Hydroxyapatite-Zinc for Bone Tissue Engineering Applications. J. Nanosci. Nanotechnol.2012, 12, 167–172. https://doi.org/10.1166/jnn.2012.5142
dc.relation.referencesen[40] Venkatesan, J.; Kim, S.K. Effect of Temperature on Isolation and Characterization of Hydroxyapatite from Tuna [Thunnus Obesus] Bone. Materials 2010, 3, 4761–4772. https://doi.org/10.3390/ma3104761
dc.relation.referencesen[41] Magaldi, S.; Mata-Essayag, S.; Hartung De Capriles, C.; Perez, C.; Colella, M. T.; Olaizola, C.; Ontiveros, Y. Well Diffusion for Antifungal Susceptibility Testing. Int. J. Infect. Dis.2004, 8, 39–45. https://doi.org/10.1016/j.ijid.2003.03.002
dc.relation.referencesen[42] Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal.2016, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
dc.relation.referencesen[43] Poralan, G.M.; Gambe, J.E.; Alcantara, E.M.; Vequizo, R.M. X-Ray Diffraction and Infrared Spectroscopy Analyses on the Crystallinity of Engineered Biological Hydroxyapatite for Medical Application. IOP Conf. Ser. Mater. Sci. Eng.2015, 79, 1-7. https://doi.org/10.1088/1757-899X/79/1/012028
dc.relation.referencesen[44] Sobczak-Kupiec, A.; Wzorek, Z. The Influence of Calcination Parameters on Free Calcium Oxide Content in Natural Hydroxyapatite. Ceram. Int.2012, 38, 641–647. https://doi.org/10.1016/j.ceramint.2011.06.065
dc.relation.referencesen[45] Fleet, M.E. Infrared Spectra of Carbonate Apatites: Evidence for a Connection between Bone Mineral and Body Fluids. Am. Mineral.2017, 102, 149–157. https://doi.org/10.2138/am-2017-5704
dc.relation.referencesen[46] Khoo, W.; Nor, F.M.; Ardhyananta, H.; Kurniawan, D. Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures. Procedia Manuf.2015, 2, 196–201. https://doi.org/10.1016/j.promfg.2015.07.034
dc.relation.referencesen[47] Bahrololoom, M.E.; Javidi, M.; Javadpour, S.; Ma, J. Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash. J. Ceram. Process. Res.2009, 10(2), 129–138. https://doi.org/10.36410/jcpr.2009.10.2.129
dc.relation.referencesen[48] Ofudje, E.A.; Rajendran, A.; Adeogun, A.I.; Idowu, M.A.; Kareem, S.O.; Pattanayak, D.K. Synthesis of Organic Derived Hydroxyapatite Scaffold from Pig Bone Waste for Tissue Engineering Applications. Adv. Powder Technol.2018, 29, 1–8. https://doi.org/10.1016/j.apt.2017.09.008
dc.relation.referencesen[49] Liu, P.; Li, Z.; Yuan, L.; Sun, X.; Zhou, Y. Pourbaix-Guided Mineralization and Site-Selective Photoluminescence Properties of Rare Earth Substituted B-Type Carbonated Hydroxyapatite Nanocrystals. Molecules2021, 26 (3), 540. https://doi.org/10.3390/molecules26030540
dc.relation.referencesen[50] Sofronia, A.M.; Baies, R.; Anghel, E.M.; Marinescu, C.A.; Tanasescu, S. Thermal and Structural Characterization of Synthetic and Natural Nanocrystalline Hydroxyapatite. Mater. Sci. Eng. P.2014, 43, 153–163. https://doi.org/10.1016/j.msec.2014.07.023
dc.relation.referencesen[51] Markovic, M. Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material Volume. J. Res. Natl. Inst. Stand. Technol. 2004, 109,253–568. https://doi.org/10.1097/00000658-199102000-00001
dc.relation.referencesen[52] Walters, M.A.; Leung, Y.C.; Blumenthal, N.C.; Konsker, K.A.; LeGeros, R.Z.A Raman and Infrared Spectroscopic Investigation of Biological Hydroxyapatite. J. Inorg. Biochem.1990, 39(3), 193-200. https://doi.org/10.1016/0162-0134[90]84002-7
dc.relation.referencesen[53] Jaber, H.L.; Hammood, A.S.; Parvin, N. Synthesis and Characterization of Hydroxyapatite Powder from Natural Camelus Bone. J. Aust. Ceram. Soc.2018, 54, 1-10. https://doi.org/10.1007/s41779-017-0120-0
dc.relation.referencesen[54] Esmaeilkhanian, A.; Sharifianjazi, F.; Abouchenari, A.; Rouhani, A.; Parvin, N.; Irani, M. Synthesis and Characterization of Natural Nano-Hydroxyapatite Derived from Turkey Femur-Bone Waste. Appl. Biochem. Biotechnol.2019, 189, 919–932. https://doi.org/10.1007/s12010-019-03046-6
dc.relation.referencesen[55] Hariani, P.L.; Muryati, M.; Said, M.; Salni, S. Synthesis of Nano-Hydroxyapatite from Snakehead [Channa Striata] Fish Bone and Its Antibacterial Properties. Key Eng. Mater.2020, 840, 293–299. https://doi.org/10.4028/www.scientific.net/kem.840.293
dc.relation.referencesen[56] Bano, N.; Jikan, S.S.; Basri, H.; Adzila, S.; Zago, D.M. XRD and FTIR Study of A&B Type Carbonated Hydroxyapatite Extracted from Bovine Bone. AIP Conf. Proc.2019, 2068, 0201001-0201006. https://doi.org/10.1063/1.5089399
dc.relation.referencesen[57] Shavandi, A.; Bekhit, A.E.D.A.; Ali, A.; Sun, Z. Synthesis of Nano-Hydroxyapatite [NHA] from Waste Mussel Shells Using a Rapid Microwave Method. Mater. Chem. Phys.2015, 149, 607–616. https://doi.org/10.1016/j.matchemphys.2014.11.016
dc.relation.referencesen[58] Gayathri, B.; Muthukumarasamy, N.; Velauthapillai, D.; Santhosh, S.B. Magnesium Incorporated Hydroxyapatite Nanoparticles : Preparation, Characterization, Antibacterial and Larvicidal Activity. Arab. J. Chem.2018, 11, 645–654. https://doi.org/10.1016/j.arabjc.2016.05.010
dc.relation.referencesen[59] Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone. Curr. Appl. Phys.2008, 8(2-3), 270–272. https://doi.org/10.1016/j.cap.2007.10.076
dc.relation.referencesen[60] Akhavan, A.; Sheikh, N.; Khoylou, F.; Naimian, F.; Ataeivarjovi, E. Synthesis of Antimicrobial Silver/Hydroxyapatite Nanocomposite by Gamma Irradiation. Radiat. Phys. Chem.2014, 98, 46–50. https://doi.org/10.1016/j.radphyschem.2014.01.004
dc.relation.referencesen[61] Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus. J. Biomed. Mater. Res.2000, 52, 662–668. https://doi.org/10.1002/1097-4636[20001215]52:4<662::AID-JBM10>3.0.CO;2-3
dc.relation.referencesen[62] Varkey, A.J. Antibacterial Properties of Some Metals and Alloys in Combating Coliforms in Contaminated Water. Sci. Res. Essays.2010, 5 (24), 3834–3839.
dc.relation.urihttps://doi.org/10.5307/jbe.2014.39.3.227
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2006.04.001
dc.relation.urihttps://doi.org/10.1155/2014/178123
dc.relation.urihttps://doi.org/10.12692/ijb/11.3.20-30
dc.relation.urihttps://doi.org/10.3762/bjnano.11.21
dc.relation.urihttps://doi.org/10.23939/chcht07.01.109
dc.relation.urihttps://doi.org/10.23939/chcht12.02.244
dc.relation.urihttps://doi.org/10.23939/chcht15.03.389
dc.relation.urihttps://doi.org/10.1007/s10971-020-05222-1
dc.relation.urihttps://doi.org/10.1016/j.jmatprotec.2007.10.004
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2007.06.002
dc.relation.urihttps://doi.org/10.1179/174367609X414134
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2010.05.008
dc.relation.urihttps://doi.org/10.1016/j.jmatprotec.2008.07.040
dc.relation.urihttps://doi.org/10.1007/s10853-007-2032-9
dc.relation.urihttps://doi.org/10.1016/j.matlet.2012.08.057
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2015.11.044
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.6b02515
dc.relation.urihttps://doi.org/10.1155/2014/802467
dc.relation.urihttps://doi.org/10.1080/10426507.2011.650806
dc.relation.urihttps://doi.org/10.1155/2020/1690178
dc.relation.urihttps://doi.org/10.1063/1.4919215
dc.relation.urihttps://doi.org/10.3390/ma8085253
dc.relation.urihttps://doi.org/10.3126/bibechana.v18i1.29600
dc.relation.urihttps://doi.org/10.14456/kkuenj.2015.30
dc.relation.urihttps://doi.org/10.1177/2280800019836829
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2019.e01588
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2018.03.072
dc.relation.urihttps://doi.org/10.1039/c6tb03387c
dc.relation.urihttps://doi.org/10.1016/j.surfcoat.2017.06.013
dc.relation.urihttps://doi.org/10.1166/jnn.2016.10699
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2019.09.245
dc.relation.urihttps://doi.org/10.1007/s40204-018-0105-2
dc.relation.urihttps://doi.org/10.2147/IJN.S121956
dc.relation.urihttps://doi.org/10.1186/s13756-018-0384-3
dc.relation.urihttps://doi.org/10.1155/2013/916218
dc.relation.urihttps://doi.org/10.1166/jnn.2012.5142
dc.relation.urihttps://doi.org/10.3390/ma3104761
dc.relation.urihttps://doi.org/10.1016/j.ijid.2003.03.002
dc.relation.urihttps://doi.org/10.1016/j.jpha.2015.11.005
dc.relation.urihttps://doi.org/10.1088/1757-899X/79/1/012028
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2011.06.065
dc.relation.urihttps://doi.org/10.2138/am-2017-5704
dc.relation.urihttps://doi.org/10.1016/j.promfg.2015.07.034
dc.relation.urihttps://doi.org/10.36410/jcpr.2009.10.2.129
dc.relation.urihttps://doi.org/10.1016/j.apt.2017.09.008
dc.relation.urihttps://doi.org/10.3390/molecules26030540
dc.relation.urihttps://doi.org/10.1016/j.msec.2014.07.023
dc.relation.urihttps://doi.org/10.1097/00000658-199102000-00001
dc.relation.urihttps://doi.org/10.1016/0162-0134
dc.relation.urihttps://doi.org/10.1007/s41779-017-0120-0
dc.relation.urihttps://doi.org/10.1007/s12010-019-03046-6
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/kem.840.293
dc.relation.urihttps://doi.org/10.1063/1.5089399
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2014.11.016
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2016.05.010
dc.relation.urihttps://doi.org/10.1016/j.cap.2007.10.076
dc.relation.urihttps://doi.org/10.1016/j.radphyschem.2014.01.004
dc.relation.urihttps://doi.org/10.1002/1097-4636
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Parajuli K., Malla K. P., Panchen N., Ganga G. C., Adhikari R., 2022
dc.subjectкістки буйвола
dc.subjectгідроксиапатит
dc.subjectнаноматеріал
dc.subjectантибактеріальна активність
dc.subjectбіокераміка
dc.subjectbuffalo bone
dc.subjecthydroxyapatite
dc.subjectnanomaterial
dc.subjectantibacterial activity
dc.subjectbioceramic
dc.titleIsolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization
dc.title.alternativeВиділення антибактеріального нано-гідроксиапатитного біоматеріалу з кісток буйволів та його характеристика
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n1_Parajuli_K-Isolation_of_Antibacterial_133-141.pdf
Size:
882.28 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n1_Parajuli_K-Isolation_of_Antibacterial_133-141__COVER.png
Size:
546.08 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: