Analysis of processes which occur during the destruction of a copper shell on polyethylene granules
dc.citation.epage | 192 | |
dc.citation.issue | 1 | |
dc.citation.spage | 186 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кучеренко, А. М. | |
dc.contributor.author | Довга, Ю. І. | |
dc.contributor.author | Кузнецова, М. Я. | |
dc.contributor.author | Моравський, В. С. | |
dc.contributor.author | Kucherenko, A. M. | |
dc.contributor.author | Dovha, Y. I. | |
dc.contributor.author | Kuznetsova, M. Ya. | |
dc.contributor.author | Moravskyi, V. S. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:51Z | |
dc.date.available | 2024-01-22T09:22:51Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Виконано розрахунок геометричних розмірів мідної оболонки, сформованої методом хімічного осадження на сферичній поліетиленовій гранулі. Показано, що основним чинником, який визначає товщину сформованого шару міді, є початковий розмір гранули поліетилену. Розглянуто процеси руйнування сформованої на поліетиленовій гранулі мідної оболонки під час теплового розширення полімеру. Розраховано значення граничних температур, за яких мідна оболонка ще зберігає цілісність залежно від її товщини. | |
dc.description.abstract | The geometric dimensions of the copper shell formed by chemical deposition on a spherical polyethylene granule were calculated. It is shown that the main factor determining the thickness of the formed copper layer is the initial size of the polyethylene granule. The processes of destruction of the copper shell formed on the polyethylene granule during thermal expansion of the polymer are considered. The values of the limit temperatures in which the copper shell still retains its integrity depending on its thickness are calculated. | |
dc.format.extent | 186-192 | |
dc.format.pages | 7 | |
dc.identifier.citation | Analysis of processes which occur during the destruction of a copper shell on polyethylene granules / A. M. Kucherenko, Y. I. Dovha, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 186–192. | |
dc.identifier.citationen | Analysis of processes which occur during the destruction of a copper shell on polyethylene granules / A. M. Kucherenko, Y. I. Dovha, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 186–192. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.186 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60930 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Misiura, A. I., Mamunya, Ye. P., Kulish, M. P. (2020). Metal-Filled Epoxy Composites: Mechanical Properties and Electrical/Thermal Conductivity. Journal of Macromolecular Science, Part B, 59:2, 121–136. https://doi.org/10.1080/00222348.2019.1695820. | |
dc.relation.references | 2. Nayak, S. K., Mohanty, D. (2020). Silver nanoparticles decorated α-alumina as a hybrid filler to fabricate epoxy-based thermal conductive hybrid composite for electronics packaging application. Journal of Adhesion Science and Technology, 34:14, 1507–1525. https://doi.org/10.1080/01694243.2020.1714138. | |
dc.relation.references | 3. Roldughin, V. I., Vysotskii, V. V. (2000). Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Progress in Organic Coatings, 39, 2–4, 81–100. https://doi.org/10.1016/S0300-9440(00)00140-5. | |
dc.relation.references | 4. Zaaba, N. F., Ismail, H., Saeed, A. M. (2021). A Review: Metal Filled Thermoplastic Composites. Polymer-Plastics Technology and Materials, 60:10, 1033–1050. https://doi.org/10.1080/25740881.2021.1882489. | |
dc.relation.references | 5. Vadivelu, M. A., Kumar, C. R., Joshi, G. M. (2016). Polymer composites for thermal management: a review. Composite Interfaces, 23:9, 847–872. https://doi.org/10.1080/09276440.2016.1176853. | |
dc.relation.references | 6. Mamunya, Ye. P., Muzychenko, Yu. V., Pissis, P., Lebedev, E. V., Shut, M. I. (2001). Processing, Structure, And Electrical Properties Of Metal-Filled Polymers. Journal of Macromolecular Science, Part B, 40:3–4, 591–602. https://doi.org/10.1081/MB-100106179. | |
dc.relation.references | 7. Al-Attabi, N. Y., Adhikari, R., Cass, P., Bown, M., Gunatillake, P. A., Malherbe, F., Yu, A. (2019). Silver nanowire as an efficient filler for high conductive polyurethane composites. Materials Science and Technology, 35:4, 462–468. https://doi.org/10.1080/02670836.2019.1570441. | |
dc.relation.references | 8. Berezhnyy, B., Grytsenko, O., Suberlyak, O., Dulebová, L., Fechan, A. (2021). Synergistic effects during the obtaining of polyvinylpyrrolidone nickel-filled copolymers. Molecular Crystals and Liquid Crystals, 716:1, 50–60. https://doi.org/10.1080/15421406.2020.1859695. | |
dc.relation.references | 9. Marshall, D. W. (2000). Copper-based Conductive Polymers: A New Concept in Conductive Resins. The Journal of Adhesion, 74:1–4, 301–315. https://doi.org/10.1080/00218460008034533. | |
dc.relation.references | 10. Huang, Y., Ellingford, C., Bowen, C., McNally, T., Wu, D., Wan, C. (2020). Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. International Materials Reviews, 65:3, 129-163. https://doi.org/10.1080/09506608.2019.1582180. | |
dc.relation.references | 11. Tawansi, A., Zidan, H.M. (1991). Tunnelling and Thermally Stimulated Phenomena in Highly Filled PMMA Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 15:2, 77–83. https://doi.org/10.1080/00914039108031524. | |
dc.relation.references | 12. Kucherenko A., Nikitchuk О., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4:1, 191–197. https://doi.org/10.23939/ctas2021.01.191. | |
dc.relation.references | 13. Kucherenko, А. N., Mankevych, S. О., Kuznetsova, М. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140–145. https://doi.org/10.23939/ctas2020.02.140. | |
dc.relation.references | 14. Heinle, M., Drummer, D. (2015). Temperaturedependent coefficient of thermal expansion (CTE) of injection molded, short-glass-fiber-reinforced polymers. Polym. Eng. Sci., 55, 2661–2668. https://doi.org/10.1002/pen.24159. | |
dc.relation.references | 15. Shahapov, V., Yumahulova, Y. (2013). Povysheniye davleniya zhidkosti v zamknutom obyeme pri teplovom vozdeystvii cherez stenki. Teplofizika i aeromekhanika, 20(4), 505–512. | |
dc.relation.references | 16. Zaslavskiy, B. V. (1986). Kratkiy kurs soprotivleniya materialov. Moskva: Mashinostroyeniye. | |
dc.relation.references | 17. Shalkauskas, M., Vashkyalis A. (1985). Chemical metallization of plastics. Leningrad: Khimiya. | |
dc.relation.references | 18. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials, IEEE 7th Inter. Conf. Nanomaterials: Applications and Properties (NAP-2017), Sumy: Sumy State University. | |
dc.relation.references | 19. Moravskyi, W., Kucherenko, A., Yakushyk, I., Dulebova, L., Garbacz, T. (2018). The technology of metallization of granulated polymer raw materials. Visnyk natsionalnoho universytetu “Lvivska politekhnika”. Serie: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 886, 205–212. | |
dc.relation.references | 20. Tyumentsev, A. N., Panin, V. Ye., Ditenberg, I. A., Pinzhin, Yu. P., Korotayev, A. D., Derevyagina, L. S., Shuba, Ya. V., Valiyev, R. Z. (2001). Osobennosti plasticheskoy deformatsii ul'tramelkozernistoy medi pri raznykh temperaturakh. Fizicheskaya mezomekhanika, 4(6), 77–85. | |
dc.relation.references | 21. Bobylev, A. V. (1987). Mekhanicheskiye i tekhnologicheskiye svoystva metallov: spravochnik. Moskva: Metallurgiya. | |
dc.relation.referencesen | 1. Misiura, A. I., Mamunya, Ye. P., Kulish, M. P. (2020). Metal-Filled Epoxy Composites: Mechanical Properties and Electrical/Thermal Conductivity. Journal of Macromolecular Science, Part B, 59:2, 121–136. https://doi.org/10.1080/00222348.2019.1695820. | |
dc.relation.referencesen | 2. Nayak, S. K., Mohanty, D. (2020). Silver nanoparticles decorated α-alumina as a hybrid filler to fabricate epoxy-based thermal conductive hybrid composite for electronics packaging application. Journal of Adhesion Science and Technology, 34:14, 1507–1525. https://doi.org/10.1080/01694243.2020.1714138. | |
dc.relation.referencesen | 3. Roldughin, V. I., Vysotskii, V. V. (2000). Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Progress in Organic Coatings, 39, 2–4, 81–100. https://doi.org/10.1016/S0300-9440(00)00140-5. | |
dc.relation.referencesen | 4. Zaaba, N. F., Ismail, H., Saeed, A. M. (2021). A Review: Metal Filled Thermoplastic Composites. Polymer-Plastics Technology and Materials, 60:10, 1033–1050. https://doi.org/10.1080/25740881.2021.1882489. | |
dc.relation.referencesen | 5. Vadivelu, M. A., Kumar, C. R., Joshi, G. M. (2016). Polymer composites for thermal management: a review. Composite Interfaces, 23:9, 847–872. https://doi.org/10.1080/09276440.2016.1176853. | |
dc.relation.referencesen | 6. Mamunya, Ye. P., Muzychenko, Yu. V., Pissis, P., Lebedev, E. V., Shut, M. I. (2001). Processing, Structure, And Electrical Properties Of Metal-Filled Polymers. Journal of Macromolecular Science, Part B, 40:3–4, 591–602. https://doi.org/10.1081/MB-100106179. | |
dc.relation.referencesen | 7. Al-Attabi, N. Y., Adhikari, R., Cass, P., Bown, M., Gunatillake, P. A., Malherbe, F., Yu, A. (2019). Silver nanowire as an efficient filler for high conductive polyurethane composites. Materials Science and Technology, 35:4, 462–468. https://doi.org/10.1080/02670836.2019.1570441. | |
dc.relation.referencesen | 8. Berezhnyy, B., Grytsenko, O., Suberlyak, O., Dulebová, L., Fechan, A. (2021). Synergistic effects during the obtaining of polyvinylpyrrolidone nickel-filled copolymers. Molecular Crystals and Liquid Crystals, 716:1, 50–60. https://doi.org/10.1080/15421406.2020.1859695. | |
dc.relation.referencesen | 9. Marshall, D. W. (2000). Copper-based Conductive Polymers: A New Concept in Conductive Resins. The Journal of Adhesion, 74:1–4, 301–315. https://doi.org/10.1080/00218460008034533. | |
dc.relation.referencesen | 10. Huang, Y., Ellingford, C., Bowen, C., McNally, T., Wu, D., Wan, C. (2020). Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. International Materials Reviews, 65:3, 129-163. https://doi.org/10.1080/09506608.2019.1582180. | |
dc.relation.referencesen | 11. Tawansi, A., Zidan, H.M. (1991). Tunnelling and Thermally Stimulated Phenomena in Highly Filled PMMA Composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 15:2, 77–83. https://doi.org/10.1080/00914039108031524. | |
dc.relation.referencesen | 12. Kucherenko A., Nikitchuk O., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4:1, 191–197. https://doi.org/10.23939/ctas2021.01.191. | |
dc.relation.referencesen | 13. Kucherenko, A. N., Mankevych, S. O., Kuznetsova, M. Ya., Moravskyi, V. S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140–145. https://doi.org/10.23939/ctas2020.02.140. | |
dc.relation.referencesen | 14. Heinle, M., Drummer, D. (2015). Temperaturedependent coefficient of thermal expansion (CTE) of injection molded, short-glass-fiber-reinforced polymers. Polym. Eng. Sci., 55, 2661–2668. https://doi.org/10.1002/pen.24159. | |
dc.relation.referencesen | 15. Shahapov, V., Yumahulova, Y. (2013). Povysheniye davleniya zhidkosti v zamknutom obyeme pri teplovom vozdeystvii cherez stenki. Teplofizika i aeromekhanika, 20(4), 505–512. | |
dc.relation.referencesen | 16. Zaslavskiy, B. V. (1986). Kratkiy kurs soprotivleniya materialov. Moskva: Mashinostroyeniye. | |
dc.relation.referencesen | 17. Shalkauskas, M., Vashkyalis A. (1985). Chemical metallization of plastics. Leningrad: Khimiya. | |
dc.relation.referencesen | 18. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials, IEEE 7th Inter. Conf. Nanomaterials: Applications and Properties (NAP-2017), Sumy: Sumy State University. | |
dc.relation.referencesen | 19. Moravskyi, W., Kucherenko, A., Yakushyk, I., Dulebova, L., Garbacz, T. (2018). The technology of metallization of granulated polymer raw materials. Visnyk natsionalnoho universytetu "Lvivska politekhnika". Serie: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 886, 205–212. | |
dc.relation.referencesen | 20. Tyumentsev, A. N., Panin, V. Ye., Ditenberg, I. A., Pinzhin, Yu. P., Korotayev, A. D., Derevyagina, L. S., Shuba, Ya. V., Valiyev, R. Z. (2001). Osobennosti plasticheskoy deformatsii ul'tramelkozernistoy medi pri raznykh temperaturakh. Fizicheskaya mezomekhanika, 4(6), 77–85. | |
dc.relation.referencesen | 21. Bobylev, A. V. (1987). Mekhanicheskiye i tekhnologicheskiye svoystva metallov: spravochnik. Moskva: Metallurgiya. | |
dc.relation.uri | https://doi.org/10.1080/00222348.2019.1695820 | |
dc.relation.uri | https://doi.org/10.1080/01694243.2020.1714138 | |
dc.relation.uri | https://doi.org/10.1016/S0300-9440(00)00140-5 | |
dc.relation.uri | https://doi.org/10.1080/25740881.2021.1882489 | |
dc.relation.uri | https://doi.org/10.1080/09276440.2016.1176853 | |
dc.relation.uri | https://doi.org/10.1081/MB-100106179 | |
dc.relation.uri | https://doi.org/10.1080/02670836.2019.1570441 | |
dc.relation.uri | https://doi.org/10.1080/15421406.2020.1859695 | |
dc.relation.uri | https://doi.org/10.1080/00218460008034533 | |
dc.relation.uri | https://doi.org/10.1080/09506608.2019.1582180 | |
dc.relation.uri | https://doi.org/10.1080/00914039108031524 | |
dc.relation.uri | https://doi.org/10.23939/ctas2021.01.191 | |
dc.relation.uri | https://doi.org/10.23939/ctas2020.02.140 | |
dc.relation.uri | https://doi.org/10.1002/pen.24159 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | металонаповнені полімерні композити | |
dc.subject | металізація | |
dc.subject | металеве покриття | |
dc.subject | оболонка | |
dc.subject | поліетилен | |
dc.subject | мідь | |
dc.subject | metal-filled polymer composites | |
dc.subject | metallization | |
dc.subject | metal coating | |
dc.subject | shell | |
dc.subject | polyethylene | |
dc.subject | copper | |
dc.title | Analysis of processes which occur during the destruction of a copper shell on polyethylene granules | |
dc.title.alternative | Аналіз процесів, що відбуваються під час руйнування мідної оболонки на поліетиленовій гранулі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1