Energy efficiency of modernization of translucent building envelope structures

dc.citation.epage96
dc.citation.issue2
dc.citation.spage87
dc.contributor.affiliationТернопільський національний технічний університет імені Івана Пулюя
dc.contributor.affiliationІвано-Франківський національний технічний університет нафти і газу
dc.contributor.affiliationTernopil Ivan Puluj National Technical University
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.contributor.authorБурмака, Віталій
dc.contributor.authorТарасенко, Микола Григорович
dc.contributor.authorКозак, Катерина Миколаївна
dc.contributor.authorБурмака, Олександр
dc.contributor.authorСабат, Наталія
dc.contributor.authorBurmaka, Vitalii
dc.contributor.authorTarasenko, Mykola
dc.contributor.authorKozak, Kateryna
dc.contributor.authorBurmaka, Oleksandr
dc.contributor.authorSabat, Nataliia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-19T07:59:50Z
dc.date.available2023-09-19T07:59:50Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractДослідження спрямоване на визначення енергоефективності використання світлопрозорих зовнішніх огороджувальних конструкцій (СЗОК) із різними світлотехнічними та теплотехнічними параметрами. Також розглянуто доцільність заміни СЗОК на сучасніші із більшим термічним опором та меншим коефіцієнтом відносного проникнення сонячної радіації (КВПСР). Здійснено порівняння із урахуванням впливу параметрів СЗОК на споживання електроенергії в офісному приміщенні та компенсацію втрат теплової енергії, а також її економію за рахунок надходження сонячного випромінювання протягом опалювального періоду, видалення надлишкового тепла упродовж охолоджувального періоду та економію електроенергії за рахунок використання денного світла. Встановлено, що, попри меншу площу засклення і світлопропускні характеристики варіанта № 3 (профіль Veka Softline 82 зі склопакетом 4Solar-16Ar-4-12Ar-4і), економія у разі заміни конфігурації СЗОК № 1 на № 3 забезпечує економію енергії від 31,7 (кВт×год)/рік, якщо площа СЗОК 0,5 м 2, до 419,5 (кВт×год)/рік за 6 м2, а у разі заміни варіанта № 2 на № 3 – від 24,7 за 0,5 м2 до 397,2, якщо площа СЗОК 6 м2. Це дає можливість визначати енергетичну та економічну доцільність модернізації СЗОК із установленням металопластикових конструкцій із різними світлотехнічними та теплотехнічними параметрами.
dc.description.abstractThe article focuses on determining the energy efficiency of the translucent structures of building envelope (TSBE) use with different lighting and thermal parameters. The expediency of replacing TSBE with more modern ones with higher thermal resistance and lower solar radiations relative penetration coefficient (SRRPC) is considered. The comparison was made taking into account the influence of TSBE parameters on electricity consumption in the office premises on the compensation of heat energy losses, as well as its savings due to the receipt of solar radiation during the heating period, the removal of excess heat during the cooling period and energy savings through the use of daylight during a year. It was found that despite the smaller glazing area and light-transmitting characteristics of configuration No. 3 (profile Veka Softline 82 with triple-glazed window 4Solar-16Ar-4-12Ar-4і), electricity savings when changing the configuration of TSBE No. 1 to No. 3 leads to energy savings of 31.7 kWh/yr with the TSBE area of 0.5 m2 to 419.5 kWh/yr at 6 m2, and when replacing configuration No. 2 by No. 3 – from 24.7 (STSBE = 0.5 m2) up to 397.2 (STSBE = 6 m2). This makes it possible to determine the energy and economic feasibility of TSBE modernization by installing metal-plastic structures with different lighting and thermal parameters.
dc.format.extent87-96
dc.format.pages10
dc.identifier.citationEnergy efficiency of modernization of translucent building envelope structures / Vitalii Burmaka, Mykola Tarasenko, Kateryna Kozak, Oleksandr Burmaka, Nataliia Sabat // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 87–96.
dc.identifier.citationenEnergy efficiency of modernization of translucent building envelope structures / Vitalii Burmaka, Mykola Tarasenko, Kateryna Kozak, Oleksandr Burmaka, Nataliia Sabat // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 2. — P. 87–96.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60139
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (7), 2021
dc.relation.references[1] Tarasenko, M., Kozak, K., Burmaka, V. (2015) Dynamic of parameters of high-pressure discharge lamp at building-up and dimming. Lighting Engineering & Power Engineering, 3–4, 15–21 (in Ukrainian).
dc.relation.references[2] Chernenko, P. O., Martyniuk, O. V. (2012) Enhancing the effectiveness of short-term forecasting of electric load of united power system. Tekhnichna Elektrodynamika, 1, 63–70 (in Ukrainian).
dc.relation.references[3] Martynov, V. L. (2013) Optimization of geometrical parameters of the form, light apertures and a heater of energy-efficient buildings, Building constructions. Theory and practice, 77, 317–322 (in Ukrainian).
dc.relation.references[4] Martynov, V. L. (2013) Determination of optimal orientation of energy efficient buildings in accordance with standards of illumination and insolation, Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho, 5, 173–176 (in Ukrainian).
dc.relation.references[5] Galinska, T. A., Nosach, B. L., Leshchenko, M. V., Likhtei, V. V. (2013) Experimental studies of the thermal properties of translucent enclosing building envelope. Construction, materials science, mechanical engineering, 68, 104–108 (in Ukrainian).
dc.relation.references[6] Leshсhenko, M. V., Galіnska, T. A., Reznikov, A. A. (2013) Researching of wall cladding structure heat endurance in civil buildings during their thermo modernization, Collection of scientific works. Series: Industrial engineering, construction, 4(2), 114–121 (in Ukrainian).
dc.relation.references[7] Yurin, O., Galinska, T. (2017) Study of heat shielding qualities of brick wall angle with additional insulation located on the outside fences, MATEC Web Conf, 116, 02039. https://doi.org/10.1051/matecconf/201711602039.
dc.relation.references[8] Yurin, O., Azizova, A., Galinska, T. (2018) Study of heat shielding qualities of a brick wall corner with additional insulation on the brick, MATEC Web Conf, 230, 02039. https://doi.org/10.1051/matecconf/201823002039.
dc.relation.references[9] Belous, O. M., Kolesnyk, Y. S. (2011) Structural considerations of energy efficiency of translucent enclosing structures, Modern industrial and civil construction, 7(4), 243–250 (in Ukrainian).
dc.relation.references[10] Kolesnyk, Y. S. (2011) Providing of energy efficiency in civilian buildings with light slit facades, Modern technology, materials and design in construction, 1, 148–154 (in Ukrainian).
dc.relation.references[11] Sopilnyak, A. M. (2017) Improving thermal protection of translucent enclosing structure, Construction, materials science, mechanical engineering, 98, 161–165 (in Ukrainian).
dc.relation.references[12] Jennifer, L., Williamson, P. E., Fu, T., Gabby, B., Testa, J., Hu Ch. (2018) Glazing in commercial buildings – the balance between cost and energy consumption, Building performance analysis conference and simbuild co-organized by ASHRAE and IBPSA-USA Chicago, IL September 26–28, 221–228.
dc.relation.references[13] Ghisi, E., Tinker, J. A. (2001) Optimising energy consumption in offices as a function of window area and room size, Seventh International IBPSA Conference Rio de Janeiro, Brazil August 13–15, 1307–1314.
dc.relation.references[14] Ghisi, E., Tinker, J. A. (2004) Window sizes required for the energy efficiency of a building against window sizes required for view, CIB World Building Congress at: Toronto, Canada, 1–12.
dc.relation.references[15] Mason, M., Airah, L., Kingston, T., Airah, M. (2010) Why determining thermal loads through windowsis such a pane – Part 1, EcoLibrium, 34–40.
dc.relation.references[16] Mason, M., Airah, L., Kingston, T., Airah, M. (2010) Why determining thermal loads through windowsis such a pane – Part 2, EcoLibrium, 30–36.
dc.relation.references[17] Lapa, M., Dvoieglazova, M., Pechonkin, I., Lapa, Yu. (2017) Providing of buildings energoefficiency, Technical Sciences and Technologies, 1(7), 225–233 (in Ukrainian).
dc.relation.references[18] Indigo shire council. URL: http://www.indigoshire.vic.gov.au.
dc.relation.references[19] Serdyuk, V., Serdyuk, T., Franyshina, S. (2019) Improvement of external fencing structures as a source of heat loss in building. Modern technology, materials and design in construction, 26(1), 153–159 (in Ukrainian). https://doi.org/10.31649/2311-1429-2019-1-153-159 (in Ukrainian).
dc.relation.references[20] Serdyuk, V., Honcharyk, A. (2018) Trends in the use of modern windows for residential buildings, Innovative technologies in construction -2018, 13–15 November2018, 4 p. (in Ukrainian).
dc.relation.references[21] Basok, B. I., Nakorchevskii, A. I., Goncharuk, S. M., Kuzhel′, L. N. (2017) Experimental investigations of heat transfer through multiple glass units with account for the action of exterior factors, Journal of engineering physics and thermophysics, 90(1), 94–101.
dc.relation.references[22] Basok, B., Davydenko, B., Zhelykh, V., Goncharuk, S., Kugel, L. (2016) Influence of low-emissivity coating on heat transfer through the doubleglazing windows. Building physics in theory and practice, Scientific Journal, 8(4), 5–8.
dc.relation.references[23] Basok, B. I., Davydenko, B. V., Isaev, S. A., Goncharuk, S. M., Kuzhel′, L. N. (2016) Numerical modeling of heat transfer through a triple-pane window, Journal of engineering physics and thermophysics, 89(5), 1288-1295.
dc.relation.references[24] Lysenko, O. M., Kuzhel, L. M., Bozhko, I. K. (2015) Control of heat supply of building based on the use of individual heat point of original design, Eastern-European Journal of Enterprise Technologies, 1(8(73), 61–67. https://doi.org/10.15587/1729-4061.2015.37917.
dc.relation.references[25] Kuzhel, L. M. (2017). Regularities of heat transfer through window constructions, Doctoral dissertation, Kyiv, 190 p. (in Ukrainian).
dc.relation.references[26] Deshko, V. I., Buiak, N. A., Bilous, I. Yu., Hurieiev, M. V., Holubenko, O. O. (2018) Assessment of the influence of vacuum replacement on energy consumption and conditions of comfort in building on the basis of dynamic modeling, Power engineering: economics, technique, ecology, 3, 52–62. https://doi.org/10.20535/1813-5420.3.2018.164428.
dc.relation.references[27] Tarasenko, M., Burmaka, V., Kozak, K. (2018) Dependences of relative and absolute glazed area from configuration and common areas of window embrasure, Scientific Journal of TNTU, 89(1), 122–131. https://doi.org/10.33108/visnyk_tntu2018.01.122.
dc.relation.references[28] Burmaka, V., Tarasenko, M., Kozak, K., Omeiza, L. A., Sabat, N. (2020) Effective use of daylight in office rooms, Journal of Daylighting, 7(2), 154–166. https://dx.doi.org/10.15627/jd.2020.15.
dc.relation.references[29] Burmaka, V., Tarasenko, M., Kozak, K., Khomyshyn, V. (2018) Definition of a composite index of glazing rooms, Eastern-European Journal of Enterprise Technologies, 4(10 (94)), 22–28. https://doi.org/10.15587/1729-4061.2018.141018.
dc.relation.references[30] A guide to the calculation and design of natural, artificial and combined lighting (to SNiP II-4-79). M.: Strojizdat, 1980, 156 p. (in Russian)
dc.relation.references[31] Building regulations. Part II “Design standards. Chapter 33 “Heating, ventilation and air conditioning”: SNiP II-33-75. M.: Strojizdat, 1976, 109 p. (in Russian).
dc.relation.references[32] Thermal insulation of buildings: DBN V.2.6-31:2016. K.: Ministry of Regional Development of Ukraine, 2017, 31 p. (in Ukrainian).
dc.relation.references[33] Engineering encyclopedia. URL: http://engineeringsystems.ru/d/dejurnoe-otoplenie.php. (in Russian).
dc.relation.references[34] Burmaka, V. O. Improving the energy efficiency of combined lighting of buildings taking into account the energy balance of the premises. PhD thesis, Ternopil Ivan Puluj National Technical University, Ternopil, 2020, 190 p. (in Ukrainian).
dc.relation.references[35] Wooden windows for industrial buildings. Types, design and dimensions: GOST 12506-81. Moscow: Publishing house of standards. 1987, 18 p. (in Ukrainian).
dc.relation.references[36] Profile Proline, (n. d.). URL: http://veka.ua.Proline. Profile system for professional solutions in the window business. (in Ukrainian).
dc.relation.references[37] Guidelines for the development and compilation of an energy passport of buildings for new construction and reconstruction: DSTU-N B A.2.2-5.2007. K.: Ministry of Regional Development and Construction of Ukraine, 2008 (in Ukrainian).
dc.relation.references[38] Profile Softline 82 (n. d.) URL: http://veka.ua.SOFTLINE 82. An innovative energy efficient system that meets the high demands of the future (in Ukrainian.
dc.relation.references[39] Viknaroff. Master of window work (n. d.). URL: https://viknaroff.com. – Single-chamber and double-chamber double-glazed windows. (in Ukrainian).
dc.relation.references[40] Ceresit (n.d.) URL: http://www.ceresit.ua. TS 62 mounting foam professional universal. (in Ukrainian).
dc.relation.references[41] Daylighting and artificial lighting: DBN V.2.5-282018. K.: Ministry of Regional Development of Ukraine, 2018, 113 p. (in Ukrainian).
dc.relation.references[42] Liubarets, O. P. (2018) Calculation parameters for cooling period in Ukraine. Heating, Ventilation and Air Conditioning in Buildings, 24, 11–16 (in Ukrainian).
dc.relation.references[43] Burmaka, V., Tarasenko, M., Kozak, K., Khomyshyn, V. (2019) Impact of the translucent structures of exterior wall envelope orientation on the energy balance of the premises, Scientific Journal of TNTU, 94(2), 111–122. https://doi.org/10.33108/visnyk_tntu2019.02.111.
dc.relation.references[44] Burmaka, V., Tarasenko, M., Kozak, K., Sabat, N., Khomyshyn, V., Yuskiv, V. (2020) Conditions for ensuring energy-saving use of translucent structures of exterior wall envelope. Energy Engineering andControl Systems, 6(2), 71–80. https://doi.org/10.23939/jeecs2020.02.071.
dc.relation.references[45] Construction of buildings and structures. Windows and doors. General specification: DSTU B V.2.6–23:2009. Kyiv: Ministry of Regional Development of Ukraine, 2009, 32 p. (in Ukrainian).
dc.relation.references[46] Makarov, D. N. Computer simulation methods for lighting installations, Doctoral dissertation, Moscow Power Engineering Institute 2007. URL: http://lightonline.ru/documents/Other/Dissertation_MakarovDN.html (in Russian).
dc.relation.references[47] Yu, Xu, Su, Y., Chen, X. (2014) Application of RELUX simulation to investigate energy saving potential from daylighting in a new educational building in UK, Energy and Buildings, 74, 191–202. http://dx.doi.org/10.1016/j.enbuild.2014.01.024.
dc.relation.references[48] Neoclima (n. d.). URL: http://neoclima.ua. Catalogue (in Russian).
dc.relation.referencesen[1] Tarasenko, M., Kozak, K., Burmaka, V. (2015) Dynamic of parameters of high-pressure discharge lamp at building-up and dimming. Lighting Engineering & Power Engineering, 3–4, 15–21 (in Ukrainian).
dc.relation.referencesen[2] Chernenko, P. O., Martyniuk, O. V. (2012) Enhancing the effectiveness of short-term forecasting of electric load of united power system. Tekhnichna Elektrodynamika, 1, 63–70 (in Ukrainian).
dc.relation.referencesen[3] Martynov, V. L. (2013) Optimization of geometrical parameters of the form, light apertures and a heater of energy-efficient buildings, Building constructions. Theory and practice, 77, 317–322 (in Ukrainian).
dc.relation.referencesen[4] Martynov, V. L. (2013) Determination of optimal orientation of energy efficient buildings in accordance with standards of illumination and insolation, Visnyk Kremenchutskoho natsionalnoho universytetu imeni Mykhaila Ostrohradskoho, 5, 173–176 (in Ukrainian).
dc.relation.referencesen[5] Galinska, T. A., Nosach, B. L., Leshchenko, M. V., Likhtei, V. V. (2013) Experimental studies of the thermal properties of translucent enclosing building envelope. Construction, materials science, mechanical engineering, 68, 104–108 (in Ukrainian).
dc.relation.referencesen[6] Leshshenko, M. V., Galinska, T. A., Reznikov, A. A. (2013) Researching of wall cladding structure heat endurance in civil buildings during their thermo modernization, Collection of scientific works. Series: Industrial engineering, construction, 4(2), 114–121 (in Ukrainian).
dc.relation.referencesen[7] Yurin, O., Galinska, T. (2017) Study of heat shielding qualities of brick wall angle with additional insulation located on the outside fences, MATEC Web Conf, 116, 02039. https://doi.org/10.1051/matecconf/201711602039.
dc.relation.referencesen[8] Yurin, O., Azizova, A., Galinska, T. (2018) Study of heat shielding qualities of a brick wall corner with additional insulation on the brick, MATEC Web Conf, 230, 02039. https://doi.org/10.1051/matecconf/201823002039.
dc.relation.referencesen[9] Belous, O. M., Kolesnyk, Y. S. (2011) Structural considerations of energy efficiency of translucent enclosing structures, Modern industrial and civil construction, 7(4), 243–250 (in Ukrainian).
dc.relation.referencesen[10] Kolesnyk, Y. S. (2011) Providing of energy efficiency in civilian buildings with light slit facades, Modern technology, materials and design in construction, 1, 148–154 (in Ukrainian).
dc.relation.referencesen[11] Sopilnyak, A. M. (2017) Improving thermal protection of translucent enclosing structure, Construction, materials science, mechanical engineering, 98, 161–165 (in Ukrainian).
dc.relation.referencesen[12] Jennifer, L., Williamson, P. E., Fu, T., Gabby, B., Testa, J., Hu Ch. (2018) Glazing in commercial buildings – the balance between cost and energy consumption, Building performance analysis conference and simbuild co-organized by ASHRAE and IBPSA-USA Chicago, IL September 26–28, 221–228.
dc.relation.referencesen[13] Ghisi, E., Tinker, J. A. (2001) Optimising energy consumption in offices as a function of window area and room size, Seventh International IBPSA Conference Rio de Janeiro, Brazil August 13–15, 1307–1314.
dc.relation.referencesen[14] Ghisi, E., Tinker, J. A. (2004) Window sizes required for the energy efficiency of a building against window sizes required for view, CIB World Building Congress at: Toronto, Canada, 1–12.
dc.relation.referencesen[15] Mason, M., Airah, L., Kingston, T., Airah, M. (2010) Why determining thermal loads through windowsis such a pane – Part 1, EcoLibrium, 34–40.
dc.relation.referencesen[16] Mason, M., Airah, L., Kingston, T., Airah, M. (2010) Why determining thermal loads through windowsis such a pane – Part 2, EcoLibrium, 30–36.
dc.relation.referencesen[17] Lapa, M., Dvoieglazova, M., Pechonkin, I., Lapa, Yu. (2017) Providing of buildings energoefficiency, Technical Sciences and Technologies, 1(7), 225–233 (in Ukrainian).
dc.relation.referencesen[18] Indigo shire council. URL: http://www.indigoshire.vic.gov.au.
dc.relation.referencesen[19] Serdyuk, V., Serdyuk, T., Franyshina, S. (2019) Improvement of external fencing structures as a source of heat loss in building. Modern technology, materials and design in construction, 26(1), 153–159 (in Ukrainian). https://doi.org/10.31649/2311-1429-2019-1-153-159 (in Ukrainian).
dc.relation.referencesen[20] Serdyuk, V., Honcharyk, A. (2018) Trends in the use of modern windows for residential buildings, Innovative technologies in construction -2018, 13–15 November2018, 4 p. (in Ukrainian).
dc.relation.referencesen[21] Basok, B. I., Nakorchevskii, A. I., Goncharuk, S. M., Kuzhel′, L. N. (2017) Experimental investigations of heat transfer through multiple glass units with account for the action of exterior factors, Journal of engineering physics and thermophysics, 90(1), 94–101.
dc.relation.referencesen[22] Basok, B., Davydenko, B., Zhelykh, V., Goncharuk, S., Kugel, L. (2016) Influence of low-emissivity coating on heat transfer through the doubleglazing windows. Building physics in theory and practice, Scientific Journal, 8(4), 5–8.
dc.relation.referencesen[23] Basok, B. I., Davydenko, B. V., Isaev, S. A., Goncharuk, S. M., Kuzhel′, L. N. (2016) Numerical modeling of heat transfer through a triple-pane window, Journal of engineering physics and thermophysics, 89(5), 1288-1295.
dc.relation.referencesen[24] Lysenko, O. M., Kuzhel, L. M., Bozhko, I. K. (2015) Control of heat supply of building based on the use of individual heat point of original design, Eastern-European Journal of Enterprise Technologies, 1(8(73), 61–67. https://doi.org/10.15587/1729-4061.2015.37917.
dc.relation.referencesen[25] Kuzhel, L. M. (2017). Regularities of heat transfer through window constructions, Doctoral dissertation, Kyiv, 190 p. (in Ukrainian).
dc.relation.referencesen[26] Deshko, V. I., Buiak, N. A., Bilous, I. Yu., Hurieiev, M. V., Holubenko, O. O. (2018) Assessment of the influence of vacuum replacement on energy consumption and conditions of comfort in building on the basis of dynamic modeling, Power engineering: economics, technique, ecology, 3, 52–62. https://doi.org/10.20535/1813-5420.3.2018.164428.
dc.relation.referencesen[27] Tarasenko, M., Burmaka, V., Kozak, K. (2018) Dependences of relative and absolute glazed area from configuration and common areas of window embrasure, Scientific Journal of TNTU, 89(1), 122–131. https://doi.org/10.33108/visnyk_tntu2018.01.122.
dc.relation.referencesen[28] Burmaka, V., Tarasenko, M., Kozak, K., Omeiza, L. A., Sabat, N. (2020) Effective use of daylight in office rooms, Journal of Daylighting, 7(2), 154–166. https://dx.doi.org/10.15627/jd.2020.15.
dc.relation.referencesen[29] Burmaka, V., Tarasenko, M., Kozak, K., Khomyshyn, V. (2018) Definition of a composite index of glazing rooms, Eastern-European Journal of Enterprise Technologies, 4(10 (94)), 22–28. https://doi.org/10.15587/1729-4061.2018.141018.
dc.relation.referencesen[30] A guide to the calculation and design of natural, artificial and combined lighting (to SNiP II-4-79). M., Strojizdat, 1980, 156 p. (in Russian)
dc.relation.referencesen[31] Building regulations. Part II "Design standards. Chapter 33 "Heating, ventilation and air conditioning": SNiP II-33-75. M., Strojizdat, 1976, 109 p. (in Russian).
dc.relation.referencesen[32] Thermal insulation of buildings: DBN V.2.6-31:2016. K., Ministry of Regional Development of Ukraine, 2017, 31 p. (in Ukrainian).
dc.relation.referencesen[33] Engineering encyclopedia. URL: http://engineeringsystems.ru/d/dejurnoe-otoplenie.php. (in Russian).
dc.relation.referencesen[34] Burmaka, V. O. Improving the energy efficiency of combined lighting of buildings taking into account the energy balance of the premises. PhD thesis, Ternopil Ivan Puluj National Technical University, Ternopil, 2020, 190 p. (in Ukrainian).
dc.relation.referencesen[35] Wooden windows for industrial buildings. Types, design and dimensions: GOST 12506-81. Moscow: Publishing house of standards. 1987, 18 p. (in Ukrainian).
dc.relation.referencesen[36] Profile Proline, (n. d.). URL: http://veka.ua.Proline. Profile system for professional solutions in the window business. (in Ukrainian).
dc.relation.referencesen[37] Guidelines for the development and compilation of an energy passport of buildings for new construction and reconstruction: DSTU-N B A.2.2-5.2007. K., Ministry of Regional Development and Construction of Ukraine, 2008 (in Ukrainian).
dc.relation.referencesen[38] Profile Softline 82 (n. d.) URL: http://veka.ua.SOFTLINE 82. An innovative energy efficient system that meets the high demands of the future (in Ukrainian.
dc.relation.referencesen[39] Viknaroff. Master of window work (n. d.). URL: https://viknaroff.com, Single-chamber and double-chamber double-glazed windows. (in Ukrainian).
dc.relation.referencesen[40] Ceresit (n.d.) URL: http://www.ceresit.ua. TS 62 mounting foam professional universal. (in Ukrainian).
dc.relation.referencesen[41] Daylighting and artificial lighting: DBN V.2.5-282018. K., Ministry of Regional Development of Ukraine, 2018, 113 p. (in Ukrainian).
dc.relation.referencesen[42] Liubarets, O. P. (2018) Calculation parameters for cooling period in Ukraine. Heating, Ventilation and Air Conditioning in Buildings, 24, 11–16 (in Ukrainian).
dc.relation.referencesen[43] Burmaka, V., Tarasenko, M., Kozak, K., Khomyshyn, V. (2019) Impact of the translucent structures of exterior wall envelope orientation on the energy balance of the premises, Scientific Journal of TNTU, 94(2), 111–122. https://doi.org/10.33108/visnyk_tntu2019.02.111.
dc.relation.referencesen[44] Burmaka, V., Tarasenko, M., Kozak, K., Sabat, N., Khomyshyn, V., Yuskiv, V. (2020) Conditions for ensuring energy-saving use of translucent structures of exterior wall envelope. Energy Engineering andControl Systems, 6(2), 71–80. https://doi.org/10.23939/jeecs2020.02.071.
dc.relation.referencesen[45] Construction of buildings and structures. Windows and doors. General specification: DSTU B V.2.6–23:2009. Kyiv: Ministry of Regional Development of Ukraine, 2009, 32 p. (in Ukrainian).
dc.relation.referencesen[46] Makarov, D. N. Computer simulation methods for lighting installations, Doctoral dissertation, Moscow Power Engineering Institute 2007. URL: http://lightonline.ru/documents/Other/Dissertation_MakarovDN.html (in Russian).
dc.relation.referencesen[47] Yu, Xu, Su, Y., Chen, X. (2014) Application of RELUX simulation to investigate energy saving potential from daylighting in a new educational building in UK, Energy and Buildings, 74, 191–202. http://dx.doi.org/10.1016/j.enbuild.2014.01.024.
dc.relation.referencesen[48] Neoclima (n. d.). URL: http://neoclima.ua. Catalogue (in Russian).
dc.relation.urihttps://doi.org/10.1051/matecconf/201711602039
dc.relation.urihttps://doi.org/10.1051/matecconf/201823002039
dc.relation.urihttp://www.indigoshire.vic.gov.au
dc.relation.urihttps://doi.org/10.31649/2311-1429-2019-1-153-159
dc.relation.urihttps://doi.org/10.15587/1729-4061.2015.37917
dc.relation.urihttps://doi.org/10.20535/1813-5420.3.2018.164428
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2018.01.122
dc.relation.urihttps://dx.doi.org/10.15627/jd.2020.15
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.141018
dc.relation.urihttp://engineeringsystems.ru/d/dejurnoe-otoplenie.php
dc.relation.urihttp://veka.ua.Proline
dc.relation.urihttp://veka.ua.SOFTLINE
dc.relation.urihttps://viknaroff.com
dc.relation.urihttp://www.ceresit.ua
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2019.02.111
dc.relation.urihttps://doi.org/10.23939/jeecs2020.02.071
dc.relation.urihttp://lightonline.ru/documents/Other/Dissertation_MakarovDN.html
dc.relation.urihttp://dx.doi.org/10.1016/j.enbuild.2014.01.024
dc.relation.urihttp://neoclima.ua
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectСЗОК
dc.subjectенергоефективність вікон
dc.subjectзведений індекс засклення приміщення
dc.subjectенергоефективність природного освітлення
dc.subjectTSBE
dc.subjectwindows energy efficiency
dc.subjectcomposite index of glazing rooms
dc.subjectenergy efficiency of daylighting
dc.titleEnergy efficiency of modernization of translucent building envelope structures
dc.title.alternativeЕнергоефективність модернізації світлопрозорих зовнішніх огороджувальних конструкцій
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v7n2_Burmaka_V-Energy_efficiency_of_modernization_87-96.pdf
Size:
747.67 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v7n2_Burmaka_V-Energy_efficiency_of_modernization_87-96__COVER.png
Size:
443.57 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.96 KB
Format:
Plain Text
Description: