Підвищення точності обчислення усередненого діаметра зерен конструкційних сталей

dc.citation.epage21
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage17
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЖуравель, І. М.
dc.contributor.authorZhuravel, I. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2022-05-24T10:02:41Z
dc.date.available2022-05-24T10:02:41Z
dc.date.created2019-09-26
dc.date.issued2019-09-26
dc.description.abstractВідомо, що між якісними характеристиками досліджуваного металу та його внутрішньою структурою існує однозначна відповідність. Це дало змогу оцінювати механічні властивості металу через аналіз його внутрішньої структури. Здебільшого за основний параметр металу під час аналізу його внутрішньої структури використовують розмір зерна, адже саме він істотно впливає на властивості металу. За такого підходу до досліджень цікавими з погляду матеріалознавства є дослідження кінетики росту зерна матеріалу за дії на нього деяких факторів зовнішнього впливу, наприклад температури. Для визначення розміру зерна використовують різні підходи. Серед них виділимо метод визначення величини зерна на підставі порівняння з еталонними шкалами, метод підрахунку зерен та метод підрахунку перетинів границь зерен. У роботі проаналізовано однин з найбільш вживаних методів обчислення усередненого діаметра зерен сталі на підставі металографічних зображень. Це метод перетинів меж зерен, який базується на вимогах нормативних документів. Встановлено, що обчислений згідно з цією методикою усереднений діаметр зерен металу в площині шліфа не відповідає дійсному усередненому діаметра зерна у тривимірному просторі. Проведено аналіз виникнення похибки, яка полягає у тому, що однакові перерізи у площині шліфа не завжди відповідають реальним зернам однакового розміру у тривимірному просторі. Для усунення цього недоліку запропоновано метод обчислення усередненого діаметра з використанням поправного коефіцієнта, значення якого залежать від кількості зерен, що використовуються для обчислення усередненого діаметра. Загалом запропонований метод дає змогу підвищити точність обчислень усередненого діаметра.
dc.description.abstractIt is well-known that there is a clear correspondence between the qualitative characteristics of the metal under study and its internal structure. This made it possible to evaluate the mechanical properties of a metal through the analysis of its internal structure. In many cases the size of the grain is used as the main parameter of the metal in the analysis of its internal structure, because it has a significant effect on the properties of the metal. In this approach to research interesting from the point of view of material science is to study the kinetics of grain growth of the material under the influence of some factors of external influence, such as temperature. Different approaches are used to determine grain size. Among them are the method of determining the grain size on the basis of comparison with the reference scales, the method of counting grains and the method of calculating the intersections of grain boundaries. The above methods have a number of significant drawbacks, among which are the following. First, in the above methods and in other approaches of this type, they operate on average statistical values, and the object of analysis is not individual grains, but some, sometimes quite large, group of grains. Since on the thin section may be grains of different sizes, this leads to a methodological error in calculating the geometrical parameters of the grain. Second, the methods considered are suitable for the analysis of grains of convex shape only. When the shape of the grains differs from the convex one, it will also give rise to additional methodological error. Third, the methods described in the paper are not automated, which requires additional time to calculate the number of grains, the number of points of intersection of lines and boundaries of grains, etc. The paper analyzes one of the most commonly used approaches to calculating the average diameter of steel grains based on metallographic images. It is a method of crossing grain boundaries, based on the requirements of regulatory documents. It is established that the average diame ter of the grains of metal in the plane of thin section calculated according to this method does not correspond to the real average diameter of the grains in three-dimensional space. An error analysis is performed, which is that the same cross sections in the plane of the thin section do not always correspond to real grains of the same size in three-dimensional space. To overcome this drawback, a method using a correction coefficient is proposed, the values of which depend on the number of grains used in the calculation of the average diameter. In general, the proposed method will improve the accuracy of the calculations of the average diameters of the metal grains.
dc.format.extent17-21
dc.format.pages5
dc.identifier.citationЖуравель І. М. Підвищення точності обчислення усередненого діаметра зерен конструкційних сталей / І. М. Журавель // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2019. — Том 1. — № 1. — С. 17–21.
dc.identifier.citationenZhuravel I. M. Increasing the accuracy of calculation of the average diameter of grains of structural steels / I. M. Zhuravel // Ukrainian Journal of Information Technology. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2019. — Vol 1. — No 1. — P. 17–21.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56881
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 1 (1), 2019
dc.relation.ispartofUkrainian Journal of Information Technology, 1 (1), 2019
dc.relation.references[1] ASTM E 1382–97. (1997). Standart Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.
dc.relation.references[2] Berezina, T. G. (1986). Structural method for determining the residual life of long-running steam pipelines. Heat power engineering,3, 53–56.
dc.relation.references[3] Bolshakov, V. I., Volchuk, V. M., & Dubrov, Yu. I. (2019). The main stages of fractal modeling in materials science. Metal science and heat treatment of metals, 2, 24–29.
dc.relation.references[4] Danilenko, T. P. (2010). The introduction of stereology to the analysis of metal grain structures. Metal knowledge and metal processing, 3, 35–42.
dc.relation.references[5] GOST 5639–82. (1983). Steel and alloys. Methods for identifying and determining grain size. Publishing House of Standards.
dc.relation.references[6] Kosarevych, R. Ya., Student, O. Z., Svirska, L. M., Rusyn, B. P., & Nykyforchyn, H. M. (2013). Computer analysis of characteristic elements of fractographic images. Material Science,48(4), 474–481.
dc.relation.references[7] Logunov, A. V., Shmotin, Yu. N., & Danilov, D. V. (2014). Methodological principles of computer-aided design of heatresistant nickel-based alloys. Ch. I. Metals technology, 5, 3–9.
dc.relation.references[8] Myndyuk, V. D., Karpash, O. M., & Karpash, M. O. (2013). Character of the Relationship Between the Microstructure and Physicomechanical Properties of Steels of Long-Term Operation. Material Science, 49(4), 560–564.
dc.relation.references[9] Saltykov, S. A. (1976). Stereometric metallography. Moscow: Metallurgy, 271 p.
dc.relation.references[10] Zhuravel, I. M. (2019). Computer estimation of heterogeneity of structure of 12Kh1MF used steel. Physicochemical Mechanics of Materials, 55(2), 48–52.
dc.relation.references[11] Zhuravel, I. M., Svirska, L. M., Student, O. Z., Vorobel, R. A., & Nykyforchyn, H. M. (2009). Automated determination of grain geometry in an exploited steam-pipeline steel. Materials Science, 45(3), 350–357.
dc.relation.referencesen[1] ASTM E 1382–97. (1997). Standart Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.
dc.relation.referencesen[2] Berezina, T. G. (1986). Structural method for determining the residual life of long-running steam pipelines. Heat power engineering,3, 53–56.
dc.relation.referencesen[3] Bolshakov, V. I., Volchuk, V. M., & Dubrov, Yu. I. (2019). The main stages of fractal modeling in materials science. Metal science and heat treatment of metals, 2, 24–29.
dc.relation.referencesen[4] Danilenko, T. P. (2010). The introduction of stereology to the analysis of metal grain structures. Metal knowledge and metal processing, 3, 35–42.
dc.relation.referencesen[5] GOST 5639–82. (1983). Steel and alloys. Methods for identifying and determining grain size. Publishing House of Standards.
dc.relation.referencesen[6] Kosarevych, R. Ya., Student, O. Z., Svirska, L. M., Rusyn, B. P., & Nykyforchyn, H. M. (2013). Computer analysis of characteristic elements of fractographic images. Material Science,48(4), 474–481.
dc.relation.referencesen[7] Logunov, A. V., Shmotin, Yu. N., & Danilov, D. V. (2014). Methodological principles of computer-aided design of heatresistant nickel-based alloys. Ch. I. Metals technology, 5, 3–9.
dc.relation.referencesen[8] Myndyuk, V. D., Karpash, O. M., & Karpash, M. O. (2013). Character of the Relationship Between the Microstructure and Physicomechanical Properties of Steels of Long-Term Operation. Material Science, 49(4), 560–564.
dc.relation.referencesen[9] Saltykov, S. A. (1976). Stereometric metallography. Moscow: Metallurgy, 271 p.
dc.relation.referencesen[10] Zhuravel, I. M. (2019). Computer estimation of heterogeneity of structure of 12Kh1MF used steel. Physicochemical Mechanics of Materials, 55(2), 48–52.
dc.relation.referencesen[11] Zhuravel, I. M., Svirska, L. M., Student, O. Z., Vorobel, R. A., & Nykyforchyn, H. M. (2009). Automated determination of grain geometry in an exploited steam-pipeline steel. Materials Science, 45(3), 350–357.
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.subjectкомп'ютерне оброблення металографічних зображень
dc.subjectкількісна металографія
dc.subjectусереднений діаметр зерен сталі
dc.subjectмікроструктура матеріалів
dc.subjectcomputer processing of metallographic images
dc.subjectquantitative metallography
dc.subjectaverage diameter of steel grains
dc.subjectmicrostructure of materials
dc.titleПідвищення точності обчислення усередненого діаметра зерен конструкційних сталей
dc.title.alternativeIncreasing the accuracy of calculation of the average diameter of grains of structural steels
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v1n1_Zhuravel_I_M-Increasing_the_accuracy_17-21.pdf
Size:
705.1 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v1n1_Zhuravel_I_M-Increasing_the_accuracy_17-21__COVER.png
Size:
1.82 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: