Functionalization of Low-Molecular-Weight Polyethylene by Melt Grafting of Maleic Anhydride for Using as a Compatibilizer
dc.citation.epage | 356 | |
dc.citation.issue | 2 | |
dc.citation.spage | 347 | |
dc.contributor.affiliation | Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan | |
dc.contributor.author | Turdikulov, Islom | |
dc.contributor.author | Saidmuhammedova, Muhlisa | |
dc.contributor.author | Ashurov, Nurbek | |
dc.contributor.author | Abdurazakov, Muhitdin | |
dc.contributor.author | Atakhanov, Abdumutolib | |
dc.contributor.author | Rashidova, Sayyora | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:32Z | |
dc.date.available | 2024-02-12T08:30:32Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Досліджено функціоналізацію низькомолекулярного поліетилену внаслідок прищеплення розплавом малеїнового ангідриду. Встановлено, що концентрація ініціатора, час реакції та температура найбільше впливають на ступінь прищеплення. Структура низькомолекулярного поліетилену/малеїнового ангідриду була перевірена методами FTIR, DTA та XRD. Показано, що прищеплений низькомолекулярний поліетилен потенційноможна застосовувати як компатибілізатор матеріалів на основі сполук поліетилену. | |
dc.description.abstract | In this study, functionalization of lowmolecularweight polyethylene by melt grafting of maleic anhydride was investigated. The results reveal that initiator concentration, reaction time and temperature have the greatest influence on the graft degree. Structure of maleic anhydride grafted low-molecularweight polyethylene was proven by FTIR, DTA and XRD methods. The grafted low-molecular-weight polyethylene has a potential application as a compatibilizer for materials based on polyethylene compounds. | |
dc.format.extent | 347-356 | |
dc.format.pages | 10 | |
dc.identifier.citation | Functionalization of Low-Molecular-Weight Polyethylene by Melt Grafting of Maleic Anhydride for Using as a Compatibilizer / Islom Turdikulov, Muhlisa Saidmuhammedova, Nurbek Ashurov, Muhitdin Abdurazakov, Abdumutolib Atakhanov, Sayyora Rashidova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 347–356. | |
dc.identifier.citationen | Functionalization of Low-Molecular-Weight Polyethylene by Melt Grafting of Maleic Anhydride for Using as a Compatibilizer / Islom Turdikulov, Muhlisa Saidmuhammedova, Nurbek Ashurov, Muhitdin Abdurazakov, Abdumutolib Atakhanov, Sayyora Rashidova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 347–356. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.347 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61238 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Lohse, D.J. Polyolefins. In Applied Polymer Science: 21st Century; Craver, C.D., Carraher Jr., C.E., Eds.; Elsevier, 2000; pp 73-91. | |
dc.relation.references | [2] Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A Comprehensive Review of Global Production and Recycling Methods of Polyolefin (PO) Based Products and Their Post-Recycling Applications. SM&T 2020, 25, e00188. https://doi.org/10.1016/j.susmat.2020.e00188 | |
dc.relation.references | [3] Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable Com-patibilized Polymer Blends for Packaging Applications: A Litera-ture Review. J. Appl. Polym. Sci. 2018, 135, 45726. https://doi.org/10.1002/app.45726 | |
dc.relation.references | [4] Chawla, K.K. Composite Materials: Science and Engineering; Springer: New York, 2013. | |
dc.relation.references | [5] Prachayawarakorn, J.; Pomdage, W. Effect of Carrageenan on Properties of Biodegradable Thermoplastic Cassava Starch/Low-Density Polyethylene Composites Reinforced by Cotton Fibers. Mater. Des. 2014, 61, 264-269. https://doi.org/10.1016/j.matdes.2014.04.051 | |
dc.relation.references | [6] Atakhanov, A.A.; Mamadiyorov, B.; Kuzieva, M.; Yugay, S.M.; Shahobutdinov, S.; Ashurov, N.Sh.; Abdurazakov; M. Sravnitelnyye Issledovaniya Fiziko-Khimicheskikh Svoystv i Struktury Khlopkovoy Tsellyulozy i eye Modifitsirovannykh Form. Khimiia Rast. Syriia 2019, 3, 5-13. https://doi.org/10.14258/jcprm.2019034554 | |
dc.relation.references | [7] Matet, M.; Heuzey, M-C.; Ajji, A.; Sarazin, P. Plasticized Chitosan/Polyolefin Films Produced by Extrusion. Carbohydr. Polym. 2015, 117, 177-184. https://doi.org/10.1016/j.carbpol.2014.09.058 | |
dc.relation.references | [8] Turdikulov, I.H.; Mamadiyorov, B.N.; Saidmuhammedova, M.Q.; Atakhanov, A.A. Obtaining and Studying Properties of Biodestructable Composite Films Based on Polyethylene. Open J. Chem. 2020, 6, 030-036. https://doi.org/10.17352/ojc.000021 | |
dc.relation.references | [9] Bari, S.S.; Chatterjee, A; Mishra, S. Biodegradable Polymer Nanocomposites: An Overview. Polym. Rev. 2016, 56, 287-328. https://doi.org/10.1080/15583724.2015.1118123 | |
dc.relation.references | [10] Ivankovic, A.; Zeljko, K.; Talic, S.; Bevanda, A.; Lasić, M. Review: Biodegradable Packaging in the Food Industry. J. Food Saf. Food Qual. 2017, 68, 26-38. https://doi.org/10.2376/0003-925X-68-26 | |
dc.relation.references | [11] Koroleva, A.; Huebner, M.; Lukanina, Y.; Khvatov, A.; Popov, A.; Monakhova, T. Oxo-Biodegradability of Polyethylene Blends with Starch, Cellulose and Synthetic Additives. Chem. Chem. Technol. 2012, 6, 405-413. https://doi.org/10.23939/chcht06.04.405 | |
dc.relation.references | [12] Fillers for Polymer Applications; Rothon, R., Ed.; Springer Cham, 2017. | |
dc.relation.references | [13] Desai, S.M.; Singh, R.P. Surface Modification of Polyethylene. In Long Term Properties of Polyolefins; Albertsson A.C., Ed.; Springer: Berlin, Heidelberg, 2004; pp 231-294. | |
dc.relation.references | [14] Krause-Sammartino, L.E., Lucas, J.C.; Reboredo, M.M.; Aranguren, M.I. Maleic Anhydride Grafting of Polypropylene: Peroxide and Solvent Effects. Plast. Rubber Compos. 2006, 35, 117-123. https://doi.org/10.1179/174328906X103132 | |
dc.relation.references | [15] He, X.; Zheng, S.; Huang, G.; Rong, Y. Solution Grafting of Maleic Anhydride on Low-Density Polyethylene: Effect on Crystal-lization Behavior. J. Macromol. Sci. B 2013, 52, 1265-1282. https://doi.org/10.1080/00222348.2013.764217 | |
dc.relation.references | [16] Zhang, Y.; Fan, Z.; Wu, B.; Rong, Y. Grafting of Peroxide-Initiated Maleic Anhydride on Spherical Pe/Ppin-Reactor Blend Granules. Chin. J. Polym. Sci. 2004, 22, 231-238. | |
dc.relation.references | [17] Singh, S.K.; Tambe, S.P.; Samui, A.B.; Raja, V.S.; Kumar, D. Maleic Acid Grafted Low Density Polyethylene for Thermally Sprayable Anticorrosive Coatings. Prog. Org. Coat. 2006, 55, 20-26. https://doi.org/10.1016/j.porgcoat.2005.09.007 | |
dc.relation.references | [18] Saini, A.; Yadav, C.; Bera, M.; Gupta, P.; Maji, P.K. Maleic Anhydride Grafted Linear Low-Density Polyethylene/Waste Paper Powder Composites with Superior Mechanical Behavior. J. Appl. Polym. Sci. 2017, 134, 45167. https://doi.org/10.1002/app.45167 | |
dc.relation.references | [19] da Silva, C.; Canto, L.; Visconti, L. Effect of Extrusion Processing Variables in the Polyethylene/Clay Nanocomposites Rheological Properties. Chem. Chem. Technol. 2010, 4, 61-68. https://doi.org/10.23939/chcht04.01.061 | |
dc.relation.references | [20] Chang, M.-K. Mechanical Properties and Thermal Stability of Low-Density Polyethylene Grafted Maleic Anhy-dride/Montmorillonite Nanocomposites. J. Ind. Eng. Chem. 2015, 27, 96-101. https://doi.org/10.1016/j.jiec.2014.11.048 | |
dc.relation.references | [21] Kahar, A.W.M.; Ismail, H.; Othman, N. Effects of Polyethyl-ene-Grafted Maleic Anhydride as a Compatibilizer on The Mor-phology and Tensile Properties of (Thermoplastic Tapioca Starch)/ (High-Density Polyethylene)/(Natural Rubber) Blends. J. Vinyl Addit. Technol. 2012, 18, 65-70. https://doi.org/10.1002/vnl.20289 | |
dc.relation.references | [22] Colbeaux, A.; Fenouillot, F.; Gérard, J.-F.; Taha, M.; Wautier, H. Compatibilization of a Polyolefin Blend Through Covalent and Ionic Coupling of Grafted Polypropylene and Polyethylene. I. Rheological, Thermal, and Mechanical Properties. J. Appl. Polym. Sci. 2005, 95, 312-320. https://doi.org/10.1002/app.21226 | |
dc.relation.references | [23] Marszalek, G.; Majczak, R. Polyethylene Wax – Preparation, Modification and Applications. Polimery 2012, 57, 640-645. https://doi.org/10.14314/POLIMERY.2012.640 | |
dc.relation.references | [24] La Mantia, F.P.; Morreale, M. Mechanical Properties of Recy-cled Polyethylene Ecocomposites Filled with Natural Organic Fill-ers. Polym. Eng. Sci. 2006, 46, 1131-1139. https://doi.org/10.1002/pen.20561 | |
dc.relation.references | [25] Hohner, G.; Bayer, M. Polyolefin Waxes Modified to Make Them Polar in Photocopier Toners. US 2003/0108807A1. Jun 12, 2003. | |
dc.relation.references | [26] Molefi, J.A.; Luyt, A.S.; Krupa, I. Comparison of LDPE, LLDPE and HDPE as Matrices for Phase Change Materials Based on a Soft Fischer–Tropsch Paraffin Wax. Thermochim. Acta 2010, 500, 88-92. https://doi.org/10.1016/j.tca.2010.01.002 | |
dc.relation.references | [27] Yu, S.-W.; Choi, J.-S.; Na, J.-S. A Study on Synthesis and Hydrolysis of the Maleated Polyethylene Wax. Clean Technol. 2013, 19, 393-400. https://doi.org/10.7464/ksct.2013.19.4.393 | |
dc.relation.references | [28] Kudyshkin, V.O.; Bozorov, N.I.; Ashurov, N.Sh.; Rashidova, S.Sh. Synthesis and Structure of Grafted Copolymers of Acrylic Acid and Low Molecular Weight Polyethylene. Russ. J. Appl. Chem. 2020, 93, 1498-1503. https://doi.org/10.1134/S1070427220100031 | |
dc.relation.references | [29] Tian, Y.L.; Guo, L.M. Surface Modification of UHMWPE Fibers by Means of Polyethylene Wax Grafted Maleic Anhydride Treatment. J. Appl. Polym. Sci. 2018, 135, 46555. https://doi.org/10.1002/app.46555 | |
dc.relation.references | [30] Zhang, J.; Guo, J.; Li, T.; Li, X. Chemical Surface Modification of Calcium Carbonate Particles by Maleic Anhydride Grafting Polyethylene Wax. Int. J. Green Nanotechnol. 2010, 1, 65-71. https://doi.org/10.1080/19430871003684341 | |
dc.relation.references | [31] Hameed, T.; Potter, D.K.; Takacs, E. Reactions of Low Mo-lecular Weight Highly Functionalized Maleic Anhydride Grafted Polyethylene with Polyetherdiamines. J. Appl. Polym. Sci. 2010, 116, 2285-2297. https://doi.org/10.1002/app.31725 | |
dc.relation.references | [32] Gaylord, N.G.; Mehta, R.; Kumar, V.; Tazi, M. High Density Polyethylene-G-Maleic Anhydride Preparation in Presence of Electron Donors. J. Appl. Polym. Sci. 1989, 38, 359-371. https://doi.org/10.1002/app.1989.070380217 | |
dc.relation.references | [33] Gaylord, N.G., Mehta, R.; Deshpande, A.B. Homogeneous Reaction of Maleic Anhydride with Low Density Polyethylene in Solution in Aromatic Hydrocarbons. In New Advances in Polyole-fins; Chung T.C., Ed.; Springer: Boston, MA, 1993; pp 115-119. | |
dc.relation.references | [34] Razavi Aghjeh, M.K.; Nazokdast, H.; Assempour, H. Pa-rameters Affecting the Free-Radical Melt Grafting of Maleic Anhydride onto Linear Low-Density Polyethylene in an Internal Mixer. J. Appl. Polym. Sci. 2006, 99, 141-149. https://doi.org/10.1002/app.21870 | |
dc.relation.references | [35] Rahayu, I.; Zainuddin, A.; Hendrana, S. Improved Maleic Anhydride Grafting to Linear Low Density Polyethylene by Mi-croencapsulation Method. Indones. J. Chem. 2020, 20, 1110-1118. https://doi.org/10.22146/ijc.48785 | |
dc.relation.references | [36] Rzayev, Z.M.O. Graft Copolymers of Maleic Anhydride and Its Isostructural Analogues: High Performance Engineering Mate-rials. Int. Rev. Chem. Eng. 2011, 3, 153-215. https://doi.org/10.48550/arXiv.1105.1260 | |
dc.relation.references | [37] Wang, Y.D.; Zhao, Q.X. The Initiator Selecting by the Graft-ing of Maleic Anhydride on High Density Polyethylene. J. Zhengzhou Univ. 1995, 2, 53-56. | |
dc.relation.references | [38] Zhou, L.Q.; Shen, N.X. Solid-Phase Grafting of Maleic An-hydride onto Polyethylene. J. Pet. Technol. 2000, 29, 15-18. | |
dc.relation.references | [39] Vicente, A.I.; Campos, J.; Bordadob, J.M., Ribeiro, M.R. Maleic Anhydride Modified Ethylene–Diene Copolymers: Synthesis and Properties. React. Funct. Polym. 2008, 68, 519-526. https://doi.org/10.1016/j.reactfunctpolym.2007.10.026 | |
dc.relation.references | [40] Qian, J.; Zhang, H.; Xu, Y. Grafting of Maleic Anhydride onto Polyethylene Wax by Melt Ultrasound and Solid co-Irradiation. Radiat Eff. Defects Solids 2010, 165, 834-844. https://doi.org/10.1080/10420150.2010.494305 | |
dc.relation.references | [41] Bari, S.S.; Chatterjee, A.; Mishra, S. Biodegradable Polymer Nanocomposites: An Overview. Polym. Rev. 2016, 56, 287-328. https://doi.org/10.1080/15583724.2015.1118123 | |
dc.relation.references | [42] Polymeric Materials Encyclopedia, Salamone J.C., Ed.; CRC Press: Boca Raton, 1996. | |
dc.relation.references | [43] Ahn, J.; Jeon, J.H.; Baek, C.S.; Yu, Y.H.; Thenepalli, T.; Ahn, J.W.; Han, C. Synthesis and Non-Isothermal Crystallization Behav-iors of Maleic Anhydride onto High Density Polyethylene. J. Korean Cheram. Soc. 2016, 53, 24-33. https://doi.org/10.4191/kcers.2016.53.1.24 | |
dc.relation.references | [44] Wendlandt, W.W. Thermal Methods of Analysis; 2nd edn.; John Wiley & Sons, 1974. | |
dc.relation.referencesen | [1] Lohse, D.J. Polyolefins. In Applied Polymer Science: 21st Century; Craver, C.D., Carraher Jr., C.E., Eds.; Elsevier, 2000; pp 73-91. | |
dc.relation.referencesen | [2] Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A Comprehensive Review of Global Production and Recycling Methods of Polyolefin (PO) Based Products and Their Post-Recycling Applications. SM&T 2020, 25, e00188. https://doi.org/10.1016/j.susmat.2020.e00188 | |
dc.relation.referencesen | [3] Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable Com-patibilized Polymer Blends for Packaging Applications: A Litera-ture Review. J. Appl. Polym. Sci. 2018, 135, 45726. https://doi.org/10.1002/app.45726 | |
dc.relation.referencesen | [4] Chawla, K.K. Composite Materials: Science and Engineering; Springer: New York, 2013. | |
dc.relation.referencesen | [5] Prachayawarakorn, J.; Pomdage, W. Effect of Carrageenan on Properties of Biodegradable Thermoplastic Cassava Starch/Low-Density Polyethylene Composites Reinforced by Cotton Fibers. Mater. Des. 2014, 61, 264-269. https://doi.org/10.1016/j.matdes.2014.04.051 | |
dc.relation.referencesen | [6] Atakhanov, A.A.; Mamadiyorov, B.; Kuzieva, M.; Yugay, S.M.; Shahobutdinov, S.; Ashurov, N.Sh.; Abdurazakov; M. Sravnitelnyye Issledovaniya Fiziko-Khimicheskikh Svoystv i Struktury Khlopkovoy Tsellyulozy i eye Modifitsirovannykh Form. Khimiia Rast. Syriia 2019, 3, 5-13. https://doi.org/10.14258/jcprm.2019034554 | |
dc.relation.referencesen | [7] Matet, M.; Heuzey, M-C.; Ajji, A.; Sarazin, P. Plasticized Chitosan/Polyolefin Films Produced by Extrusion. Carbohydr. Polym. 2015, 117, 177-184. https://doi.org/10.1016/j.carbpol.2014.09.058 | |
dc.relation.referencesen | [8] Turdikulov, I.H.; Mamadiyorov, B.N.; Saidmuhammedova, M.Q.; Atakhanov, A.A. Obtaining and Studying Properties of Biodestructable Composite Films Based on Polyethylene. Open J. Chem. 2020, 6, 030-036. https://doi.org/10.17352/ojc.000021 | |
dc.relation.referencesen | [9] Bari, S.S.; Chatterjee, A; Mishra, S. Biodegradable Polymer Nanocomposites: An Overview. Polym. Rev. 2016, 56, 287-328. https://doi.org/10.1080/15583724.2015.1118123 | |
dc.relation.referencesen | [10] Ivankovic, A.; Zeljko, K.; Talic, S.; Bevanda, A.; Lasić, M. Review: Biodegradable Packaging in the Food Industry. J. Food Saf. Food Qual. 2017, 68, 26-38. https://doi.org/10.2376/0003-925X-68-26 | |
dc.relation.referencesen | [11] Koroleva, A.; Huebner, M.; Lukanina, Y.; Khvatov, A.; Popov, A.; Monakhova, T. Oxo-Biodegradability of Polyethylene Blends with Starch, Cellulose and Synthetic Additives. Chem. Chem. Technol. 2012, 6, 405-413. https://doi.org/10.23939/chcht06.04.405 | |
dc.relation.referencesen | [12] Fillers for Polymer Applications; Rothon, R., Ed.; Springer Cham, 2017. | |
dc.relation.referencesen | [13] Desai, S.M.; Singh, R.P. Surface Modification of Polyethylene. In Long Term Properties of Polyolefins; Albertsson A.C., Ed.; Springer: Berlin, Heidelberg, 2004; pp 231-294. | |
dc.relation.referencesen | [14] Krause-Sammartino, L.E., Lucas, J.C.; Reboredo, M.M.; Aranguren, M.I. Maleic Anhydride Grafting of Polypropylene: Peroxide and Solvent Effects. Plast. Rubber Compos. 2006, 35, 117-123. https://doi.org/10.1179/174328906X103132 | |
dc.relation.referencesen | [15] He, X.; Zheng, S.; Huang, G.; Rong, Y. Solution Grafting of Maleic Anhydride on Low-Density Polyethylene: Effect on Crystal-lization Behavior. J. Macromol. Sci. B 2013, 52, 1265-1282. https://doi.org/10.1080/00222348.2013.764217 | |
dc.relation.referencesen | [16] Zhang, Y.; Fan, Z.; Wu, B.; Rong, Y. Grafting of Peroxide-Initiated Maleic Anhydride on Spherical Pe/Ppin-Reactor Blend Granules. Chin. J. Polym. Sci. 2004, 22, 231-238. | |
dc.relation.referencesen | [17] Singh, S.K.; Tambe, S.P.; Samui, A.B.; Raja, V.S.; Kumar, D. Maleic Acid Grafted Low Density Polyethylene for Thermally Sprayable Anticorrosive Coatings. Prog. Org. Coat. 2006, 55, 20-26. https://doi.org/10.1016/j.porgcoat.2005.09.007 | |
dc.relation.referencesen | [18] Saini, A.; Yadav, C.; Bera, M.; Gupta, P.; Maji, P.K. Maleic Anhydride Grafted Linear Low-Density Polyethylene/Waste Paper Powder Composites with Superior Mechanical Behavior. J. Appl. Polym. Sci. 2017, 134, 45167. https://doi.org/10.1002/app.45167 | |
dc.relation.referencesen | [19] da Silva, C.; Canto, L.; Visconti, L. Effect of Extrusion Processing Variables in the Polyethylene/Clay Nanocomposites Rheological Properties. Chem. Chem. Technol. 2010, 4, 61-68. https://doi.org/10.23939/chcht04.01.061 | |
dc.relation.referencesen | [20] Chang, M.-K. Mechanical Properties and Thermal Stability of Low-Density Polyethylene Grafted Maleic Anhy-dride/Montmorillonite Nanocomposites. J. Ind. Eng. Chem. 2015, 27, 96-101. https://doi.org/10.1016/j.jiec.2014.11.048 | |
dc.relation.referencesen | [21] Kahar, A.W.M.; Ismail, H.; Othman, N. Effects of Polyethyl-ene-Grafted Maleic Anhydride as a Compatibilizer on The Mor-phology and Tensile Properties of (Thermoplastic Tapioca Starch)/ (High-Density Polyethylene)/(Natural Rubber) Blends. J. Vinyl Addit. Technol. 2012, 18, 65-70. https://doi.org/10.1002/vnl.20289 | |
dc.relation.referencesen | [22] Colbeaux, A.; Fenouillot, F.; Gérard, J.-F.; Taha, M.; Wautier, H. Compatibilization of a Polyolefin Blend Through Covalent and Ionic Coupling of Grafted Polypropylene and Polyethylene. I. Rheological, Thermal, and Mechanical Properties. J. Appl. Polym. Sci. 2005, 95, 312-320. https://doi.org/10.1002/app.21226 | |
dc.relation.referencesen | [23] Marszalek, G.; Majczak, R. Polyethylene Wax – Preparation, Modification and Applications. Polimery 2012, 57, 640-645. https://doi.org/10.14314/POLIMERY.2012.640 | |
dc.relation.referencesen | [24] La Mantia, F.P.; Morreale, M. Mechanical Properties of Recy-cled Polyethylene Ecocomposites Filled with Natural Organic Fill-ers. Polym. Eng. Sci. 2006, 46, 1131-1139. https://doi.org/10.1002/pen.20561 | |
dc.relation.referencesen | [25] Hohner, G.; Bayer, M. Polyolefin Waxes Modified to Make Them Polar in Photocopier Toners. US 2003/0108807A1. Jun 12, 2003. | |
dc.relation.referencesen | [26] Molefi, J.A.; Luyt, A.S.; Krupa, I. Comparison of LDPE, LLDPE and HDPE as Matrices for Phase Change Materials Based on a Soft Fischer–Tropsch Paraffin Wax. Thermochim. Acta 2010, 500, 88-92. https://doi.org/10.1016/j.tca.2010.01.002 | |
dc.relation.referencesen | [27] Yu, S.-W.; Choi, J.-S.; Na, J.-S. A Study on Synthesis and Hydrolysis of the Maleated Polyethylene Wax. Clean Technol. 2013, 19, 393-400. https://doi.org/10.7464/ksct.2013.19.4.393 | |
dc.relation.referencesen | [28] Kudyshkin, V.O.; Bozorov, N.I.; Ashurov, N.Sh.; Rashidova, S.Sh. Synthesis and Structure of Grafted Copolymers of Acrylic Acid and Low Molecular Weight Polyethylene. Russ. J. Appl. Chem. 2020, 93, 1498-1503. https://doi.org/10.1134/S1070427220100031 | |
dc.relation.referencesen | [29] Tian, Y.L.; Guo, L.M. Surface Modification of UHMWPE Fibers by Means of Polyethylene Wax Grafted Maleic Anhydride Treatment. J. Appl. Polym. Sci. 2018, 135, 46555. https://doi.org/10.1002/app.46555 | |
dc.relation.referencesen | [30] Zhang, J.; Guo, J.; Li, T.; Li, X. Chemical Surface Modification of Calcium Carbonate Particles by Maleic Anhydride Grafting Polyethylene Wax. Int. J. Green Nanotechnol. 2010, 1, 65-71. https://doi.org/10.1080/19430871003684341 | |
dc.relation.referencesen | [31] Hameed, T.; Potter, D.K.; Takacs, E. Reactions of Low Mo-lecular Weight Highly Functionalized Maleic Anhydride Grafted Polyethylene with Polyetherdiamines. J. Appl. Polym. Sci. 2010, 116, 2285-2297. https://doi.org/10.1002/app.31725 | |
dc.relation.referencesen | [32] Gaylord, N.G.; Mehta, R.; Kumar, V.; Tazi, M. High Density Polyethylene-G-Maleic Anhydride Preparation in Presence of Electron Donors. J. Appl. Polym. Sci. 1989, 38, 359-371. https://doi.org/10.1002/app.1989.070380217 | |
dc.relation.referencesen | [33] Gaylord, N.G., Mehta, R.; Deshpande, A.B. Homogeneous Reaction of Maleic Anhydride with Low Density Polyethylene in Solution in Aromatic Hydrocarbons. In New Advances in Polyole-fins; Chung T.C., Ed.; Springer: Boston, MA, 1993; pp 115-119. | |
dc.relation.referencesen | [34] Razavi Aghjeh, M.K.; Nazokdast, H.; Assempour, H. Pa-rameters Affecting the Free-Radical Melt Grafting of Maleic Anhydride onto Linear Low-Density Polyethylene in an Internal Mixer. J. Appl. Polym. Sci. 2006, 99, 141-149. https://doi.org/10.1002/app.21870 | |
dc.relation.referencesen | [35] Rahayu, I.; Zainuddin, A.; Hendrana, S. Improved Maleic Anhydride Grafting to Linear Low Density Polyethylene by Mi-croencapsulation Method. Indones. J. Chem. 2020, 20, 1110-1118. https://doi.org/10.22146/ijc.48785 | |
dc.relation.referencesen | [36] Rzayev, Z.M.O. Graft Copolymers of Maleic Anhydride and Its Isostructural Analogues: High Performance Engineering Mate-rials. Int. Rev. Chem. Eng. 2011, 3, 153-215. https://doi.org/10.48550/arXiv.1105.1260 | |
dc.relation.referencesen | [37] Wang, Y.D.; Zhao, Q.X. The Initiator Selecting by the Graft-ing of Maleic Anhydride on High Density Polyethylene. J. Zhengzhou Univ. 1995, 2, 53-56. | |
dc.relation.referencesen | [38] Zhou, L.Q.; Shen, N.X. Solid-Phase Grafting of Maleic An-hydride onto Polyethylene. J. Pet. Technol. 2000, 29, 15-18. | |
dc.relation.referencesen | [39] Vicente, A.I.; Campos, J.; Bordadob, J.M., Ribeiro, M.R. Maleic Anhydride Modified Ethylene–Diene Copolymers: Synthesis and Properties. React. Funct. Polym. 2008, 68, 519-526. https://doi.org/10.1016/j.reactfunctpolym.2007.10.026 | |
dc.relation.referencesen | [40] Qian, J.; Zhang, H.; Xu, Y. Grafting of Maleic Anhydride onto Polyethylene Wax by Melt Ultrasound and Solid co-Irradiation. Radiat Eff. Defects Solids 2010, 165, 834-844. https://doi.org/10.1080/10420150.2010.494305 | |
dc.relation.referencesen | [41] Bari, S.S.; Chatterjee, A.; Mishra, S. Biodegradable Polymer Nanocomposites: An Overview. Polym. Rev. 2016, 56, 287-328. https://doi.org/10.1080/15583724.2015.1118123 | |
dc.relation.referencesen | [42] Polymeric Materials Encyclopedia, Salamone J.C., Ed.; CRC Press: Boca Raton, 1996. | |
dc.relation.referencesen | [43] Ahn, J.; Jeon, J.H.; Baek, C.S.; Yu, Y.H.; Thenepalli, T.; Ahn, J.W.; Han, C. Synthesis and Non-Isothermal Crystallization Behav-iors of Maleic Anhydride onto High Density Polyethylene. J. Korean Cheram. Soc. 2016, 53, 24-33. https://doi.org/10.4191/kcers.2016.53.1.24 | |
dc.relation.referencesen | [44] Wendlandt, W.W. Thermal Methods of Analysis; 2nd edn.; John Wiley & Sons, 1974. | |
dc.relation.uri | https://doi.org/10.1016/j.susmat.2020.e00188 | |
dc.relation.uri | https://doi.org/10.1002/app.45726 | |
dc.relation.uri | https://doi.org/10.1016/j.matdes.2014.04.051 | |
dc.relation.uri | https://doi.org/10.14258/jcprm.2019034554 | |
dc.relation.uri | https://doi.org/10.1016/j.carbpol.2014.09.058 | |
dc.relation.uri | https://doi.org/10.17352/ojc.000021 | |
dc.relation.uri | https://doi.org/10.1080/15583724.2015.1118123 | |
dc.relation.uri | https://doi.org/10.2376/0003-925X-68-26 | |
dc.relation.uri | https://doi.org/10.23939/chcht06.04.405 | |
dc.relation.uri | https://doi.org/10.1179/174328906X103132 | |
dc.relation.uri | https://doi.org/10.1080/00222348.2013.764217 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2005.09.007 | |
dc.relation.uri | https://doi.org/10.1002/app.45167 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.01.061 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2014.11.048 | |
dc.relation.uri | https://doi.org/10.1002/vnl.20289 | |
dc.relation.uri | https://doi.org/10.1002/app.21226 | |
dc.relation.uri | https://doi.org/10.14314/POLIMERY.2012.640 | |
dc.relation.uri | https://doi.org/10.1002/pen.20561 | |
dc.relation.uri | https://doi.org/10.1016/j.tca.2010.01.002 | |
dc.relation.uri | https://doi.org/10.7464/ksct.2013.19.4.393 | |
dc.relation.uri | https://doi.org/10.1134/S1070427220100031 | |
dc.relation.uri | https://doi.org/10.1002/app.46555 | |
dc.relation.uri | https://doi.org/10.1080/19430871003684341 | |
dc.relation.uri | https://doi.org/10.1002/app.31725 | |
dc.relation.uri | https://doi.org/10.1002/app.1989.070380217 | |
dc.relation.uri | https://doi.org/10.1002/app.21870 | |
dc.relation.uri | https://doi.org/10.22146/ijc.48785 | |
dc.relation.uri | https://doi.org/10.48550/arXiv.1105.1260 | |
dc.relation.uri | https://doi.org/10.1016/j.reactfunctpolym.2007.10.026 | |
dc.relation.uri | https://doi.org/10.1080/10420150.2010.494305 | |
dc.relation.uri | https://doi.org/10.4191/kcers.2016.53.1.24 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Turdikulov I., Saidmuhammedova M., Ashurov N., Abdurazakov M., Atakhanov A., Rashidova S., 2023 | |
dc.subject | низькомолекулярний поліетилен | |
dc.subject | прищеплення розплавом | |
dc.subject | функціоналізація | |
dc.subject | ступінь прищеплення | |
dc.subject | компатибілізатор | |
dc.subject | low-molecular-weight polyethylene | |
dc.subject | melt grafting | |
dc.subject | functionalization | |
dc.subject | grafting degree | |
dc.subject | compatibilizer | |
dc.title | Functionalization of Low-Molecular-Weight Polyethylene by Melt Grafting of Maleic Anhydride for Using as a Compatibilizer | |
dc.title.alternative | Функціоналізація низькомолекулярного поліетилену прищепленням у розплаві малеїнового ангідриду для використання як компатибілізатор | |
dc.type | Article |
Files
License bundle
1 - 1 of 1