Gesture recognition system for controlling IoT systems
| dc.citation.epage | 24 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Обчислювальні проблеми електротехніки | |
| dc.citation.spage | 18 | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Ференц, Максим | |
| dc.contributor.author | Рабійчук, Ігор | |
| dc.contributor.author | АндрійФечан | |
| dc.contributor.author | Ferents, Maksym | |
| dc.contributor.author | Rabiichuk, Ihor | |
| dc.contributor.author | Fechan, Andrii | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-08T08:58:10Z | |
| dc.date.created | 2025-06-10 | |
| dc.date.issued | 2025-06-10 | |
| dc.description.abstract | Розвиток Інтернету речей (IoT) відкриває нові можливості для розробки інтелектуальних сервісів, що покращують взаємодію користувачів із навколишніми пристроями. Сучасні IoT-системи в основному використовують сенсорні екрани та мобільні додатки для керування, проте методи на основі жестів можуть значно розширити їхню функціональність. Запропоновано систему розпізнавання жестів, що застосовують для керування IoT- пристроями. Основою роботи системи є класифікація траєкторії руху пальців за допомогою прихованої марковської моделі (HMM). Система складається із трьох основних етапів: початкове виділення рук за допомогою кольорової та глибокої інформації, визначення кінчиків пальців на основі контурів руки, а також використання кластеризації в полярних координатах для екстракції динамічних характеристик. Алгоритми Баум-Велша та Вітербі застосовують відповідно для навчання та розпізнавання жестів. Результати експериментів показують, що розроблена система здатна класифікувати жести з урахуванням просторово-часової варіативності з високою точністю. Зокрема, середній рівень розпізнавання досягнув 98,61% для навчального набору та 93,06% для тестових даних. Запропонований підхід демонструє ефективність у складних умовах, включаючи зміни освітлення та часткове перекриття об’єктів у сцені. | |
| dc.description.abstract | The development of the Internet of Things (IoT) opens up new opportunities for creating intelligent services that enhance user interaction with surrounding devices. Modern IoT systems primarily use touchscreens and mobile applications for control; however, gesturebased methods can significantly expand their functionality. This work proposes a gesture recognition system applied to the control of IoT devices. The core of the system is the classification of finger movement trajectories using a Hidden Markov Model (HMM). The system consists of three main stages: initial hand segmentation using colour and depth information, fingertip detection based on hand contours, and the use of clustering in polar coordinates to extract dynamic features. The Baum-Welch and Viterbi algorithms are applied for training and gesture recognition, respectively. Experimental results show that the developed system is capable of classifying gestures with consideration of spatiotemporal variability with high accuracy. In particular, the average recognition rate reached 98.61 % for the training set and 93.06 % for the test data. The proposed approach demonstrates effectiveness under challenging conditions, including changes in lighting and partial occlusion of objects in the scene. | |
| dc.format.extent | 18-24 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Ferents M. Gesture recognition system for controlling IoT systems / Maksym Ferents, Ihor Rabiichuk, Andrii Fechan // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 15. — No 1. — P. 18–24. | |
| dc.identifier.citation2015 | Ferents M., Fechan A. Gesture recognition system for controlling IoT systems // Computational Problems of Electrical Engineering, Lviv. 2025. Vol 15. No 1. P. 18–24. | |
| dc.identifier.citationenAPA | Ferents, M., Rabiichuk, I., & Fechan, A. (2025). Gesture recognition system for controlling IoT systems. Computational Problems of Electrical Engineering, 15(1), 18-24. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Ferents M., Rabiichuk I., Fechan A. (2025) Gesture recognition system for controlling IoT systems. Computational Problems of Electrical Engineering (Lviv), vol. 15, no 1, pp. 18-24. | |
| dc.identifier.doi | https://doi.org/10.23939/jcpee2025.01.018 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/123794 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Обчислювальні проблеми електротехніки, 1 (15), 2025 | |
| dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (15), 2025 | |
| dc.relation.referencesen | [1] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A Survey on Internet of Things From Industrial Market Perspective”, IEEE Access, vol. 2, pp. 1660–1679,2014. | |
| dc.relation.referencesen | [2] A. Whitmore, A. Agarwal and L. Da Xu, “The Internet of Things – A Survey of Topics and Trends”, Information Systems Frontiers, vol. 17, No. 2,pp. 261–274, 2015. | |
| dc.relation.referencesen | [3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications”, IEEE Communications Surveys & Tutorials, vol. 17, No. 4, pp. 2347–2376, 2015. | |
| dc.relation.referencesen | [4] R. Bowden, A. Zisserman, T. Kadir, and M. Brady, “Vision Based Interpretation of Natural Sign Languages”, In Proceedings of the International Conference on Computer Vision Systems, 2003. | |
| dc.relation.referencesen | [5] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things”, IEEE Computer, vol. 48, No. 1,pp. 28–35, 2015. | |
| dc.relation.referencesen | [6] X. Han and M. A. Rashid, “Gesture and Voice Control of Internet of Things”, In Proceedings of IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 1791–1795, 2016. | |
| dc.relation.referencesen | [7] M. Hussain, Automatic Recognition of Sign Language Gestures, Master’s Thesis, Jordan University of Science and Technology, 1999. | |
| dc.relation.referencesen | [8] M. Handouyahia, D. Ziou, and S. Wang, “Sign Language Recognition Using Moment-based Size Functions”, In Proceedings International Conference on Vision Interface, pp. 210–216, 1999. | |
| dc.relation.referencesen | [9] S. Malassiotis and M. Strintzis, “Real-time Hand Posture Recognition Using Range Data”, Image and Vision Computing, vol. 26, No. 7, pp. 1027–1037,2008. | |
| dc.relation.referencesen | [10]A. Licsar and T. Sziranyi, “Supervised Training Based Hand Gesture Recognition System”, In Proceedings of the International Conference on Pattern Recognition, pp. 999–1002, 2002. | |
| dc.relation.referencesen | [11]W. Freeman and M. Roth, “Orientation Histograms for Hand Gesture Recognition”, In Proceedings of the International Workshop on Automatic Face and Gesture Recognition, pp. 296–301, 1994. | |
| dc.relation.referencesen | [12] H. Yoon, J. Soh, Y. J. Bae, H. S. Yang, “Hand Gesture Recognition Using Combined Features of Location, Angle and Velocity”, Journal of Pattern Recognition, vol. 34, No. 7, pp. 1491–1501, 2001. | |
| dc.relation.referencesen | [13] R. Klette, K. Schluns, A. Koschan, “Three- Dimensional Data from Images”, Computer Vision, Springer, Singapore, 1998. | |
| dc.relation.referencesen | [14] A. Al-Hamadi, O. Rashid, and B. Michaelis, “Posture Recognition using Combined Statistical and Geometrical Feature Vectors Based on SVM”, International Journal of Computational Intelligence, vol. 6, No. 1, pp. 7–14, 2010. | |
| dc.relation.referencesen | [15] L. Jin, C. Chen, L. Zhen, and J. Huang, “Real-Time Fingertip Detection from Cluttered Background for Vision-based HCI”, Journal of Communication and Computer, vol. 2, No. 9. pp. –-8, 2005. | |
| dc.relation.referencesen | [16] J. Davis, G. Bradski, “Real-time Motion Template Gradients using Intel CVLib”, In Proceeding of IEEE ICCV Workshop on Framerate Vision, 1999, 1–20. Year of Publication: 1999. | |
| dc.relation.referencesen | [17] S. Khalid, U. Ilyas, S. Sarfaraz, A. Ajaz, “Bhattacharyya Coefficient in Correlation of Gary- Scale Objects”, Journal of Multimedia, vol. 1, No. 1,pp. 56–61, 2006. | |
| dc.relation.referencesen | [18] M. Elmezain, A. Al-Hamadi, B. Michaelis, “Real- Time Capable System for Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image Sequences”, The Journal of WSCG’08, vol. 16, No. 1,pp.65–72, 2008. | |
| dc.relation.referencesen | [19] R. Niese, A. Al-Hamadi, B. Michaelis, “A Novel Method for 3D Face Detection and Normalization”, The Journal of Multimedia, vol. 2, No. 5, pp.1–12. | |
| dc.relation.referencesen | [20] D. Comaniciu, V. Ramesh, P. Meer, “Kernel- Based Object Tracking”, IEEE Transactions PAMI, vol. 25, No. 5, pp. 564–577, 2003. | |
| dc.relation.referencesen | [21] J. Smith & A. Doe, “Gesture Recognition Using Polar Coordinates”, Journal of Machine Learning, vol. 35, No. 2, pp. 134–150, 2020. | |
| dc.relation.referencesen | [22] M. Brown & P. Wilson, “Noise Reduction in Motion Trajectories”, International Conference on Computer Vision, vol. 22, No. 4, pp. 567–580, 2018. | |
| dc.relation.referencesen | [23] L. Zhang & Y. Chen, “Hidden Markov Models for Gesture Classification”, Neural Computing and Applications, vol. 33, No. 10, pp. 2234–2250, 2021. | |
| dc.relation.referencesen | [24] I. V. Tetko, D. J. Livingstone, and A. I. Luik, “Neural Network Studies. Comparison of Over_Fitting and Overtraining”, Journal of Chemical Information and Computer Sciences, vol. 35, No. 5, pp. 826–833, 1995. | |
| dc.relation.referencesen | [25] M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Real-Time Capable System for Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image Sequences”, Journal of WSCG, vol. 16, No. 1, pp. 65–72, 2008. | |
| dc.relation.referencesen | [26] M. Elmezain, A. Al-Hamadi, J. Appenrodt, and B. Michaelis, “A Hidden Markov Model-Based Continuous Gesture Recognition System for Hand Motion Trajectory”, In Proceedings of the International Conference on Pattern Recognition (ICPR),pp. 519–522, 2008. | |
| dc.relation.referencesen | [27] D. Comaniciu, S. Ramesh, and P. Meer, “Kernel- Based Object Tracking”, IEEE Transaction on Pattern Analysis and Machine Intelligence (TPAMI),vol. 25, No. 5, pp. 564–577, 2003. | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2025 | |
| dc.subject | internet of Things (IoT) | |
| dc.subject | gesture recognition | |
| dc.subject | gesture control | |
| dc.subject | colour information | |
| dc.subject | depth map | |
| dc.subject | Hidden Markov Model | |
| dc.title | Gesture recognition system for controlling IoT systems | |
| dc.title.alternative | Система розпізнавання жестів для управління IоT системами | |
| dc.type | Article |