Modeling and Optimisation of Comlexity by the β-Cyclodextrin of an Organic Pollutant Model: m-Methyl Red

dc.citation.epage202
dc.citation.issue2
dc.citation.spage195
dc.contributor.affiliationAugust 1955 University of Skikda
dc.contributor.affiliationNational Center for Research in Materials Sciences,Technopole Bourj Cedria
dc.contributor.authorChekroud, Hassina
dc.contributor.authorDjazi, Fayçal
dc.contributor.authorAbdelaziz, Bouhadiba
dc.contributor.authorHorchani-Naifer, Karima
dc.contributor.authorRachida, Zeghdoudi
dc.contributor.authorMalika, Remache
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:04Z
dc.date.available2024-01-22T11:13:04Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractПроведено моделювання адуктів β-циклодекстрину (β-CD) з м-метиловим червоним (m-MR) за допомогою параметричного методу 6 (РМ6), напівемпіричних молекулярних орбітальних розрахунків та методу натуральної орбіталі (NBO). Показано, що реакція приєднання відбувається внаслідок підтримання фіксованих координат β-CD та переміщення гостьової молекули. Різні положення між m-MR та β-CD вимірюються щодо відстані між еталонним атомом (N) гостьової молекулі та початком координат екваторіальної площини β-CD. Встановлено, що адукт m-MR/β-CD (комплекс B) має нижче негативне значення ΔG порівняно з іншим m-MR/β-CD (комплексом A), що підкреслює спонтанну поведінку процесу приєднання. Крім того, під час приєднання енергія комплексоутворення є негативною, що дає можливість стверджувати, що комплексоутворення m-MR у β-CD є термодинамічно вигідним. Встановлено, що мінімальну кількість енергії PM6 отримують в орієнтації B, а гостьова молекула частково інкапсульована в порожнині β-CD. За допомогою NBO аналізу проведено характеристику взаємодії водневих зв’язків між одинокою парою (LP(Y)) атома Y та антизв’язуючою орбіталлю (BD٭(X-H)).
dc.description.abstractStudies of cyclodextrin chemistry using quantum chemical methods are mainly adopted to investigate the formation of the inclusion complex causing changes in the physicochemical properties of the cyclodextrin guest. In this paper, we conducted a computational modeling study of the inclusion complexes of β-cyclodextrin (β-CD) with m-Methyl Red (m-MR) by using parametric method 6 (PM6), the semi empirical molecular orbital calculations and the natural bond orbital method (NBO). The inclusion process is carried out by maintaining the coordinates of the β-CD fixed and by displacing the guest molecule. The different relative positions between m-MR and β-CD are measured with respect to the distance between the reference atom (N) in the guest molecule and the origin of the coordinates from the equatorial plane of β-CD. The m-MR/β-CD (B) inclusion complex has a lower negative value of ΔG compared to another m-MR/β-CD (A) complex, highlighting the spontaneous behavior of the inclusion process. In addition, during the process of inclusion, the complexation energy is negative, which allows us to affirm that the complexation of m-MR in the β-CD is thermodynamically favorable. Among two directions A and B, the minimum energy generated from the PM6 was obtained in the orientation B and the guest molecule is partially encapsulated in the cavity of β-CD. In the NBO analysis, the stabilization energy is also usually used to characterize the hydrogen bond interaction between a lone pair (LP(Y)) of an atom Y and an anti-bonding orbital (BD٭(X-H)).
dc.format.extent195-202
dc.format.pages8
dc.identifier.citationModeling and Optimisation of Comlexity by the β-Cyclodextrin of an Organic Pollutant Model: m-Methyl Red / Hassina Chekroud, Fayçal Djazi, Bouhadiba Abdelaziz, Karima Horchani-Naifer, Zeghdoudi Rachida, Remache Malika // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 195–202.
dc.identifier.citationenModeling and Optimisation of Comlexity by the β-Cyclodextrin of an Organic Pollutant Model: m-Methyl Red / Hassina Chekroud, Fayçal Djazi, Bouhadiba Abdelaziz, Karima Horchani-Naifer, Zeghdoudi Rachida, Remache Malika // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 195–202.
dc.identifier.doidoi.org/10.23939/chcht16.02.195
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60979
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Lehn, J. Supramolecular Chemistry. Science 1993, 260, 1762-1763. https://doi.org/10.1126/science.8511582
dc.relation.references[2] Schneider, H.-J. Binding Mechanisms in Supramolecular Complexes. Angew. Chem. Int. Edit. 2009, 48, 3924-3977. https://doi.org/10.1002/anie.200802947
dc.relation.references[3] Szejtli, J. Past, Present and Futute of Cyclodextrin Research. Pure Appl. Chem. 2004, 76, 1825-1845. https://doi.org/10.1351/pac200476101825
dc.relation.references[4] Oshovsky, G.V.; Reinhoudt, D.N.; Verboom, W. Supramolecular Chemistry in Water. Angew. Chem. Int. Edit. 2007, 46, 2366-2393. https://doi.org/10.1002/anie.200602815
dc.relation.references[5] Szente, L.; Szejtli, J. Cyclodextrins as Food Ingredients. Trends Food Sci. Technol. 2004, 15, 137-142. https://doi.org/10.1016/j.tifs.2003.09.019
dc.relation.references[6] Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Del. Rev. 2007, 59, 645-666. https://doi.org/10.1016/j.addr.2007.05.012
dc.relation.references[7] Liu L., Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1. https://doi.org/10.1023/A:1014520830813
dc.relation.references[8] Khouri, S.J.; Abdel-Rahim, I.A.; Shamaileh, E.M. A Thermodynamic Study of α-, β-, and γ-Cyclodextrin-complexed m-Methyl Red in Alkaline Solutions. J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 105-112. https://doi.org/10.1007/s10847-012-0221-x
dc.relation.references[9] Del Valle E.M.M. Cyclodextrins and their Uses: A Review. Proc. Biochem. 2004, 39, 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
dc.relation.references[10] Zhan, J.; Li, Q.; Hu, Q.; Wu, Q.; Li, C.; Qiu, H.; Zhang, M.; Yin, S. A Stimuli-Responsive Orthogonal Supramolecular Polymer Network Formed by Metal–Ligand and Host–Guest Interactions. Chem. Commun. 2014, 50, 722-724. https://doi.org/10.1039/C3CC47468B
dc.relation.references[11] Thorsteinn, L.; Duchene, D. Cyclodextrins and their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1-11. https://doi.org/10.1016/j.ijpharm.2006.10.044
dc.relation.references[12] Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743-1754. https://doi.org/10.1021/cr970022c
dc.relation.references[13] Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96, 1027-1044. https://doi.org/10.1021/cr950202r
dc.relation.references[14] Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173-1213. https://doi.org/10.1007/s00894-007-0233-4
dc.relation.references[15] Li, X.-S.; Liu, L.; Guo, Q.-X.; Chu, S.-D.; Liu, Y.-C. PM3 Molecular Orbital Calculations on the Complexation of α-Cyclodextrin with Acetophenone. Chem. Phys. Lett. 1999, 307, 117-120. https://doi.org/10.1016/S0009-2614(99)00511-4
dc.relation.references[16] Xiao, Y.; Yang, L.; Mao, P.; Yuan, J.; Deng, Y.; Qu, L. Inclusion Complexes of Phosphorylated Daidzein Derivatives with β-Cyclodextrin: Preparation and Inclusion Behavior Study. Spectrochim. Actat A 2012, 85, 298-302. https://doi.org/10.1016/j.saa.2011.10.014
dc.relation.references[17] Rahim, M.; Madi, F.; Nouar, L.; Bouhadiba, A.; Haiahem, S.; Khatmi, D.E.; Belhocine, Y. Driving Forces and Electronic Structure in β-Cyclodextrin/3,3′-Diaminodiphenylsulphone Complex. J. Mol. Liq. 2014, 199, 501-510. https://doi.org/10.1016/j.molliq.2014.09.035
dc.relation.references[18] Tawarah, K.M.; Khouri, S. Determination of the Stability and Stoichiometry of p-Methyl Red Inclusion Complexes with γ-Cyclodextrin. Dyes Pigments 2000, 45, 229-233. https://doi.org/10.1016/S0143-7208(00)00024-3
dc.relation.references[19] Thendral, P.; Thulasidhasan, J. Inclusion Complexation of Methyl Orange and Methyl Red with α- and β-Cyclodextrin: Spectral and Theoretical Study. Int. J. Chem. Pharm. Sci. 2018, 9, 25-33.
dc.relation.references[20] Korth, M.; Pitoňák, M.; Řezáč, J.; Hobza, P. A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. J. Chem. Theory Comput. 2010, 6, 344-352. https://doi.org/10.1021/ct900541n
dc.relation.references[21] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. et al. Gaussian 09. Gaussian, Inc.: Wallingford CT, 2009.
dc.relation.references[22] Chem-Office 3D ultra, Version 10 Cambridge Software, 2006.
dc.relation.references[23] Hyperchem, Release 7.51 for Windows, Hypercube. Inc., 2002.
dc.relation.references[24] Stewart, J. Middle East Succession Issues J. Mol. Model., 2009, 15, 765-769. https://doi.org/10.1093/tandt/ttp117
dc.relation.references[25] Nouar, L.; Haiahem, S.; Bouhadiba, A.; Madi, F. Theoretical Study of Inclusion Complexation of 3-Amino-5-nitrobenzisothiazole with β-Cyclodextrin. J. Mol. Liq. 2011, 160, 8-13. https://doi.org/10.1016/j.molliq.2011.02.016
dc.relation.references[26] Liu, L.; Guo, Q.-X. Use of Quantum Chemical Methods to Study Cyclodextrin Chemistry. J. Incl. Phenom. Macrocycl. Chem. 2004, 50, 95-103. https://doi.org/10.1007/s10847-003-8847-3
dc.relation.references[27] Henriksen, N.M.; Gilson, M.K. Evaluating Force Field Performance in Thermodynamic Calculations of Cyclodextrin Host–Guest Binding: Water Models, Partial Charges, and Host Force Field Parameters. J. Chem. Theory Comput. 2017, 13, 4253-4269. https://doi.org/10.1021/acs.jctc.7b00359
dc.relation.references[28] Zhang, H.; Yin, C.; Yan, H.; van der Spoel, D. Evaluation of Generalized Born Models for Large Scale Affinity Prediction of Cyclodextrin Host–Guest Complexes. J. Chem. Inform. Model. 2016, 56, 2080-2092. https://doi.org/10.1021/acs.jcim.6b00418
dc.relation.referencesen[1] Lehn, J. Supramolecular Chemistry. Science 1993, 260, 1762-1763. https://doi.org/10.1126/science.8511582
dc.relation.referencesen[2] Schneider, H.-J. Binding Mechanisms in Supramolecular Complexes. Angew. Chem. Int. Edit. 2009, 48, 3924-3977. https://doi.org/10.1002/anie.200802947
dc.relation.referencesen[3] Szejtli, J. Past, Present and Futute of Cyclodextrin Research. Pure Appl. Chem. 2004, 76, 1825-1845. https://doi.org/10.1351/pac200476101825
dc.relation.referencesen[4] Oshovsky, G.V.; Reinhoudt, D.N.; Verboom, W. Supramolecular Chemistry in Water. Angew. Chem. Int. Edit. 2007, 46, 2366-2393. https://doi.org/10.1002/anie.200602815
dc.relation.referencesen[5] Szente, L.; Szejtli, J. Cyclodextrins as Food Ingredients. Trends Food Sci. Technol. 2004, 15, 137-142. https://doi.org/10.1016/j.tifs.2003.09.019
dc.relation.referencesen[6] Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Del. Rev. 2007, 59, 645-666. https://doi.org/10.1016/j.addr.2007.05.012
dc.relation.referencesen[7] Liu L., Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1. https://doi.org/10.1023/A:1014520830813
dc.relation.referencesen[8] Khouri, S.J.; Abdel-Rahim, I.A.; Shamaileh, E.M. A Thermodynamic Study of α-, b-, and g-Cyclodextrin-complexed m-Methyl Red in Alkaline Solutions. J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 105-112. https://doi.org/10.1007/s10847-012-0221-x
dc.relation.referencesen[9] Del Valle E.M.M. Cyclodextrins and their Uses: A Review. Proc. Biochem. 2004, 39, 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
dc.relation.referencesen[10] Zhan, J.; Li, Q.; Hu, Q.; Wu, Q.; Li, C.; Qiu, H.; Zhang, M.; Yin, S. A Stimuli-Responsive Orthogonal Supramolecular Polymer Network Formed by Metal–Ligand and Host–Guest Interactions. Chem. Commun. 2014, 50, 722-724. https://doi.org/10.1039/P.3CC47468B
dc.relation.referencesen[11] Thorsteinn, L.; Duchene, D. Cyclodextrins and their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1-11. https://doi.org/10.1016/j.ijpharm.2006.10.044
dc.relation.referencesen[12] Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743-1754. https://doi.org/10.1021/cr970022c
dc.relation.referencesen[13] Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96, 1027-1044. https://doi.org/10.1021/cr950202r
dc.relation.referencesen[14] Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173-1213. https://doi.org/10.1007/s00894-007-0233-4
dc.relation.referencesen[15] Li, X.-S.; Liu, L.; Guo, Q.-X.; Chu, S.-D.; Liu, Y.-C. PM3 Molecular Orbital Calculations on the Complexation of α-Cyclodextrin with Acetophenone. Chem. Phys. Lett. 1999, 307, 117-120. https://doi.org/10.1016/S0009-2614(99)00511-4
dc.relation.referencesen[16] Xiao, Y.; Yang, L.; Mao, P.; Yuan, J.; Deng, Y.; Qu, L. Inclusion Complexes of Phosphorylated Daidzein Derivatives with b-Cyclodextrin: Preparation and Inclusion Behavior Study. Spectrochim. Actat A 2012, 85, 298-302. https://doi.org/10.1016/j.saa.2011.10.014
dc.relation.referencesen[17] Rahim, M.; Madi, F.; Nouar, L.; Bouhadiba, A.; Haiahem, S.; Khatmi, D.E.; Belhocine, Y. Driving Forces and Electronic Structure in b-Cyclodextrin/3,3′-Diaminodiphenylsulphone Complex. J. Mol. Liq. 2014, 199, 501-510. https://doi.org/10.1016/j.molliq.2014.09.035
dc.relation.referencesen[18] Tawarah, K.M.; Khouri, S. Determination of the Stability and Stoichiometry of p-Methyl Red Inclusion Complexes with g-Cyclodextrin. Dyes Pigments 2000, 45, 229-233. https://doi.org/10.1016/S0143-7208(00)00024-3
dc.relation.referencesen[19] Thendral, P.; Thulasidhasan, J. Inclusion Complexation of Methyl Orange and Methyl Red with α- and b-Cyclodextrin: Spectral and Theoretical Study. Int. J. Chem. Pharm. Sci. 2018, 9, 25-33.
dc.relation.referencesen[20] Korth, M.; Pitoňák, M.; Řezáč, J.; Hobza, P. A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. J. Chem. Theory Comput. 2010, 6, 344-352. https://doi.org/10.1021/ct900541n
dc.relation.referencesen[21] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. et al. Gaussian 09. Gaussian, Inc., Wallingford CT, 2009.
dc.relation.referencesen[22] Chem-Office 3D ultra, Version 10 Cambridge Software, 2006.
dc.relation.referencesen[23] Hyperchem, Release 7.51 for Windows, Hypercube. Inc., 2002.
dc.relation.referencesen[24] Stewart, J. Middle East Succession Issues J. Mol. Model., 2009, 15, 765-769. https://doi.org/10.1093/tandt/ttp117
dc.relation.referencesen[25] Nouar, L.; Haiahem, S.; Bouhadiba, A.; Madi, F. Theoretical Study of Inclusion Complexation of 3-Amino-5-nitrobenzisothiazole with b-Cyclodextrin. J. Mol. Liq. 2011, 160, 8-13. https://doi.org/10.1016/j.molliq.2011.02.016
dc.relation.referencesen[26] Liu, L.; Guo, Q.-X. Use of Quantum Chemical Methods to Study Cyclodextrin Chemistry. J. Incl. Phenom. Macrocycl. Chem. 2004, 50, 95-103. https://doi.org/10.1007/s10847-003-8847-3
dc.relation.referencesen[27] Henriksen, N.M.; Gilson, M.K. Evaluating Force Field Performance in Thermodynamic Calculations of Cyclodextrin Host–Guest Binding: Water Models, Partial Charges, and Host Force Field Parameters. J. Chem. Theory Comput. 2017, 13, 4253-4269. https://doi.org/10.1021/acs.jctc.7b00359
dc.relation.referencesen[28] Zhang, H.; Yin, C.; Yan, H.; van der Spoel, D. Evaluation of Generalized Born Models for Large Scale Affinity Prediction of Cyclodextrin Host–Guest Complexes. J. Chem. Inform. Model. 2016, 56, 2080-2092. https://doi.org/10.1021/acs.jcim.6b00418
dc.relation.urihttps://doi.org/10.1126/science.8511582
dc.relation.urihttps://doi.org/10.1002/anie.200802947
dc.relation.urihttps://doi.org/10.1351/pac200476101825
dc.relation.urihttps://doi.org/10.1002/anie.200602815
dc.relation.urihttps://doi.org/10.1016/j.tifs.2003.09.019
dc.relation.urihttps://doi.org/10.1016/j.addr.2007.05.012
dc.relation.urihttps://doi.org/10.1023/A:1014520830813
dc.relation.urihttps://doi.org/10.1007/s10847-012-0221-x
dc.relation.urihttps://doi.org/10.1016/S0032-9592(03)00258-9
dc.relation.urihttps://doi.org/10.1039/C3CC47468B
dc.relation.urihttps://doi.org/10.1016/j.ijpharm.2006.10.044
dc.relation.urihttps://doi.org/10.1021/cr970022c
dc.relation.urihttps://doi.org/10.1021/cr950202r
dc.relation.urihttps://doi.org/10.1007/s00894-007-0233-4
dc.relation.urihttps://doi.org/10.1016/S0009-2614(99)00511-4
dc.relation.urihttps://doi.org/10.1016/j.saa.2011.10.014
dc.relation.urihttps://doi.org/10.1016/j.molliq.2014.09.035
dc.relation.urihttps://doi.org/10.1016/S0143-7208(00)00024-3
dc.relation.urihttps://doi.org/10.1021/ct900541n
dc.relation.urihttps://doi.org/10.1093/tandt/ttp117
dc.relation.urihttps://doi.org/10.1016/j.molliq.2011.02.016
dc.relation.urihttps://doi.org/10.1007/s10847-003-8847-3
dc.relation.urihttps://doi.org/10.1021/acs.jctc.7b00359
dc.relation.urihttps://doi.org/10.1021/acs.jcim.6b00418
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Chekroud H., Djazi F., Abdelaziz B., Horchani-Naifer K., Rachida Z., Malika R., 2022
dc.subjectциклодекстрин
dc.subjectм-метиловий червоний
dc.subjectадукт
dc.subjectPM6
dc.subjectNBO аналіз
dc.subjectcyclodextrin
dc.subjectm-Methyl Red
dc.subjectinclusion complex
dc.subjectPM6
dc.subjectNBO analysis
dc.titleModeling and Optimisation of Comlexity by the β-Cyclodextrin of an Organic Pollutant Model: m-Methyl Red
dc.title.alternativeМоделювання та оптимізація складності за β-циклодекстрином моделі органічного забруднювача: метил м-червоний
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n2_Chekroud_H-Modeling_and_Optimisation_195-202.pdf
Size:
696.86 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n2_Chekroud_H-Modeling_and_Optimisation_195-202__COVER.png
Size:
484.83 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: