Diagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory

dc.citation.epage16
dc.citation.issue1 (26)
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationМіжнародний економіко-гуманітарний університет ім. акад. С. Дем’янчука, вул. С. Дем’янчука
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInternational University of Economics and Humanities named after Academician Stepan Demianchuk
dc.contributor.authorДвуліт, П. Д.
dc.contributor.authorДжунь, Й. В.
dc.contributor.authorDvulit, P.
dc.contributor.authorDzhun, J.
dc.coverage.placenameЛьвів
dc.date.accessioned2020-02-19T13:04:09Z
dc.date.available2020-02-19T13:04:09Z
dc.date.created2019-06-26
dc.date.issued2019-06-26
dc.description.abstractМета дослідження: показати необхідність використання сучасних уявлень про закон розподілу похибок спостережень, задіяних в категоріях “Некласичної теорії вимірів” (НТПВ) при проведенні високоточних балістичних визначень гравітаційного прискорення. Ці визначення характеризуються великими обсягами, що, відповідно до теорії професора Кембриджського університету Г. Джеффріса, автоматично виводить їх за межі дії класичних уявлень про закон похибок вимірів. Ці застарілі уявлення про закон розподілу похибок вимірів великого обсягу є головною перешкодою на шляху вдосконалення методики цих дуже важливих визначень. Методика дослідження забезпечується процедурами НТПВ, які розроблені з метою контролю ймовірнісної форми статистичних розподілів високоточних абсолютних балістичних вимірів із великими обсягами вибірок на основі рекомендацій Г. Джеффріса і на принципах теорії перевірки гіпотез. Основним результатом дослідження є проведення НТПВ- діагностики метрологічної ситуації високоточних вимірів балістичним гравіметром FG-5, виконаних після деяких удосконалень програми спостережень. Цей метод діагностики ґрунтується на використанні довірчих інтервалів для оцінок асиметрії і ексцесу отриманої вибірки вимірів g з наступним застосуванням -тесту Пірсона для визначення значимості відхилень їх розподілів від встановлених норм. У відповідності з категоріями НТПВ такими нормами є закони Гауса і Пірсона-Джеффріса, оскільки саме вони забезпечують несингулярність вагової функції вибірки і можливість отримання невироджених оцінок g при математичній обробці вимірів. Наукова новизна: задіяні можливості нового інструмента в області “Data Analysis” – НТПВ з метою вдосконалення методики високоточних вимірів g, які виконуються в складній метрологічній ситуації і необхідністю врахування ряду нестаціонарних джерел систематичних похибок. Практична значущість дослідження полягає в застосуванні НТПВ – діагностики ймовірнісної форми розподілу вимірів g з метою вдосконалення методики цих високоточних визначень. Дослідження причин відхилень розподілів похибок від встановлених норм забезпечує метрологічну грамотність проведення високоточних вимірів великого обсягу.
dc.description.abstractThe purpose of the investigation is to show the necessity of using modern ideas about the law of error distribution for observations involved in the categories of the “Non-classical error theory of measurements” (NETM) in the process of performing high-precision ballistic definitions of gravitational acceleration. These definitions are characterized by large volumes, which according to the H. Jeffreys’ theory, professor at the University of Cambridge, automatically takes them beyond the bounds of the classical concepts about the errors of measurements law. These outdated views about the distribution law of errors of large volume measurements are the main obstacles to improve the methodology of these highly precise and important definitions. The research methodology is provided by the NETM-procedures that was designed to control the probabilistic from of the statistical distribution of absolute high-precise ballistic measurements g with large sample volumes based on H. Jeffreys’ recommendations and on the principles of hypothesis testing theory. The main result of the research is to carry out NETM-diagnostics of a metrological situation with the ballistic gravimeter FG-5 after some improvements of the program of the observation. This method of diagnostics is based on the use confidence intervals to the estimates of asymmetry and kurtosis of the obtained samples of measurements g with the following application of the Pearson’s -test to determine the significance of the deviations of its distribution from the established norms. In accordance with the categories of the NETM, such norms are the Gauss’s and Person-Jeffreys’s laws, since only they ensure the non-singularity of the weight function of the sample, and therefore the possibility of obtaining non generate estimates g during the mathematical processing of measurements. Scientific novelty: using the possibilities of the new important tool in the field “Data analysis” using the NETM to improve the technique of the high-precise measurements g, which are performed in a complicated metrological situation with the necessity of taking into account a number of non-stationary sources of systematic errors. The practical significance of the research is in use of NETM-diagnostics of the probabilistic form of the distribution of measurements g in order to improve the methodology of these highly precise determinations. The investigation seeks reasons for the deviations of errors distributions from established norms providing metrological literacy of the high-precise large-scale measurements.
dc.format.extent5-16
dc.format.pages12
dc.identifier.citationDvulit P. Diagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory / P. Dvulit, J. Dzhun // Geodynamics : scientific journal. — Lviv : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 5–16.
dc.identifier.citationenDvulit P. Diagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory / P. Dvulit, J. Dzhun // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 5–16.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45870
dc.language.isoen
dc.publisherLviv Polytechnic Publishing House
dc.relation.ispartofГеодинаміка : науковий журнал, 1 (26), 2019
dc.relation.ispartofGeodynamics : scientific journal, 1 (26), 2019
dc.relation.referencesArnautov, G. P., Koronkevich, V. P., & Stus, Yu. F.,
dc.relation.references(1982). The Interferometer of the absolute lazers
dc.relation.referencesballistic gravimeter. Institut avtomatici i
dc.relation.referenceselektrometrii SO AN USSR, Novosibirsk,
dc.relation.referencesPreprint 196. 37 p.
dc.relation.referencesBessel, F. W. (1818). Fundamenta astronomiae. Konigsberg.
dc.relation.referencesBessel, F. W. (1838). Untersuhungen uber die Wahrscheinlichkeit
dc.relation.referencesder Beobachtungs-fehle. Astronomische
dc.relation.referencesNachrichten, b. 15, 369.
dc.relation.referencesBolshev, L. N., & Smirnov, N. V. (1983). Tables of
dc.relation.referencesMathematical Statistics. Moscow: Science. (in Russian).
dc.relation.referencesPearson, K. (1902). On the Mathematical Theory of
dc.relation.referencesErrors of Judgment with special Reference to the
dc.relation.referencesPersonal Equation. Philosophical Transactions of
dc.relation.referencesthe Royal Society of London. Ser. A., 198, 235–296.
dc.relation.referencesSakuma, A. (1973). A permanent station for the
dc.relation.referencesabsolute determination of gravity approaching one
dc.relation.referencesmicrogal accurace. Proc. Symposium on Earth’s
dc.relation.referencesgravitational field and secular variations in
dc.relation.referencesposition. University of N. S. W., Sidney. p. 674–684.
dc.relation.referencesStudent. (1927). Errors of routine analysis. Biometrika, 151–164.
dc.relation.referencesBorodachev, N. A. (1950). The Main Questions of the
dc.relation.referencesTukey, J. W. (1960). A survey of sampling from
dc.relation.referencescontaminated distributions. Contributions to
dc.relation.referencesprobability and statistics, 448–485.
dc.relation.referencesTukey, J. W. (1962). The future of data analysis. The
dc.relation.referencesannals of mathematical statistics, 33(1), 1–67.
dc.relation.referencesaccuracy of the Theory of Manufacture. Editor
dc.relation.referencesA. N. Kolmogorov. Moscow – Leningrad: AS USSR Publ., 360 p, [In Russian].
dc.relation.referencesBruevich, N. G. (Editor). (1973). Production Accuracy
dc.relation.referencesin the Mechanic and Instrument engineering.
dc.relation.referencesCramér, H. (1946). Mathematical methods of
dc.relation.referencesstatistics. 1946. Department of Mathematical SU.
dc.relation.referencesDoolittle, C. L. (1910). Results of Observations with
dc.relation.referencesthe zenith telescope and the Wharton reflex zenith
dc.relation.referencestube. The Astronomical Journal, XXVI, 608, Albany.
dc.relation.referencesDoolittle, C. L. (1912). Results of observation with
dc.relation.referencesthe zenith telescope and the Wharton reflex zenith
dc.relation.referencestube. The Astronomical Journal, 27, 133–138.
dc.relation.referencesDvulit, P., & Dzhun, I. (2017). Application of
dc.relation.referencesmethods of the non-classical error theory in
dc.relation.referencesabsolute measurements of Galilean acceleration. Geodynamics, (22), 7–15.
dc.relation.referencesDzhun, I. V. (1969). Pearson Distribution of type VII
dc.relation.referencesin the errors of Observations of Latitude
dc.relation.referencesVariations. Astrom. Astrofiz. 2, 101115.
dc.relation.referencesDzhun, I. V. (1974). Analysis of parallel Latitudinal
dc.relation.referencesObservations performed under the general
dc.relation.referencesprogram. Extended abstract of Cand. Degree of
dc.relation.referencesPhis. – Math. Sci.: spec. 01.03.01 “Astrometry
dc.relation.referencesand Celectial Mechanics”. Kyiv: Institute of mathematics of AS USSR.
dc.relation.referencesDzhun, I. V. (1983). Fluctuations in Weight of
dc.relation.referencesIndividual Measurements of the Gravity Acceleration
dc.relation.referencesand the Way of their Account for
dc.relation.referencesballistic Observations Processing. In Repeated
dc.relation.referencesGravity Observations: Theory and Results.
dc.relation.referencesMoscow: MGK Prezidiume AS USSR, Neftegeofizika Publ., 46–52.
dc.relation.referencesDzhun, I. V., Arnautov G. P., Stus Yu. F., Shcheglov
dc.relation.referencesS. N. (1984). Feature of the Dis-tribution Law
dc.relation.referencesfor the Results of Ballistic Measurement of the
dc.relation.referencesGravity Acceleration. Repeat Gravimetric
dc.relation.referencesObservations: Theory and Results. Moscow: MGK
dc.relation.referencesPrezidiume AS USSR, Neftegeofizika Publ., 87–100.
dc.relation.referencesDzhun, I. V. (1992). Mathematical Treatment of
dc.relation.referencesAstronomical and Space-Based Information in
dc.relation.referencesnon-Gaussian Observation Errors. Extended
dc.relation.referencesAbstract of Doctoral Dissertation in Physics and
dc.relation.referencesMathematics. Main Astronomical Observatory of
dc.relation.referencesthe National Academy of Sciences of Ukraine, Kyiv.
dc.relation.referencesDzhun, I. V. (2012). Distribution of errors in multiple
dc.relation.referenceslarge-volume observations. Measurement Techniques, 55, 393–396., Springer.
dc.relation.referencesDzhun, I. V. (2015). The Non-classical Errors Theory
dc.relation.referencesof Measurements. Rivne: Estero Publ., 168 [in Russian].
dc.relation.referencesDzhun, J. V. (2017). A new importnat tool in the field
dc.relation.referencesof intelligent data analysis. Alcide De Gasperi
dc.relation.referencesUniversity of Euroregional Economy in Jozefow.
dc.relation.referencesIntercultural Communication, 1/2, 162–175.
dc.relation.referencesEddington, A. S. (1933). Notes on the method of least
dc.relation.referencessquares. Proceedings of the Physical Society, 45(2), 271.
dc.relation.referencesFedorov, E. P. (1963). Nutation and forced motion of
dc.relation.referencesthe Earth's pole from the data of latitude
dc.relation.referencesobservations. Oxford, New York, Pergamon Press.
dc.relation.referencesGauss, C. F. (1809). Theoria motus corporum coelestium
dc.relation.referencesin sectionibus conicis solem ambientium (Vol. 7). Perthes et Besser.
dc.relation.referencesGauss, C. F. (1823). Theoria combinationis observationum
dc.relation.referenceserroribus minimis obnoxiae (Vol. 1). Henricus Dieterich.
dc.relation.referencesGeary, R. C. (1947). Testing for Normality. Biometrika, 34, 209–242.
dc.relation.referencesHammond, J. A., & Faller, J. E. (1971). A laser-interferometer
dc.relation.referencessystem for the absolute determination of
dc.relation.referencesthe acceleration due to gravity. Precision Measurement
dc.relation.referencesand Fundamental Constants; Proceedings, 343, 457.
dc.relation.referencesHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., &
dc.relation.referencesStahel, W. A. (1986). Robust statistics (pp. 29-30). New York:Wiley.
dc.relation.referencesHulme, H. R., & Symms, L. S. T. (1939). The law of
dc.relation.referenceserror and the combination of observations. Monthly
dc.relation.referencesNotices of the Royal Astronomical Society, 99, 642.
dc.relation.referencesIdelson, N. I. (1947). Method of Least Squares and the
dc.relation.referencesTheory of Math. Treatment of Observations). [In
dc.relation.referencesRussian]. Geodezizdat. Moscow – Leningrad.
dc.relation.referencesJeffreys, H. (1938). The law of error and the
dc.relation.referencescombination of observations. Philosophical
dc.relation.referencesTransactions of the Royal Society of London.
dc.relation.referencesSeries A, Mathematical and Physical Sciences, 237(777), 231–271.
dc.relation.referencesJeffreys, H. (1939). The law of error in the Greenwich
dc.relation.referencesvariation of latitude observations. Monthly Notices
dc.relation.referencesof the Royal Astronomical Society, 99, 703.
dc.relation.referencesJeffreys, H. (1998). The theory of probability. OUP Oxford.
dc.relation.referencesLucacs, E. A. (1942). A Characterization of the normal
dc.relation.referencesDistribution. Annals of Mathematical Statistics. 13, 91–93.
dc.relation.referencesNewcomb, S. (1886). A generalized theory of the
dc.relation.referencescombination of observations so as to obtain the
dc.relation.referencesbest result. American journal of Mathematics, 343–366.
dc.relation.referencesOgorodnikov, K. F. (1928). Procedure for Reducing
dc.relation.referencesObservations by introducing Mean Weights in
dc.relation.referencesapplication to Statistical Study of Stellar Motions,
dc.relation.referencesAstron., Jurn., 5(1), 1–21.
dc.relation.referencesenArnautov, G. P., Koronkevich, V. P., & Stus, Yu. F.,
dc.relation.referencesen(1982). The Interferometer of the absolute lazers
dc.relation.referencesenballistic gravimeter. Institut avtomatici i
dc.relation.referencesenelektrometrii SO AN USSR, Novosibirsk,
dc.relation.referencesenPreprint 196. 37 p.
dc.relation.referencesenBessel, F. W. (1818). Fundamenta astronomiae. Konigsberg.
dc.relation.referencesenBessel, F. W. (1838). Untersuhungen uber die Wahrscheinlichkeit
dc.relation.referencesender Beobachtungs-fehle. Astronomische
dc.relation.referencesenNachrichten, b. 15, 369.
dc.relation.referencesenBolshev, L. N., & Smirnov, N. V. (1983). Tables of
dc.relation.referencesenMathematical Statistics. Moscow: Science. (in Russian).
dc.relation.referencesenPearson, K. (1902). On the Mathematical Theory of
dc.relation.referencesenErrors of Judgment with special Reference to the
dc.relation.referencesenPersonal Equation. Philosophical Transactions of
dc.relation.referencesenthe Royal Society of London. Ser. A., 198, 235–296.
dc.relation.referencesenSakuma, A. (1973). A permanent station for the
dc.relation.referencesenabsolute determination of gravity approaching one
dc.relation.referencesenmicrogal accurace. Proc. Symposium on Earth’s
dc.relation.referencesengravitational field and secular variations in
dc.relation.referencesenposition. University of N. S. W., Sidney. p. 674–684.
dc.relation.referencesenStudent. (1927). Errors of routine analysis. Biometrika, 151–164.
dc.relation.referencesenBorodachev, N. A. (1950). The Main Questions of the
dc.relation.referencesenTukey, J. W. (1960). A survey of sampling from
dc.relation.referencesencontaminated distributions. Contributions to
dc.relation.referencesenprobability and statistics, 448–485.
dc.relation.referencesenTukey, J. W. (1962). The future of data analysis. The
dc.relation.referencesenannals of mathematical statistics, 33(1), 1–67.
dc.relation.referencesenaccuracy of the Theory of Manufacture. Editor
dc.relation.referencesenA. N. Kolmogorov. Moscow – Leningrad: AS USSR Publ., 360 p, [In Russian].
dc.relation.referencesenBruevich, N. G. (Editor). (1973). Production Accuracy
dc.relation.referencesenin the Mechanic and Instrument engineering.
dc.relation.referencesenCramér, H. (1946). Mathematical methods of
dc.relation.referencesenstatistics. 1946. Department of Mathematical SU.
dc.relation.referencesenDoolittle, C. L. (1910). Results of Observations with
dc.relation.referencesenthe zenith telescope and the Wharton reflex zenith
dc.relation.referencesentube. The Astronomical Journal, XXVI, 608, Albany.
dc.relation.referencesenDoolittle, C. L. (1912). Results of observation with
dc.relation.referencesenthe zenith telescope and the Wharton reflex zenith
dc.relation.referencesentube. The Astronomical Journal, 27, 133–138.
dc.relation.referencesenDvulit, P., & Dzhun, I. (2017). Application of
dc.relation.referencesenmethods of the non-classical error theory in
dc.relation.referencesenabsolute measurements of Galilean acceleration. Geodynamics, (22), 7–15.
dc.relation.referencesenDzhun, I. V. (1969). Pearson Distribution of type VII
dc.relation.referencesenin the errors of Observations of Latitude
dc.relation.referencesenVariations. Astrom. Astrofiz. 2, 101115.
dc.relation.referencesenDzhun, I. V. (1974). Analysis of parallel Latitudinal
dc.relation.referencesenObservations performed under the general
dc.relation.referencesenprogram. Extended abstract of Cand. Degree of
dc.relation.referencesenPhis, Math. Sci., spec. 01.03.01 "Astrometry
dc.relation.referencesenand Celectial Mechanics". Kyiv: Institute of mathematics of AS USSR.
dc.relation.referencesenDzhun, I. V. (1983). Fluctuations in Weight of
dc.relation.referencesenIndividual Measurements of the Gravity Acceleration
dc.relation.referencesenand the Way of their Account for
dc.relation.referencesenballistic Observations Processing. In Repeated
dc.relation.referencesenGravity Observations: Theory and Results.
dc.relation.referencesenMoscow: MGK Prezidiume AS USSR, Neftegeofizika Publ., 46–52.
dc.relation.referencesenDzhun, I. V., Arnautov G. P., Stus Yu. F., Shcheglov
dc.relation.referencesenS. N. (1984). Feature of the Dis-tribution Law
dc.relation.referencesenfor the Results of Ballistic Measurement of the
dc.relation.referencesenGravity Acceleration. Repeat Gravimetric
dc.relation.referencesenObservations: Theory and Results. Moscow: MGK
dc.relation.referencesenPrezidiume AS USSR, Neftegeofizika Publ., 87–100.
dc.relation.referencesenDzhun, I. V. (1992). Mathematical Treatment of
dc.relation.referencesenAstronomical and Space-Based Information in
dc.relation.referencesennon-Gaussian Observation Errors. Extended
dc.relation.referencesenAbstract of Doctoral Dissertation in Physics and
dc.relation.referencesenMathematics. Main Astronomical Observatory of
dc.relation.referencesenthe National Academy of Sciences of Ukraine, Kyiv.
dc.relation.referencesenDzhun, I. V. (2012). Distribution of errors in multiple
dc.relation.referencesenlarge-volume observations. Measurement Techniques, 55, 393–396., Springer.
dc.relation.referencesenDzhun, I. V. (2015). The Non-classical Errors Theory
dc.relation.referencesenof Measurements. Rivne: Estero Publ., 168 [in Russian].
dc.relation.referencesenDzhun, J. V. (2017). A new importnat tool in the field
dc.relation.referencesenof intelligent data analysis. Alcide De Gasperi
dc.relation.referencesenUniversity of Euroregional Economy in Jozefow.
dc.relation.referencesenIntercultural Communication, 1/2, 162–175.
dc.relation.referencesenEddington, A. S. (1933). Notes on the method of least
dc.relation.referencesensquares. Proceedings of the Physical Society, 45(2), 271.
dc.relation.referencesenFedorov, E. P. (1963). Nutation and forced motion of
dc.relation.referencesenthe Earth's pole from the data of latitude
dc.relation.referencesenobservations. Oxford, New York, Pergamon Press.
dc.relation.referencesenGauss, C. F. (1809). Theoria motus corporum coelestium
dc.relation.referencesenin sectionibus conicis solem ambientium (Vol. 7). Perthes et Besser.
dc.relation.referencesenGauss, C. F. (1823). Theoria combinationis observationum
dc.relation.referencesenerroribus minimis obnoxiae (Vol. 1). Henricus Dieterich.
dc.relation.referencesenGeary, R. C. (1947). Testing for Normality. Biometrika, 34, 209–242.
dc.relation.referencesenHammond, J. A., & Faller, J. E. (1971). A laser-interferometer
dc.relation.referencesensystem for the absolute determination of
dc.relation.referencesenthe acceleration due to gravity. Precision Measurement
dc.relation.referencesenand Fundamental Constants; Proceedings, 343, 457.
dc.relation.referencesenHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., &
dc.relation.referencesenStahel, W. A. (1986). Robust statistics (pp. 29-30). New York:Wiley.
dc.relation.referencesenHulme, H. R., & Symms, L. S. T. (1939). The law of
dc.relation.referencesenerror and the combination of observations. Monthly
dc.relation.referencesenNotices of the Royal Astronomical Society, 99, 642.
dc.relation.referencesenIdelson, N. I. (1947). Method of Least Squares and the
dc.relation.referencesenTheory of Math. Treatment of Observations). [In
dc.relation.referencesenRussian]. Geodezizdat. Moscow – Leningrad.
dc.relation.referencesenJeffreys, H. (1938). The law of error and the
dc.relation.referencesencombination of observations. Philosophical
dc.relation.referencesenTransactions of the Royal Society of London.
dc.relation.referencesenSeries A, Mathematical and Physical Sciences, 237(777), 231–271.
dc.relation.referencesenJeffreys, H. (1939). The law of error in the Greenwich
dc.relation.referencesenvariation of latitude observations. Monthly Notices
dc.relation.referencesenof the Royal Astronomical Society, 99, 703.
dc.relation.referencesenJeffreys, H. (1998). The theory of probability. OUP Oxford.
dc.relation.referencesenLucacs, E. A. (1942). A Characterization of the normal
dc.relation.referencesenDistribution. Annals of Mathematical Statistics. 13, 91–93.
dc.relation.referencesenNewcomb, S. (1886). A generalized theory of the
dc.relation.referencesencombination of observations so as to obtain the
dc.relation.referencesenbest result. American journal of Mathematics, 343–366.
dc.relation.referencesenOgorodnikov, K. F. (1928). Procedure for Reducing
dc.relation.referencesenObservations by introducing Mean Weights in
dc.relation.referencesenapplication to Statistical Study of Stellar Motions,
dc.relation.referencesenAstron., Jurn., 5(1), 1–21.
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019
dc.rights.holder© Національний університет «Львівська політехніка», 2019
dc.rights.holder© P. Dvulit, J. Dzhun
dc.subjectзакони похибок: Гауса
dc.subjectПірсона–Джеффріса
dc.subjectабсолютні виміри гравітаційного прискорення
dc.subjectнекласична теорія похибок вимірів
dc.subjectlaws of errors Gauss and Pearson-Jeffreys
dc.subjectabsolute measurements gravity acceleration
dc.subjectnonclassical errors theory
dc.subject.udc550.831
dc.subject.udc528.11
dc.subject.udc519.281
dc.titleDiagnostics of the high-precise ballistic measured gravity acceleration by methods of non-classical errors theory
dc.title.alternativeДіагностика високоточних балістичних вимірів гравітаційного прискорення методами некласичної теорії похибок
dc.typeArticle

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: