Аналіз сучасних безпілотних літальних апаратів оснащених системою лазерного сканування

dc.citation.epage65
dc.citation.issue45
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва
dc.citation.spage59
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГлотов, В.
dc.contributor.authorПетришин, І.
dc.contributor.authorGlotov, V.
dc.contributor.authorPetryshyn, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T09:17:16Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВиконати критичний аналіз сучасних наукових досягнень із застосуванням безпілотних літальних апаратів (БПЛА) гелікоптерного типу та сканувальних систем (LIDAR), навести переваги та недоліки запропонованих технологій і розробити класифікацію розглянутих технологій. Методика. Застосування аналізу та класифікації як загальнонаукових методів пізнання. Результати. Проаналізовано літературні джерела, що стосуються сканувальних систем, встановлених на безпілотні літальні апарати, визначено їх практичне застосування, нормативно-правові документи, які регулюють їх застосування та технології для вдосконалення. Практична цінність. Результати аналізування літературних джерел надалі заплановано використовувати для вдосконалення методики опрацювання системи сканування, встановленої на октокоптер DJI S1000.
dc.description.abstractTo conduct a critical analysis of modern scientific achievements using helicopter-type unmanned aerial vehicles (UAVs) and scanning systems (LIDAR), to state the advantages and disadvantages of the proposed technologies and to develop a classification of the considered technologies. Method. Application of analysis and classification as general scientific methods of cognition. The results. As a result of the analyzed literary sources related to scanning systems installed on unmanned aerial vehicles, their practical application, normative and legal documents regulating their use and technologies for technology improvement were determined. Practical value. The presented analysis of literary sources will be used in the future to improve the method of processing the scanning system installed on the DJI S1000 octocopter.
dc.format.extent59-65
dc.format.pages7
dc.identifier.citationГлотов В. Аналіз сучасних безпілотних літальних апаратів оснащених системою лазерного сканування / В. Глотов, І. Петришин // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2023. — Том 1. — № 45. — С. 59–65.
dc.identifier.citationenGlotov V. Analysis of modern unmanned aerial vehicles equipped with a laser scanning system / V. Glotov, I. Petryshyn // Modern achievements of geodesic science and industry. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 1. — No 45. — P. 59–65.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63735
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва, 45 (1), 2023
dc.relation.ispartofModern achievements of geodesic science and industry, 45 (1), 2023
dc.relation.references[Електронний ресурс]. Режим доступу: https://dtek.com/
dc.relation.referencesPuniach, E., & Kwartnik-Pruc, A. (2018). The use of laser scanning and unmanned aerial vehicles in construction surveying in the light of legal regulations in Poland. Journal of Applied Engineering Sciences, 8(2), 79–88.
dc.relation.referencesTommaselli, A. M. G., & Torres, F. M. (2016). A lightweight laser scanner for UAV applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 711–715.
dc.relation.referencesTomsett, C., & Leyland, J. (2021). Development and Testing of a UAV Laser Scanner and Multispectral Camera System for Eco-Geomorphic Applications. Sensors, 21(22), 7719.
dc.relation.referencesBarrile, V., Bilotta, G., & Nunnari, A. (2017). 3D modeling with photogrammetry by UAVs and model quality verification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 129.
dc.relation.referencesBakuła, K., Ostrowski, W., Pilarska, M., Szender, M., & Kurczyński, Z. (2018). Evaluation and calibration of fixed-wing uav mobile mapping system equipped with lidar and optical sensors. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
dc.relation.referencesPilarska, M., Ostrowski, W., Bakuła, K., Górski, K., & Kurczyński, Z. (2016). The potential of light laser scanners developed for unmanned aerial vehicles-the review and accuracy. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
dc.relation.referencesRoşca, S., Suomalainen, J., Bartholomeus, H., & Herold, M. (2018). Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface focus, 8(2), 20170038.
dc.relation.referencesMohamad Azmi, M. A. A., Abbas, M. A., Zainuddin, K., Mustafar, M. A., Zainal, M. Z., Majid, Z., ... & Aspuri, A. (2018). 3D data fusion using unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanner (TLS). In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017, Vol. 2, 295–305. Springer, Singapore.
dc.relation.referencesBremer, M., Wichmann, V., Rutzinger, M., Zieher, T., & Pfeiffer, J. (2019). Simulating unmanned-aerialvehicle based laser scanning data for efficient mission planning in complex terrain. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
dc.relation.referencesOstrowski, W., Górski, K., Pilarska, M., Salach, A., & Bakuła, K. (2017). Comparison of the laser scanning solutions for the unmanned aerial vehicles. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 29.
dc.relation.referencesWang, Y., Kukko, A., Hyyppä, E., Hakala, T., Pyörälä, J., Lehtomäki, M., ... & Hyyppä, J. (2021). Seamless integration of above-and under-canopy unmanned aerial vehicle laser scanning for forest investigation. Forest Ecosystems, 8(1), 1–15.
dc.relation.referencesБурштинська, Х., Бабушка, А., Василиха, І., & Пікулик, С. (2009). Використання даних лазерного сканування для побудови цифрових моделей рельєфу гідрографічних мереж гірських систем. Геодезія, картографія і аерофотознімання, (71), 146–151.
dc.relation.referencesUlvi, A. (2021). Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994–2021.
dc.relation.referencesLiu, C., Liu, X., Peng, X., Wang, E., & Wang, S. (2019). Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope. Landslides, 16(9), 1645–1661.
dc.relation.referencesRoşca, S., Suomalainen, J., Bartholomeus, H., & Herold, M. (2018). Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface focus, 8(2), 20170038.
dc.relation.referencesDąbrowski, P. S., Specht, C., Specht, M., Burdziakowski, P., Makar, A., & Lewicka, O. (2021). Integration of multi-source geospatial data from GNSS receivers, terrestrial laser scanners, and unmanned aerial vehicles. Canadian Journal of Remote Sensing, 47(4), 621–634.
dc.relation.referencesQuan, Y., Li, M., Zhen, Z., Hao, Y., & Wang, B. (2020). The feasibility of modelling the crown profile of Larix olgensis using unmanned aerial vehicle laser scanning data. Sensors, 20(19), 5555.
dc.relation.referencesLiang, X., Wang, Y., Pyörälä, J., Lehtomäki, M., Yu, X., Kaartinen, H., ... & Deng, S. (2019). Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. Forest ecosystems, 6(1), 1–16.
dc.relation.referencesLi, M., Li, Z., Liu, Q., & Chen, E. (2021). Comparison of Coniferous Plantation Heights Using Unmanned Aerial Vehicle (UAV) Laser Scanning and Stereo Photogrammetry. Remote Sensing, 13(15), 2885.
dc.relation.referencesLi, D., Guo, H., Wang, C., Li, W., Chen, H., & Zuo, Z. (2016). Individual tree delineation in windbreaks using airborne-laser-scanning data and unmanned aerial vehicle stereo images. IEEE Geoscience and Remote Sensing Letters, 13(9), 1330–1334.
dc.relation.referencesenURL: https://dtek.com/
dc.relation.referencesenPuniach, E., & Kwartnik-Pruc, A. (2018). The use of laser scanning and unmanned aerial vehicles in construction surveying in the light of legal regulations in Poland. Journal of Applied Engineering Sciences, 8(2), 79–88.
dc.relation.referencesenTommaselli, A. M. G., & Torres, F. M. (2016). A light-weight laser scanner for UAV applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 711–715.
dc.relation.referencesenTomsett, C., & Leyland, J. (2021). Development and Testing of a UAV Laser Scanner and Multispectral Camera System for Eco-Geomorphic Applications. Sensors, 21(22), 7719.
dc.relation.referencesenBarrile, V., Bilotta, G., & Nunnari, A. (2017). 3D modeling with photogrammetry by UAVs and model quality verification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 129.
dc.relation.referencesenBakuła, K., Ostrowski, W., Pilarska, M., Szender, M., & Kurczyński, Z. (2018). Evaluation and calibration of fixed-wing uav mobile mapping system equipped with lidar and optical sensors. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
dc.relation.referencesenPilarska, M., Ostrowski, W., Bakuła, K., Górski, K., & Kurczyński, Z. (2016). The potential of light laser scanners developed for unmanned aerial vehicles-the review and accuracy. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.
dc.relation.referencesenRoşca, S., Suomalainen, J., Bartholomeus, H., & Herold, M. (2018). Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface focus, 8(2), 20170038.
dc.relation.referencesenMohamad Azmi, M. A. A., Abbas, M. A., Zainuddin, K., Mustafar, M. A., Zainal, M. Z., Majid, Z., ... & Aspuri, A. (2018). 3D data fusion using unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanner (TLS). In Proceedings of the Second International Conference on the Future of ASEAN (ICoFA) 2017, Vol. 2, 295–305. Springer, Singapore.
dc.relation.referencesenBremer, M., Wichmann, V., Rutzinger, M., Zieher, T., & Pfeiffer, J. (2019). Simulating unmanned-aerial-vehicle based laser scanning data for efficient mission planning in complex terrain. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
dc.relation.referencesenOstrowski, W., Górski, K., Pilarska, M., Salach, A., & Bakuła, K. (2017). Comparison of the laser scanning solutions for the unmanned aerial vehicles. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 29.
dc.relation.referencesenWang, Y., Kukko, A., Hyyppä, E., Hakala, T., Pyörälä, J., Lehtomäki, M., ... & Hyyppä, J. (2021). Seamless integration of above-and under-canopy unmanned aerial vehicle laser scanning for forest investigation. Forest Ecosystems, 8(1), 1–15.
dc.relation.referencesenBurshtynska, H., Babushka, A., Vasylikha, I., & Pikulyk, S. (2009). The use of laser scanning data for the construction of digital relief models of hydrographic networks of mountain systems. Geodesy, cartography and aerial photography, (71), 146–151.
dc.relation.referencesenUlvi, A. (2021). Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. International Journal of Remote Sensing, 42(6), 1994–2021.
dc.relation.referencesenLiu, C., Liu, X., Peng, X., Wang, E., & Wang, S. (2019). Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope. Landslides, 16(9), 1645–1661.
dc.relation.referencesenRoşca, S., Suomalainen, J., Bartholomeus, H., & Herold, M. (2018). Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface focus, 8(2), 20170038.
dc.relation.referencesenDąbrowski, P. S., Specht, C., Specht, M., Burdziakowski, P., Makar, A., & Lewicka, O. (2021). Integration of multi-source geospatial data from GNSS receivers, terrestrial laser scanners, and unmanned aerial vehicles. Canadian Journal of Remote Sensing, 47(4), 621–634.
dc.relation.referencesenQuan, Y., Li, M., Zhen, Z., Hao, Y., & Wang, B. (2020). The feasibility of modelling the crown profile of Larix olgensis using unmanned aerial vehicle laser scanning data. Sensors, 20(19), 5555.
dc.relation.referencesenLiang, X., Wang, Y., Pyörälä, J., Lehtomäki, M., Yu, X., Kaartinen, H., ... & Deng, S. (2019). Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. Forest ecosystems, 6(1), 1–16.
dc.relation.referencesenLi, M., Li, Z., Liu, Q., & Chen, E. (2021). Comparison of Coniferous Plantation Heights Using Unmanned Aerial Vehicle (UAV) Laser Scanning and Stereo Photogrammetry. Remote Sensing, 13(15), 2885.
dc.relation.referencesenLi, D., Guo, H., Wang, C., Li, W., Chen, H., & Zuo, Z. (2016). Individual tree delineation in windbreaks using airbornelaser-scanning data and unmanned aerial vehicle stereo images. IEEE Geoscience and Remote Sensing Letters, 13(9), 1330–1334.
dc.relation.urihttps://dtek.com/
dc.rights.holder© Західне геодезичне товариство, 2023
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectаналіз літератури
dc.subjectбезпілотний літальний апарат
dc.subjectлазерний сканер
dc.subjectкласифікація
dc.subjectliterature analysis
dc.subjectunmanned aerial vehicle
dc.subjectlaser scanner
dc.subjectclassification
dc.subject.udc528.721
dc.titleАналіз сучасних безпілотних літальних апаратів оснащених системою лазерного сканування
dc.title.alternativeAnalysis of modern unmanned aerial vehicles equipped with a laser scanning system
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v1n45_Glotov_V-Analysis_of_modern_unmanned_59-65.pdf
Size:
642.14 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v1n45_Glotov_V-Analysis_of_modern_unmanned_59-65__COVER.png
Size:
505.47 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: