Інтерполяція табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора

Abstract

Розроблено методологію локальної інтерполяції табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора n-го степеня в довільно розташованих вузлах інтерполяції, що дає можливість обчислювати їх проміжні значення між вузлами інтерполяції. Проведений аналіз останніх досліджень та публікацій у сфері інтерполяції табличних функцій показав, що основна їх частина – строга теорія інтерполяції, тобто уточнення фундаментальних її математичних положень. Розглянуто деякі особливості інтерполяції табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора n-го степеня, а саме: наведено алгоритм розв'язання та математичне формулювання задачі інтерполяції; наведено її формалізований запис, а також матричний запис процедур інтерполяції для певних значень аргумента. Наведено скалярний алгоритм розв'язання задачі інтерполяції табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора 2-го, 3-го і 4-го степенів, простота й наочність якого є однією з його переваг, але алгоритм незручний для програмної реалізації. Наведено математичне формулювання задачі інтерполяції табличних функцій у термінах матричної алгебри, яке зводиться до виконання таких дій: за відомими з таблиці значеннями вузлових точок потрібно обчислити матрицю Тейлора n-го степеня; за вказаними у таблиці значеннями функції потрібно сформувати вектор-стовпець вузлів інтерполяції; розв'язати лінійну систему алгебричних рівнянь, коренем якої є числові коефіцієнти многочлена Тейлора n-го степеня. Розроблено метод розрахунку коефіцієнтів інтерполянт, заданих многочленом Тейлора n-го степеня для однієї незалежної змінної, сутність якого зводиться до добутку матриці, оберненої до матриці Тейлора, яку визначають за вузловими точками табличної функції, на вектор-стовпець, який містить значення вузлів інтерполяції. На конкретних прикладах для табличних функцій від однієї незалежної змінної продемонстровано особливості розрахунку коефіцієнтів інтерполянт 2-го, 3-го і 4-го степенів, а також для кожної з них за допомогою матричного методу обчислено інтерпольовані значення функції у заданих точках. Розрахунки виконано в середовищі Excel, які за аналогією можна успішно реалізувати й в будь-якому іншому обчислювальному середовищі.
A method of local interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree in arbitrarily located interpolation nodes has been developed. This makes it possible to calculate intermediate values of tabular functions between interpolation nodes. The conducted analysis of the latest research and publications in the field of interpolation of tabular functions showed that the main part of the research is a strict theory of interpolation, i.e. clarification of its fundamental mathematical provisions. Some features of the interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree are considered, namely: the solution algorithm and mathematical formulation of the interpolation problem are given; its formalized notation is given, as well as the matrix notation of interpolation procedures for certain values of the argument. A scalar algorithm for solving the problem of interpolation of tabular functions from one independent variable using the Taylor polynomial of the 2nd, 3rd and 4th degrees has been developed. The simplicity and clarity of this algorithm is one of its advantages, but the algorithm is inconvenient for software implementation. The mathematical formulation of the problem of interpolation of tabular functions in terms of matrix algebra is given. The interpolation task is reduced to performing the following actions: based on the values of nodal points known from the table, it is necessary to calculate the Taylor matrix of the nth degree; based on the function values specified in the table a column vector of interpolation nodes should be formed; solve a linear system of algebraic equations, the root of which is the numerical coefficients of the Taylor polynomial of the nth degree. A method of calculating the coefficients of the interpolant, given by the Taylor polynomial of the nth degree for one independent variable has been developed. The essence of the method reduces to the product of the matrix, inverse of the Taylor matrix, which is determined by the nodal points of the tabular function, by a column vector containing the values of the interpolation nodes. Specific examples demonstrate the peculiarities of calculating the interpolant coefficients of the 2nd, 3rd and 4th degrees for one independent variable, and for each of them the interpolated value of the function at a given point is calculated. Calculations were performed in the Excel environment, which by analogy can be successfully implemented in any other computing environment.

Description

Keywords

матрична алгебра, обчислювальна математика, метод Гауса, коефіцієнти інтерполянти, вузлові точки, вузли інтерполяції, алгоритм розв'язання задачі, математичне формулювання задачі, matrix algebra, computational mathematics, Gauss method, coefficients of interpolant, nodal points, interpolationnodes, the solving task algorithm, mathematical formulation of the task

Citation

Грицюк Ю. І. Інтерполяція табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора / Ю. І. Грицюк, Р. Б. Тушницький // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2022. — Том 4. — № 2. — С. 1–17.

Endorsement

Review

Supplemented By

Referenced By