Інтерполяція табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора

dc.citation.epage17
dc.citation.issue2
dc.citation.journalTitleУкраїнський журнал інформаційних технологій
dc.citation.spage1
dc.citation.volume4
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГрицюк, Юрій Іванович
dc.contributor.authorТушницький, Р. Б.
dc.contributor.authorHrytsiuk, Yu. I.
dc.contributor.authorTushnytskyy, R. B.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-03-27T08:56:53Z
dc.date.available2024-03-27T08:56:53Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractРозроблено методологію локальної інтерполяції табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора n-го степеня в довільно розташованих вузлах інтерполяції, що дає можливість обчислювати їх проміжні значення між вузлами інтерполяції. Проведений аналіз останніх досліджень та публікацій у сфері інтерполяції табличних функцій показав, що основна їх частина – строга теорія інтерполяції, тобто уточнення фундаментальних її математичних положень. Розглянуто деякі особливості інтерполяції табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора n-го степеня, а саме: наведено алгоритм розв'язання та математичне формулювання задачі інтерполяції; наведено її формалізований запис, а також матричний запис процедур інтерполяції для певних значень аргумента. Наведено скалярний алгоритм розв'язання задачі інтерполяції табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора 2-го, 3-го і 4-го степенів, простота й наочність якого є однією з його переваг, але алгоритм незручний для програмної реалізації. Наведено математичне формулювання задачі інтерполяції табличних функцій у термінах матричної алгебри, яке зводиться до виконання таких дій: за відомими з таблиці значеннями вузлових точок потрібно обчислити матрицю Тейлора n-го степеня; за вказаними у таблиці значеннями функції потрібно сформувати вектор-стовпець вузлів інтерполяції; розв'язати лінійну систему алгебричних рівнянь, коренем якої є числові коефіцієнти многочлена Тейлора n-го степеня. Розроблено метод розрахунку коефіцієнтів інтерполянт, заданих многочленом Тейлора n-го степеня для однієї незалежної змінної, сутність якого зводиться до добутку матриці, оберненої до матриці Тейлора, яку визначають за вузловими точками табличної функції, на вектор-стовпець, який містить значення вузлів інтерполяції. На конкретних прикладах для табличних функцій від однієї незалежної змінної продемонстровано особливості розрахунку коефіцієнтів інтерполянт 2-го, 3-го і 4-го степенів, а також для кожної з них за допомогою матричного методу обчислено інтерпольовані значення функції у заданих точках. Розрахунки виконано в середовищі Excel, які за аналогією можна успішно реалізувати й в будь-якому іншому обчислювальному середовищі.
dc.description.abstractA method of local interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree in arbitrarily located interpolation nodes has been developed. This makes it possible to calculate intermediate values of tabular functions between interpolation nodes. The conducted analysis of the latest research and publications in the field of interpolation of tabular functions showed that the main part of the research is a strict theory of interpolation, i.e. clarification of its fundamental mathematical provisions. Some features of the interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree are considered, namely: the solution algorithm and mathematical formulation of the interpolation problem are given; its formalized notation is given, as well as the matrix notation of interpolation procedures for certain values of the argument. A scalar algorithm for solving the problem of interpolation of tabular functions from one independent variable using the Taylor polynomial of the 2nd, 3rd and 4th degrees has been developed. The simplicity and clarity of this algorithm is one of its advantages, but the algorithm is inconvenient for software implementation. The mathematical formulation of the problem of interpolation of tabular functions in terms of matrix algebra is given. The interpolation task is reduced to performing the following actions: based on the values of nodal points known from the table, it is necessary to calculate the Taylor matrix of the nth degree; based on the function values specified in the table a column vector of interpolation nodes should be formed; solve a linear system of algebraic equations, the root of which is the numerical coefficients of the Taylor polynomial of the nth degree. A method of calculating the coefficients of the interpolant, given by the Taylor polynomial of the nth degree for one independent variable has been developed. The essence of the method reduces to the product of the matrix, inverse of the Taylor matrix, which is determined by the nodal points of the tabular function, by a column vector containing the values of the interpolation nodes. Specific examples demonstrate the peculiarities of calculating the interpolant coefficients of the 2nd, 3rd and 4th degrees for one independent variable, and for each of them the interpolated value of the function at a given point is calculated. Calculations were performed in the Excel environment, which by analogy can be successfully implemented in any other computing environment.
dc.format.extent1-17
dc.format.pages17
dc.identifier.citationГрицюк Ю. І. Інтерполяція табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора / Ю. І. Грицюк, Р. Б. Тушницький // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2022. — Том 4. — № 2. — С. 1–17.
dc.identifier.citationenHrytsiuk Yu. I. Interpolation of tabular functions from one independent variable using the Taylor polynomial / Yu. I. Hrytsiuk, R. B. Tushnytskyy // Ukrainian Journal of Information Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 4. — No 2. — P. 1–17.
dc.identifier.issn2707-1898
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61547
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал інформаційних технологій, 2 (4), 2022
dc.relation.ispartofUkrainian Journal of Information Technology, 2 (4), 2022
dc.relation.references[1] Alain Le Méhauté. (1993). On Multivariate Hermite Polynomial Interpolation. Series in Approximations and Decompositions. Multivariate Approximation: From CAGD to Wavelets, 179–192. https://doi.org/10.1142/9789814503754_0010
dc.relation.references[2] Andrunyk, V. A., Vysotska, V. A., & Pasichnyk V. V. (Ed.), et al. (2018). Numerical methods in computer science: textbook. Issue 2. Lviv: Novy svit-2000, 536 p. [In Ukrainian].
dc.relation.references[3] Boyko, L. T. (2009). Fundamentals of numerical methods: textbook. Dnipropetrovsk: DNU Publishing House, 244 p. [In Ukrainian].
dc.relation.references[4] Bruno Després, & Maxime Herda. (2020). Computation of Sum of Squares Polynomials from Data Points. SIAM Journal on Numerical Analysis, 58(3). https://doi.org/10.1137/19M1273955
dc.relation.references[5] Chapter 1: Computer Arithmetic. (2019). An Introduction to Numerical Computation, 1–19. https://doi.org/10.1142/9789811204425_0001
dc.relation.references[6] Chapter 1: Fundamentals: Taylor Series. (2022). Numerical Methods for Engineers, 1–16. https://doi.org/10.1142/9789811255267_0001
dc.relation.references[7] Chapter 2: Polynomial Interpolation. (2019). An Introduction to Numerical Computation, 21–54. https://doi.org/10.1142/9789811204425_0002
dc.relation.references[8] Chapter 3: Newton–Raphson Algorithms and Interpolation. (2017). Computational Physics, 23–29. https://doi.org/10.1142/9789813200227_0003
dc.relation.references[9] Chapter 6: Applications of Power Series. (2015). Foundations in Applied Nuclear Engineering Analysis, 153–169. https://doi.org/10.1142/9789814630948_0006
dc.relation.references[10] Chui, C. K., Schumaker, L. L. (1995). Approximation and Interpolation. Wavelets and Multilevel Approximation (Vol.1). Series in Approximations and Decompositions. Approximation Theory VIII, 1–606. https://doi.org/10.1142/9789814532594
dc.relation.references[11] DAzevedo, E. F., & Simpson, R. B. (1989). On Optimal Interpolation Triangle Incidences. SIAM Journal on Scientific and Statistical Computing, 10(6). https://doi.org/10.1137/0910064
dc.relation.references[12] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2005). A new C2 rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 161(1), 311 p. https://doi.org/10.1016/j.amc.2003.12.030
dc.relation.references[13] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2005). A new weighted rational cubic interpolation and its approximation. Applied Mathematics and Computation, 168(2), 990 p. https://doi.org/10.1016/j.amc.2004.09.041
dc.relation.references[14] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2006). A bivariate rational interpolation and the properties. Applied Mathematics and Computation, 179(1), 190 p. https://doi.org/10.1016/j.amc.2005.11.094
dc.relation.references[15] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2008). Hermite interpolation by piecewise rational surface. Applied Mathematics and Computation, 198(1), 59 p. https://doi.org/10.1016/j.amc.2007.08.050
dc.relation.references[16] Fan Zhang, Jinjiang Li, Peiqiang Liu, & Hui Fan. (2020). Computing knots by quadratic and cubic polynomial curves. Computational Visual Media, 6(4), 417–430. https://doi.org/10.1007/s41095-020-0186-4
dc.relation.references[17] Faul, A. C., Goodsell, G., & Powell, M. J. D. (2005). A Krylov subspace algorithm for multiquadric interpolation in many dimensions. IMA Journal of Numerical Analysis, 25(1), 1–24. https://doi.org/10.1093/imanum/drh021
dc.relation.references[18] Filts, R. V. (1994). Calculation of Taylor and Fourier polynomials and their derivatives. Synopsis of lectures on the subject "Mathematical problems of electromechanics" for students. special 1801 "Electromechanics". Lviv: State University "Lviv Polytechnic", 24 p. [In Ukrainian].
dc.relation.references[19] Filts, R. V., & Kotsyuba, M. V. (1988). The program of natural power interpolation and differentiation of a tabular function of several independent variables. Kyiv, Deposited with RFAP. INB.NAn0223. [In Russian].
dc.relation.references[20] Filts, R. V., & Kotsyuba, M. V. (1989). Calculation of twodimensional magnetic fields by the collocation method using the theory of natural interpolation. Izvestiya vuzov. Electromechanics, 3, 5–12. [In Russian].
dc.relation.references[21] Filts, R. V., Kotsyuba, M. V., & Grytsyuk, Yu. I. (1991). Algorithm for computing the Taylor polynomial and its derivatives on a computer. Izvestia of universities. Electromechanics, 5, 5–10. [In Russian].
dc.relation.references[22] Giampietro Allasia, & CesareBracco. (2011). Two interpolation operators on irregularly distributed data in inner product spaces. Journal of Computational and Applied Mathematics, 235(4), 1763 p. https://doi.org/10.1016/j.cam.2010.04.025
dc.relation.references[23] Goodman, T. N. T., & Meek, D. S. (2007). Planar interpolation with a pair of rational spirals. Journal of Computational and Applied Mathematics, 201(1), 112 p. https://doi.org/10.1016/j.cam.2006.02.003
dc.relation.references[24] Harim, N. A., & Abdul Karim, S. A. (2021). Positivity Preserving Using C2 Rational Quartic Spline Interpolation. In: Abdul Karim, S. A., Abd Shukur, M. F., Fai Kait, C., Soleimani, H., Sakidin, H. (Eds). Proceedings of the 6th International Conference on Fundamental and Applied Sciences. Springer Proceedings in Complexity. Springer, Singapore. https://doi.org/10.1007/978-981-16-4513-6_46
dc.relation.references[25] Hashemi, B., & Trefethen, L. N. (2017). Chebfun in three dimensions. SIAM Journal on Scientific Computing, 39, 341–363. Retrieved from: https://drive.google.com/file/d/1Iv2eukbtCIPc8R7HN1mEbzmELaD1tu9T/view
dc.relation.references[26] Hrytsiuk, Yu. I. (2014). Computational methods and models in scientific research: monograph. Lviv: LSU BZD Publishing House. 288 p. [In Ukrainian].
dc.relation.references[27] Hrytsiuk, Yu. I., & Havrysh, V. I. (2022). Interpolation of table-given functions by Fourier polynomial. Scientific Bulletin of UNFU, 32(4), 88–102. https://doi.org/10.36930/40320414
dc.relation.references[28] Hussain, Malik Zawwar, & Muhammad Sarfraz. (2008). Positivity-preserving interpolation of positive data by rational cubics. Journal of Computational and Applied Mathematics, 218(2), 446 p. https://doi.org/10.1016/j.cam.2007.05.023
dc.relation.references[29] Jared L. Aurentz, Anthony P. Austin, Michele Benzi, & Vassilis Kalantzis. (2019). Stable Computation of Generalized Matrix Functions via Polynomial Interpolation. SIAM Journal on Matrix Analysis and Applications, 40(1). https://doi.org/10.1137/18M1191786
dc.relation.references[30] Jin Xie, & Xiaoyan Liu. (2021). Adjustable Piecewise Quartic Hermite Spline Curve with Parameters. Mathematical Problems in Engineering, 2021, Article ID 2264871, 6 p. https://doi.org/10.1155/2021/2264871
dc.relation.references[31] Kolesnytskyi, O. K., Arsenyuk, I. R., & Mesyura, V. I. (2017). Numerical methods: tutorial. Vinnytsia: VNTU, 130 p. [In Ukrainian].
dc.relation.references[32] Krylyk, L. V., Bogach, I. V., & Lisovenko, A. I. (2019). Numerical Methods. Numerical integration of functions: tutorial. Vinnytsia: VNTU, 74 p. [In Ukrainian].
dc.relation.references[33] Krylyk, L. V., Bogach, I. V., & Prokopova, M. O. (2013). Computational mathematics. Interpolation and approximation of tabular data: tutorial. Vinnytsia: VNTU, 111 p. [In Ukrainian].
dc.relation.references[34] Krystyna STYš, & Tadeusz STYš. (2014). Natural and Generalized Interpolating Polynomials, 27–62 (32). https://doi.org/10.2174/9781608059423114010005
dc.relation.references[35] Kvetny, R. N., Dementiev, V. Yu., Mashnytskyi, M. O., & Yudin, O. O. (2009). Difference methods and splines in multidimensional interpolation problems: monograph. Vinnytsia: Universum-Vinnytsia, 92 p. [In Ukrainian].
dc.relation.references[36] Kvyetny, R. N., & Bogach, I. V. (2003). Interpolation of a function of two variables by the Lagrange method. Bulletin of the Vinnytsia Polytechnic Institute, 6, 365–368. [In Ukrainian].
dc.relation.references[37] Kvyetny, R. N., Kostrova, K. Yu., & Bogach, I. V. (2005). Interpolation by self-similar sets: monograph. Vinnytsia: Universum-Vinnytsia, 100 p. [In Ukrainian].
dc.relation.references[38] Malik Zawwar Hussain, & Muhammad Sarfraz. (2008). Positivitypreserving interpolation of positive data by rational cubics. Journal of Computational and Applied Mathematics, 218(2), 446–458. https://doi.org/10.1016/j.cam.2007.05.023
dc.relation.references[39] Mamchuk, V. I. (2015). Numerical methods: tutorial. Kyiv: National Aviation University, 388 p. [In Ukrainian].
dc.relation.references[40] Martin Berzins. (2000). A Data-Bounded Quadratic Interpolant on Triangles and Tetrahedra. SIAM Journal on Scientific Computing, 22(1). https://doi.org/10.1137/S1064827597317636
dc.relation.references[41] Mikhailets, V. A., & Murach, A. A. (2010). Hörmander spaces, interpolation and elliptic problems. With a preface by Yu. M. Berezansky. Kyiv: IM NAS of Ukraine, 370 p. [In Russian].
dc.relation.references[42] Min Hu, & Jieqing Tan. (2006). Adaptive osculatory rational interpolation for image processing. Journal of Computational and Applied Mathematics, 195(1-2), 46 p. https://doi.org/10.1016/j.cam.2005.07.011
dc.relation.references[43] Moskalets, O. F., & Shutko, V. M. (2010). The method of least squares for splines of odd powers. Bulletin of Engineering Academy of Ukraine, 2, 224. [In Ukrainian].
dc.relation.references[44] Nail A. Gumerov, & Ramani Duraiswami. (2007). Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration. SIAM Journal on Scientific Computing, 29(5). https://doi.org/10.1137/060662083
dc.relation.references[45] Nekrasov, O. N., & Mirmovich, E. G. (2010). Interpolation and approximation of data by polynomials of power, exponential and trigonometric types. Scientific and educational problems of civil protection, 4, 23–27. [In Russian].
dc.relation.references[46] Pahirya, M. M. (1994). Interpolation of functions by a chained fraction and a branched chained fraction of a special type. Scientific Bulletin of Uzhhorod University. Ser. Mathematical, 1, 72–79. [In Ukrainian].
dc.relation.references[47] Petukh, A. M., Obidnyk, D. T., & Romanyuk, O. N. (2007). Interpolation in problems of contour formation: monograph. Vinnytsia: VNTU, 104 p. [In Ukrainian].
dc.relation.references[48] Philip J. Rasch, & David L. Williamson. (1990). On ShapePreserving Interpolation and Semi-Lagrangian Transport. SIAM Journal on Scientific and Statistical Computing, 11(4). https://doi.org/10.1137/0911039
dc.relation.references[49] Qinghua Sun, Fangxun Bao, Yunfeng Zhang, & Qi Duan. (2013). A bivariate rational interpolation based on scattered data on parallel lines. Journal of Visual Communication and Image Representation, 24(1), 75–80. https://doi.org/10.1016/j.jvcir.2012.11.003
dc.relation.references[50] Qiyuan Pang, Kenneth L. Ho, & Haizhao Yang. (2020). Interpolative Decomposition Butterfly Factorization. SIAM Journal on Scientific Computing, 42(2). https://doi.org/10.1137/19M1294873
dc.relation.references[51] Romanyuk, O. N., Romanyuk, O. V., & Velychko M. O. (2020). Analysis of circular interpolation methods. The 12 th International scientific and practical conference "Impact of Modernity on Science and Practice" (12-13 April, 2020), 572–574. Edmonton, Canada 2020.
dc.relation.references[52] Sarfraza, M., Hussain, & Malik Zawwar. (2006). Data visualization using rational spline interpolation. Journal of Computational and Applied Mathematics, 189(1-2), 513 p. https://doi.org/10.1016/j.cam.2005.04.039
dc.relation.references[53] Sergey Dolgov, Daniel Kressner, & Christoph Strössner. (2021). Functional Tucker Approximation Using Chebyshev Interpolation. SIAM Journal on Scientific Computing, 43(3). https://doi.org/10.1137/20M1356944
dc.relation.references[54] Sheehan Olver, & Yuan Xu. (2021). Orthogonal structure on a quadratic curve. IMA Journal of Numerical Analysis, 41(1), 206–246. https://doi.org/10.1093/imanum/draa001
dc.relation.references[55] Stefan Jakobsson, Bjorn Andersson, & Fredrik Edelvik. (2009). Rational radial basis function interpolation with applications to antenna design. Journal of Computational and Applied Mathematics, 233(4), 889 p. https://doi.org/10.1016/j.cam.2009.08.058
dc.relation.references[56] Stephen M. Robinson. (1979). Quadratic Interpolation is Risky. SIAM Journal on Numerical Analysis, 16(3). https://doi.org/10.1137/0716030
dc.relation.references[57] Taylor Series and Power Series. (2008). Applications and Computation Complex Analysis, 63–71. https://doi.org/10.1142/9789812811080_0011
dc.relation.references[58] Tsegelyk, H. G. (2004). Numerical methods: textbook for university students. Lviv National University named after Ivan Franko. Lviv, 407 p. [In Ukrainian].
dc.relation.references[59] Tyada, K. R., Chand, A. K. B., & Sajid, M. (2021). Shape preserving rational cubic trigonometric fractal interpolation functions. Mathematics and Computers in Simulation, 190, 866–891. https://doi.org/10.1016/j.matcom.2021.06.015
dc.relation.references[60] Volontyr, L. O., Zelinska, O. V., Potapova, N. A., & Chikov, I. A. (2020). Numerical methods: tutorial. Vinnytsia NAU. Vinnytsia: VNAU, 322 p. [In Ukrainian].
dc.relation.references[61] Winfield, D. (1973). Function Minimization by Interpolation in a Data Table. IMA Journal of Applied Mathematics, 12(3), 339–347. https://doi.org/10.1093/imamat/12.3.339
dc.relation.references[62] Yang Jing, & Han Xu-li. (2019). Robust Uniform B-Spline Models for Interpolating Interval Data. Journal of Graphics, 40(3), 429–434. http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2019030429
dc.relation.references[63] Yaroshenko, O. I., & Grihorkiv, M. V. (2018). Numerical methods: tutorial. Chernivtsi: Chernivtsi National University, 172 p. [In Ukrainian].
dc.relation.references[64] Youtian Tao, & Dongyin Wang. (2015). A bivariate rational cubic interpolating spline with biquadratic denominator. Applied Mathematics and Computation, 264(1), 366–377. https://doi.org/10.1016/j.amc.2015.04.100
dc.relation.references[65] Zhu, Y., & Wang, M. (2020). A class of C1 rational interpolation splines in one and two dimensions with region control. Journal of Computational and Applied Mathematics, 39, 69. https://doi.org/10.1007/s40314-020-1067-2
dc.relation.references[66] Zhuo Liu, Shengjun Liu & Yuanpeng Zhu. (2021). C2 Rational Interpolation Splines with Region Control and Image Interpolation Application. Journal of Mathematical Imaging and Vision, 63, 394–416. https://doi.org/10.1007/s10851-020-01005-z
dc.relation.referencesen[1] Alain Le Méhauté. (1993). On Multivariate Hermite Polynomial Interpolation. Series in Approximations and Decompositions. Multivariate Approximation: From CAGD to Wavelets, 179–192. https://doi.org/10.1142/9789814503754_0010
dc.relation.referencesen[2] Andrunyk, V. A., Vysotska, V. A., & Pasichnyk V. V. (Ed.), et al. (2018). Numerical methods in computer science: textbook. Issue 2. Lviv: Novy svit-2000, 536 p. [In Ukrainian].
dc.relation.referencesen[3] Boyko, L. T. (2009). Fundamentals of numerical methods: textbook. Dnipropetrovsk: DNU Publishing House, 244 p. [In Ukrainian].
dc.relation.referencesen[4] Bruno Després, & Maxime Herda. (2020). Computation of Sum of Squares Polynomials from Data Points. SIAM Journal on Numerical Analysis, 58(3). https://doi.org/10.1137/19M1273955
dc.relation.referencesen[5] Chapter 1: Computer Arithmetic. (2019). An Introduction to Numerical Computation, 1–19. https://doi.org/10.1142/9789811204425_0001
dc.relation.referencesen[6] Chapter 1: Fundamentals: Taylor Series. (2022). Numerical Methods for Engineers, 1–16. https://doi.org/10.1142/9789811255267_0001
dc.relation.referencesen[7] Chapter 2: Polynomial Interpolation. (2019). An Introduction to Numerical Computation, 21–54. https://doi.org/10.1142/9789811204425_0002
dc.relation.referencesen[8] Chapter 3: Newton–Raphson Algorithms and Interpolation. (2017). Computational Physics, 23–29. https://doi.org/10.1142/9789813200227_0003
dc.relation.referencesen[9] Chapter 6: Applications of Power Series. (2015). Foundations in Applied Nuclear Engineering Analysis, 153–169. https://doi.org/10.1142/9789814630948_0006
dc.relation.referencesen[10] Chui, C. K., Schumaker, L. L. (1995). Approximation and Interpolation. Wavelets and Multilevel Approximation (Vol.1). Series in Approximations and Decompositions. Approximation Theory VIII, 1–606. https://doi.org/10.1142/9789814532594
dc.relation.referencesen[11] DAzevedo, E. F., & Simpson, R. B. (1989). On Optimal Interpolation Triangle Incidences. SIAM Journal on Scientific and Statistical Computing, 10(6). https://doi.org/10.1137/0910064
dc.relation.referencesen[12] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2005). A new P.2 rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 161(1), 311 p. https://doi.org/10.1016/j.amc.2003.12.030
dc.relation.referencesen[13] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2005). A new weighted rational cubic interpolation and its approximation. Applied Mathematics and Computation, 168(2), 990 p. https://doi.org/10.1016/j.amc.2004.09.041
dc.relation.referencesen[14] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2006). A bivariate rational interpolation and the properties. Applied Mathematics and Computation, 179(1), 190 p. https://doi.org/10.1016/j.amc.2005.11.094
dc.relation.referencesen[15] Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2008). Hermite interpolation by piecewise rational surface. Applied Mathematics and Computation, 198(1), 59 p. https://doi.org/10.1016/j.amc.2007.08.050
dc.relation.referencesen[16] Fan Zhang, Jinjiang Li, Peiqiang Liu, & Hui Fan. (2020). Computing knots by quadratic and cubic polynomial curves. Computational Visual Media, 6(4), 417–430. https://doi.org/10.1007/s41095-020-0186-4
dc.relation.referencesen[17] Faul, A. C., Goodsell, G., & Powell, M. J. D. (2005). A Krylov subspace algorithm for multiquadric interpolation in many dimensions. IMA Journal of Numerical Analysis, 25(1), 1–24. https://doi.org/10.1093/imanum/drh021
dc.relation.referencesen[18] Filts, R. V. (1994). Calculation of Taylor and Fourier polynomials and their derivatives. Synopsis of lectures on the subject "Mathematical problems of electromechanics" for students. special 1801 "Electromechanics". Lviv: State University "Lviv Polytechnic", 24 p. [In Ukrainian].
dc.relation.referencesen[19] Filts, R. V., & Kotsyuba, M. V. (1988). The program of natural power interpolation and differentiation of a tabular function of several independent variables. Kyiv, Deposited with RFAP. INB.NAn0223. [In Russian].
dc.relation.referencesen[20] Filts, R. V., & Kotsyuba, M. V. (1989). Calculation of twodimensional magnetic fields by the collocation method using the theory of natural interpolation. Izvestiya vuzov. Electromechanics, 3, 5–12. [In Russian].
dc.relation.referencesen[21] Filts, R. V., Kotsyuba, M. V., & Grytsyuk, Yu. I. (1991). Algorithm for computing the Taylor polynomial and its derivatives on a computer. Izvestia of universities. Electromechanics, 5, 5–10. [In Russian].
dc.relation.referencesen[22] Giampietro Allasia, & CesareBracco. (2011). Two interpolation operators on irregularly distributed data in inner product spaces. Journal of Computational and Applied Mathematics, 235(4), 1763 p. https://doi.org/10.1016/j.cam.2010.04.025
dc.relation.referencesen[23] Goodman, T. N. T., & Meek, D. S. (2007). Planar interpolation with a pair of rational spirals. Journal of Computational and Applied Mathematics, 201(1), 112 p. https://doi.org/10.1016/j.cam.2006.02.003
dc.relation.referencesen[24] Harim, N. A., & Abdul Karim, S. A. (2021). Positivity Preserving Using P.2 Rational Quartic Spline Interpolation. In: Abdul Karim, S. A., Abd Shukur, M. F., Fai Kait, C., Soleimani, H., Sakidin, H. (Eds). Proceedings of the 6th International Conference on Fundamental and Applied Sciences. Springer Proceedings in Complexity. Springer, Singapore. https://doi.org/10.1007/978-981-16-4513-6_46
dc.relation.referencesen[25] Hashemi, B., & Trefethen, L. N. (2017). Chebfun in three dimensions. SIAM Journal on Scientific Computing, 39, 341–363. Retrieved from: https://drive.google.com/file/d/1Iv2eukbtCIPc8R7HN1mEbzmELaD1tu9T/view
dc.relation.referencesen[26] Hrytsiuk, Yu. I. (2014). Computational methods and models in scientific research: monograph. Lviv: LSU BZD Publishing House. 288 p. [In Ukrainian].
dc.relation.referencesen[27] Hrytsiuk, Yu. I., & Havrysh, V. I. (2022). Interpolation of table-given functions by Fourier polynomial. Scientific Bulletin of UNFU, 32(4), 88–102. https://doi.org/10.36930/40320414
dc.relation.referencesen[28] Hussain, Malik Zawwar, & Muhammad Sarfraz. (2008). Positivity-preserving interpolation of positive data by rational cubics. Journal of Computational and Applied Mathematics, 218(2), 446 p. https://doi.org/10.1016/j.cam.2007.05.023
dc.relation.referencesen[29] Jared L. Aurentz, Anthony P. Austin, Michele Benzi, & Vassilis Kalantzis. (2019). Stable Computation of Generalized Matrix Functions via Polynomial Interpolation. SIAM Journal on Matrix Analysis and Applications, 40(1). https://doi.org/10.1137/18M1191786
dc.relation.referencesen[30] Jin Xie, & Xiaoyan Liu. (2021). Adjustable Piecewise Quartic Hermite Spline Curve with Parameters. Mathematical Problems in Engineering, 2021, Article ID 2264871, 6 p. https://doi.org/10.1155/2021/2264871
dc.relation.referencesen[31] Kolesnytskyi, O. K., Arsenyuk, I. R., & Mesyura, V. I. (2017). Numerical methods: tutorial. Vinnytsia: VNTU, 130 p. [In Ukrainian].
dc.relation.referencesen[32] Krylyk, L. V., Bogach, I. V., & Lisovenko, A. I. (2019). Numerical Methods. Numerical integration of functions: tutorial. Vinnytsia: VNTU, 74 p. [In Ukrainian].
dc.relation.referencesen[33] Krylyk, L. V., Bogach, I. V., & Prokopova, M. O. (2013). Computational mathematics. Interpolation and approximation of tabular data: tutorial. Vinnytsia: VNTU, 111 p. [In Ukrainian].
dc.relation.referencesen[34] Krystyna STYš, & Tadeusz STYš. (2014). Natural and Generalized Interpolating Polynomials, 27–62 (32). https://doi.org/10.2174/9781608059423114010005
dc.relation.referencesen[35] Kvetny, R. N., Dementiev, V. Yu., Mashnytskyi, M. O., & Yudin, O. O. (2009). Difference methods and splines in multidimensional interpolation problems: monograph. Vinnytsia: Universum-Vinnytsia, 92 p. [In Ukrainian].
dc.relation.referencesen[36] Kvyetny, R. N., & Bogach, I. V. (2003). Interpolation of a function of two variables by the Lagrange method. Bulletin of the Vinnytsia Polytechnic Institute, 6, 365–368. [In Ukrainian].
dc.relation.referencesen[37] Kvyetny, R. N., Kostrova, K. Yu., & Bogach, I. V. (2005). Interpolation by self-similar sets: monograph. Vinnytsia: Universum-Vinnytsia, 100 p. [In Ukrainian].
dc.relation.referencesen[38] Malik Zawwar Hussain, & Muhammad Sarfraz. (2008). Positivitypreserving interpolation of positive data by rational cubics. Journal of Computational and Applied Mathematics, 218(2), 446–458. https://doi.org/10.1016/j.cam.2007.05.023
dc.relation.referencesen[39] Mamchuk, V. I. (2015). Numerical methods: tutorial. Kyiv: National Aviation University, 388 p. [In Ukrainian].
dc.relation.referencesen[40] Martin Berzins. (2000). A Data-Bounded Quadratic Interpolant on Triangles and Tetrahedra. SIAM Journal on Scientific Computing, 22(1). https://doi.org/10.1137/S1064827597317636
dc.relation.referencesen[41] Mikhailets, V. A., & Murach, A. A. (2010). Hörmander spaces, interpolation and elliptic problems. With a preface by Yu. M. Berezansky. Kyiv: IM NAS of Ukraine, 370 p. [In Russian].
dc.relation.referencesen[42] Min Hu, & Jieqing Tan. (2006). Adaptive osculatory rational interpolation for image processing. Journal of Computational and Applied Mathematics, 195(1-2), 46 p. https://doi.org/10.1016/j.cam.2005.07.011
dc.relation.referencesen[43] Moskalets, O. F., & Shutko, V. M. (2010). The method of least squares for splines of odd powers. Bulletin of Engineering Academy of Ukraine, 2, 224. [In Ukrainian].
dc.relation.referencesen[44] Nail A. Gumerov, & Ramani Duraiswami. (2007). Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration. SIAM Journal on Scientific Computing, 29(5). https://doi.org/10.1137/060662083
dc.relation.referencesen[45] Nekrasov, O. N., & Mirmovich, E. G. (2010). Interpolation and approximation of data by polynomials of power, exponential and trigonometric types. Scientific and educational problems of civil protection, 4, 23–27. [In Russian].
dc.relation.referencesen[46] Pahirya, M. M. (1994). Interpolation of functions by a chained fraction and a branched chained fraction of a special type. Scientific Bulletin of Uzhhorod University. Ser. Mathematical, 1, 72–79. [In Ukrainian].
dc.relation.referencesen[47] Petukh, A. M., Obidnyk, D. T., & Romanyuk, O. N. (2007). Interpolation in problems of contour formation: monograph. Vinnytsia: VNTU, 104 p. [In Ukrainian].
dc.relation.referencesen[48] Philip J. Rasch, & David L. Williamson. (1990). On ShapePreserving Interpolation and Semi-Lagrangian Transport. SIAM Journal on Scientific and Statistical Computing, 11(4). https://doi.org/10.1137/0911039
dc.relation.referencesen[49] Qinghua Sun, Fangxun Bao, Yunfeng Zhang, & Qi Duan. (2013). A bivariate rational interpolation based on scattered data on parallel lines. Journal of Visual Communication and Image Representation, 24(1), 75–80. https://doi.org/10.1016/j.jvcir.2012.11.003
dc.relation.referencesen[50] Qiyuan Pang, Kenneth L. Ho, & Haizhao Yang. (2020). Interpolative Decomposition Butterfly Factorization. SIAM Journal on Scientific Computing, 42(2). https://doi.org/10.1137/19M1294873
dc.relation.referencesen[51] Romanyuk, O. N., Romanyuk, O. V., & Velychko M. O. (2020). Analysis of circular interpolation methods. The 12 th International scientific and practical conference "Impact of Modernity on Science and Practice" (12-13 April, 2020), 572–574. Edmonton, Canada 2020.
dc.relation.referencesen[52] Sarfraza, M., Hussain, & Malik Zawwar. (2006). Data visualization using rational spline interpolation. Journal of Computational and Applied Mathematics, 189(1-2), 513 p. https://doi.org/10.1016/j.cam.2005.04.039
dc.relation.referencesen[53] Sergey Dolgov, Daniel Kressner, & Christoph Strössner. (2021). Functional Tucker Approximation Using Chebyshev Interpolation. SIAM Journal on Scientific Computing, 43(3). https://doi.org/10.1137/20M1356944
dc.relation.referencesen[54] Sheehan Olver, & Yuan Xu. (2021). Orthogonal structure on a quadratic curve. IMA Journal of Numerical Analysis, 41(1), 206–246. https://doi.org/10.1093/imanum/draa001
dc.relation.referencesen[55] Stefan Jakobsson, Bjorn Andersson, & Fredrik Edelvik. (2009). Rational radial basis function interpolation with applications to antenna design. Journal of Computational and Applied Mathematics, 233(4), 889 p. https://doi.org/10.1016/j.cam.2009.08.058
dc.relation.referencesen[56] Stephen M. Robinson. (1979). Quadratic Interpolation is Risky. SIAM Journal on Numerical Analysis, 16(3). https://doi.org/10.1137/0716030
dc.relation.referencesen[57] Taylor Series and Power Series. (2008). Applications and Computation Complex Analysis, 63–71. https://doi.org/10.1142/9789812811080_0011
dc.relation.referencesen[58] Tsegelyk, H. G. (2004). Numerical methods: textbook for university students. Lviv National University named after Ivan Franko. Lviv, 407 p. [In Ukrainian].
dc.relation.referencesen[59] Tyada, K. R., Chand, A. K. B., & Sajid, M. (2021). Shape preserving rational cubic trigonometric fractal interpolation functions. Mathematics and Computers in Simulation, 190, 866–891. https://doi.org/10.1016/j.matcom.2021.06.015
dc.relation.referencesen[60] Volontyr, L. O., Zelinska, O. V., Potapova, N. A., & Chikov, I. A. (2020). Numerical methods: tutorial. Vinnytsia NAU. Vinnytsia: VNAU, 322 p. [In Ukrainian].
dc.relation.referencesen[61] Winfield, D. (1973). Function Minimization by Interpolation in a Data Table. IMA Journal of Applied Mathematics, 12(3), 339–347. https://doi.org/10.1093/imamat/12.3.339
dc.relation.referencesen[62] Yang Jing, & Han Xu-li. (2019). Robust Uniform B-Spline Models for Interpolating Interval Data. Journal of Graphics, 40(3), 429–434. http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2019030429
dc.relation.referencesen[63] Yaroshenko, O. I., & Grihorkiv, M. V. (2018). Numerical methods: tutorial. Chernivtsi: Chernivtsi National University, 172 p. [In Ukrainian].
dc.relation.referencesen[64] Youtian Tao, & Dongyin Wang. (2015). A bivariate rational cubic interpolating spline with biquadratic denominator. Applied Mathematics and Computation, 264(1), 366–377. https://doi.org/10.1016/j.amc.2015.04.100
dc.relation.referencesen[65] Zhu, Y., & Wang, M. (2020). A class of P.1 rational interpolation splines in one and two dimensions with region control. Journal of Computational and Applied Mathematics, 39, 69. https://doi.org/10.1007/s40314-020-1067-2
dc.relation.referencesen[66] Zhuo Liu, Shengjun Liu & Yuanpeng Zhu. (2021). P.2 Rational Interpolation Splines with Region Control and Image Interpolation Application. Journal of Mathematical Imaging and Vision, 63, 394–416. https://doi.org/10.1007/s10851-020-01005-z
dc.relation.urihttps://doi.org/10.1142/9789814503754_0010
dc.relation.urihttps://doi.org/10.1137/19M1273955
dc.relation.urihttps://doi.org/10.1142/9789811204425_0001
dc.relation.urihttps://doi.org/10.1142/9789811255267_0001
dc.relation.urihttps://doi.org/10.1142/9789811204425_0002
dc.relation.urihttps://doi.org/10.1142/9789813200227_0003
dc.relation.urihttps://doi.org/10.1142/9789814630948_0006
dc.relation.urihttps://doi.org/10.1142/9789814532594
dc.relation.urihttps://doi.org/10.1137/0910064
dc.relation.urihttps://doi.org/10.1016/j.amc.2003.12.030
dc.relation.urihttps://doi.org/10.1016/j.amc.2004.09.041
dc.relation.urihttps://doi.org/10.1016/j.amc.2005.11.094
dc.relation.urihttps://doi.org/10.1016/j.amc.2007.08.050
dc.relation.urihttps://doi.org/10.1007/s41095-020-0186-4
dc.relation.urihttps://doi.org/10.1093/imanum/drh021
dc.relation.urihttps://doi.org/10.1016/j.cam.2010.04.025
dc.relation.urihttps://doi.org/10.1016/j.cam.2006.02.003
dc.relation.urihttps://doi.org/10.1007/978-981-16-4513-6_46
dc.relation.urihttps://drive.google.com/file/d/1Iv2eukbtCIPc8R7HN1mEbzmELaD1tu9T/view
dc.relation.urihttps://doi.org/10.36930/40320414
dc.relation.urihttps://doi.org/10.1016/j.cam.2007.05.023
dc.relation.urihttps://doi.org/10.1137/18M1191786
dc.relation.urihttps://doi.org/10.1155/2021/2264871
dc.relation.urihttps://doi.org/10.2174/9781608059423114010005
dc.relation.urihttps://doi.org/10.1137/S1064827597317636
dc.relation.urihttps://doi.org/10.1016/j.cam.2005.07.011
dc.relation.urihttps://doi.org/10.1137/060662083
dc.relation.urihttps://doi.org/10.1137/0911039
dc.relation.urihttps://doi.org/10.1016/j.jvcir.2012.11.003
dc.relation.urihttps://doi.org/10.1137/19M1294873
dc.relation.urihttps://doi.org/10.1016/j.cam.2005.04.039
dc.relation.urihttps://doi.org/10.1137/20M1356944
dc.relation.urihttps://doi.org/10.1093/imanum/draa001
dc.relation.urihttps://doi.org/10.1016/j.cam.2009.08.058
dc.relation.urihttps://doi.org/10.1137/0716030
dc.relation.urihttps://doi.org/10.1142/9789812811080_0011
dc.relation.urihttps://doi.org/10.1016/j.matcom.2021.06.015
dc.relation.urihttps://doi.org/10.1093/imamat/12.3.339
dc.relation.urihttp://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2019030429
dc.relation.urihttps://doi.org/10.1016/j.amc.2015.04.100
dc.relation.urihttps://doi.org/10.1007/s40314-020-1067-2
dc.relation.urihttps://doi.org/10.1007/s10851-020-01005-z
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectматрична алгебра
dc.subjectобчислювальна математика
dc.subjectметод Гауса
dc.subjectкоефіцієнти інтерполянти
dc.subjectвузлові точки
dc.subjectвузли інтерполяції
dc.subjectалгоритм розв'язання задачі
dc.subjectматематичне формулювання задачі
dc.subjectmatrix algebra
dc.subjectcomputational mathematics
dc.subjectGauss method
dc.subjectcoefficients of interpolant
dc.subjectnodal points
dc.subjectinterpolationnodes
dc.subjectthe solving task algorithm
dc.subjectmathematical formulation of the task
dc.titleІнтерполяція табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора
dc.title.alternativeInterpolation of tabular functions from one independent variable using the Taylor polynomial
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v4n2_Hrytsiuk_Yu_I-Interpolation_of_tabular_1-17.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v4n2_Hrytsiuk_Yu_I-Interpolation_of_tabular_1-17__COVER.png
Size:
1.56 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: