A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill
dc.citation.epage | 500 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 483 | |
dc.contributor.affiliation | Університет Верхнього Ельзасу | |
dc.contributor.affiliation | Страсбурзький університет | |
dc.contributor.affiliation | Університет Ібн Тофаїла | |
dc.contributor.affiliation | University of Haute-Alsace | |
dc.contributor.affiliation | University of Strasbourg | |
dc.contributor.affiliation | Ibn Tofail University | |
dc.contributor.author | Белхачмі, З. | |
dc.contributor.author | Мгазлі, С. | |
dc.contributor.author | Оухтаут, З. | |
dc.contributor.author | Belhachmi, Z. | |
dc.contributor.author | Mghazli, Z. | |
dc.contributor.author | Ouchtout, S. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:33:01Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | У цій статті представлена та вивчається нова комбінована модель, яка поєднує біологічний та механічний аспекти, що описують відповідно процес виробництва біогазу та стисливий двофазний потік біогаз–фільтрат під час анаеробного біорозкладу органічних речовин на сміттєзвалищі, що розглядається як реактивне пористе середовище. Отримана модель описується реакційно-дифузійною системою бактеріальної активності у поєднанні зі стисливою двофазною системою потоку неоднорідного пористого середовища. Здійснено аналіз та чисельну апроксимацію моделі у межах варіаційного підходу. Запропоновано повну дискретну систему, засновану на часовій схемі BDF другого порядку та P1-сумісному скінченному елементі, та отримано ефективний алгоритм для спряженої системи. Виконано чисельне моделювання для 2D та 3D прикладів відповідно до теоретичного аналізу. | |
dc.description.abstract | In this article, we present and study a new coupled model combining the biological and the mechanical aspects describing respectively the process of the biogas production and the compressible two-phase leachate-biogas flow during the anaerobic biodegradation of organic matters in a landfill, which is considered a reactive porous medium. The model obtained is governed by a reaction-diffusion system for the bacterial activity coupled with a compressible two-phase flow system of a non-homogeneous porous medium. We carry out the analysis and the numerical approximation of the model within a variational framework. We propose a full discrete system based on a second-order BDF-time scheme and P1-conforming finite element and we derive an efficient algorithm for the coupled system. We perform some numerical simulations in 2D and 3D examples in agreement with the theoretical analysis. | |
dc.format.extent | 483-500 | |
dc.format.pages | 18 | |
dc.identifier.citation | Belhachmi Z. A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill / Z. Belhachmi, Z. Mghazli, S. Ouchtout // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 483–500. | |
dc.identifier.citationen | Belhachmi Z. A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill / Z. Belhachmi, Z. Mghazli, S. Ouchtout // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 483–500. | |
dc.identifier.doi | 10.23939/mmc2022.03.483 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63467 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (9), 2022 | |
dc.relation.references | [1] Belhachmi Z., Mghazli Z., Ouchtout S. Mathematical modeling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill. Mathematics and Computers in Simulation. 185, 174–193 (2021). | |
dc.relation.references | [2] Hassam S., Ficara E., Leva A., Harmand J. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochemical Engineering Journal. 99, 193–203 (2015). | |
dc.relation.references | [3] H´enon F., Debenest G., Lefevre X., Pommier S., Chenu D., Quintard M. Simulation of Transport and Impact of Moisture Content on the Biodegradation. Fourth International Workshop “Hydro-PhysicoMechanics of Landfills”. Santander, Spain (2011). | |
dc.relation.references | [4] Gallo C., Manzini G. A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics. Communications in Numerical Methods in Engineering. 17 (5), 325–336 (2001). | |
dc.relation.references | [5] Chenu D. Mod´elisation des transferts r´eactifs de masse et de chaleur dans les installations de stockage de d´echets m´enagers: application aux installations de type bior´eacteur. Doctoral dissertation, Institut National Polytechnique de Toulouse (2007). | |
dc.relation.references | [6] Ahusborde E., Amaziane B., El Ossmani M., Moulay M. Numerical Modeling and Simulation of Fully Coupled Processes of Reactive Multiphase Flow in Porous Media. J. Math. Study. 52 (4), 359–377 (2019). | |
dc.relation.references | [7] Pohland F. G., Al-Yousfi B. Design and Operation of Landfills for optimum stabilization and biogaz production. Water Science & Technology. 30 (12), 117–124 (1994). | |
dc.relation.references | [8] Harmand J., Lobry C., Rapaport A., Sari T. The Chemostat: Mathematical Theory of Microorganisms Cultures. ISTE Wiley (2017). | |
dc.relation.references | [9] Smith H. L., Waltman P. The theory of the chemostat: dynamics of microbial competition (Vol. 13). Cambridge University Press (1995). | |
dc.relation.references | [10] Doll´e G., Duran O., Feyeux N., Fr´enod E., Giacomini M., Prud’Homme C. Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++. ESAIM: Proceedings and Surveys. 55, 83–110 (2016). | |
dc.relation.references | [11] Rouez M. D´egradation ana´erobie de d´echets solides: Caract´erisation, facteurs d’influence et mod´elisations. Laboratoire de G´enie Civil et d’Ing´enierie Environnementale. Lyon, Institut National des Sciences Appliqu´ees Docteur, 259 (2008). | |
dc.relation.references | [12] Fekih-Salem R., Harmand J., Lobry C., Rapaport A., Sari T. Extensions of the chemostat model with flocculation. Journal of Mathematical Analysis and Applications. 397 (1), 292–306 (2013). | |
dc.relation.references | [13] Rapaport A., Nidelet T., El Aida S., Harmand J. About biomass overyielding of mixed cultures in batch processes. Mathematical Biosciences. 322, 108322 (2020). | |
dc.relation.references | [14] Rapaport A., Nidelet T., Harmand J. About biomass overyielding of mixed cultures in batch processes. 8th IFAC Conference on Foundations of Systems Biology in Engineering (FOSBE), Valencia, Spain, 15–18 Oct. (2019). | |
dc.relation.references | [15] Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (2), 219–227 (2020). | |
dc.relation.references | [16] Dimitrova N., Krastanov M. Model-based optimization of biogas production in an anaerobic biodegradation process. Computers and Mathematics with Applications. 68 (9), 986–993 (2014). | |
dc.relation.references | [17] Bernard O., Hadj-Sadok Z., Dochain D., Genovesi A., Steyer J. P. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering. 75 (4), 424–438 (2001). | |
dc.relation.references | [18] Benyahia B., Sari T., Cherki B., Harmand J. Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. Journal of Process Control. 22 (6), 1008–1019 (2012). | |
dc.relation.references | [19] Didi I., Dib H., Cherki B. A Luenberger-type observer for the AM2 model. Journal of Process Control. 32, 117–126 (2015). | |
dc.relation.references | [20] Arzate J. A., Kirstein M., Ertem F. C., Kielhorn E., Ramirez Malule H., Neubauer P., Cruz-Bournazou M. N., Junne S. Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates. Chemie Ingenieur Technik. 89, 686–695 (2017). | |
dc.relation.references | [21] Hmissi M., Harmand J., Alcaraz-Gonzalez V., Shayeb H. Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester. Water Science and Technology. 77 (4), 948–959 (2018). | |
dc.relation.references | [22] Abaali M., Harmand J., Mghazli Z. Impact of Dual Substrate Limitation on Biodenitrification Modeling in Porous Media. Processes. 8 (8), 890 (2020). | |
dc.relation.references | [23] Pinder G. F., Gray W. G. Essentials of multiphase flow and transport in porous media. John Wiley and Sons (2008). | |
dc.relation.references | [24] Agostini F., Sundberg C., Navia R. Is biodegradable waste a porous environment? A review. Waste Management and Research. 30 (10), 1001–1015 (2012). | |
dc.relation.references | [25] Ouchtout S., Mghazli Z., Harmand J., Rapaport A., Belhachmi Z. Analysis of an anaerobic digestion model in landfill with mortality term. Communications on Pure and Applied Analysis. 19 (4), 2333–2346 (2020). | |
dc.relation.references | [26] Shi J., Wu Y., Zou X. Coexistence of Competing Species for Intermediate Dispersal Rates in a ReactionDiffusion Chemostat Model. Journal of Dynamics and Differential Equations. 32 (2), 1085–1112 (2020). | |
dc.relation.references | [27] Nguyen-Ngoc D., Leye B., Monga O., Garnier P., Nunan N. Modeling microbial decomposition in real 3D soil structures using partial differential equations. International Journal of Geosciences. 4 (10A), 15–26 (2013). | |
dc.relation.references | [28] Vanrolleghem P. A., Dochain D. Dynamical Modelling and Estimation in Wastewater Treatment Processes. IWA Publishing (2001). | |
dc.relation.references | [29] Hecht F. New development in FreeFem++. Journal of numerical mathematics. 20 (3–4), 251–266 (2012). | |
dc.relation.references | [30] Lanini S. Analyse et mod´elisation des transferts de masse et de chaleur au sein des d´echarges d’ordures m´enag`eres. Doctoral dissertation, Institut National Polytechnique de Toulouse (1998). | |
dc.relation.references | [31] Bellenfant G. Mod´elisation de la production de lixiviat en centre de stockage de d´echets m´enagers. Doctoral dissertation, Institut National Polytechnique de Lorraine-INPL (2001). | |
dc.relation.references | [32] Aran C. Mod´elisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des D´echets M´enagers. Application `a la R´einjection de Lixiviat dans un Centre de Stockage. Ph.D. thesis, Institut National Polytechnique de Toulouse, France (2001). | |
dc.relation.references | [33] Helmig R. Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer-Verlag (1997). | |
dc.relation.references | [34] Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media (Vol. 2). Siam (2006). | |
dc.relation.references | [35] Kindlein J., Dinkler D., Ahrens H. Numerical modeling of multiphase flow and transport processes in landfills. Waste Management and Research. 24 (4), 376–387 (2006). | |
dc.relation.references | [36] Gabbouhy M., Mghazli Z. Un r´esultat d’existence de solution faible d’un syst`eme parabolique-elliptique non lin´eaire doublement d´eg´en´er´e. Annales de la Facult´e des sciences de Toulouse: Math´ematiques. 10 (3), 533–546 (2001). | |
dc.relation.references | [37] Aza¨ıez M., Deville M., Mund E. H. El´ements finis pour les fluides incompressibles. PPUR Presses poly- techniques (2011). | |
dc.relation.references | [38] Lichtner P. C. Continuum formulation of multicomponent-multiphase reactive transport. Reviews in Mineralogy & Geochemistry. 34, 1–82 (1996). | |
dc.relation.references | [39] Gholamifard S. Mod´elisation des ´ecoulements diphasiques bioactifs dans les installations de stockage de d´echets. Doctoral dissertation, Universit´e Paris-Est (2009). | |
dc.relation.references | [40] Van Genuchten M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44 (5), 892–898 (1980). | |
dc.relation.references | [41] Campbell G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science. 117 (6), 311–314 (1974). | |
dc.relation.references | [42] Brooks R. H., Corey A. T. Hydraulic Properties of Porous Media. Colorado State Univ. Hydrology Paper No. 3 (1964). | |
dc.relation.references | [43] Bothe D., Fischer A., Pierre M., Rolland G. Global wellposedness for a class of reaction-advectionanisotropic-diffusion systems. Journal of Evolution Equations. 17 (1), 101–130 (2017). | |
dc.relation.referencesen | [1] Belhachmi Z., Mghazli Z., Ouchtout S. Mathematical modeling and numerical approximation of a leachate flow in the anaerobic biodegradation of waste in a landfill. Mathematics and Computers in Simulation. 185, 174–193 (2021). | |
dc.relation.referencesen | [2] Hassam S., Ficara E., Leva A., Harmand J. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1). Biochemical Engineering Journal. 99, 193–203 (2015). | |
dc.relation.referencesen | [3] H´enon F., Debenest G., Lefevre X., Pommier S., Chenu D., Quintard M. Simulation of Transport and Impact of Moisture Content on the Biodegradation. Fourth International Workshop "Hydro-PhysicoMechanics of Landfills". Santander, Spain (2011). | |
dc.relation.referencesen | [4] Gallo C., Manzini G. A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics. Communications in Numerical Methods in Engineering. 17 (5), 325–336 (2001). | |
dc.relation.referencesen | [5] Chenu D. Mod´elisation des transferts r´eactifs de masse et de chaleur dans les installations de stockage de d´echets m´enagers: application aux installations de type bior´eacteur. Doctoral dissertation, Institut National Polytechnique de Toulouse (2007). | |
dc.relation.referencesen | [6] Ahusborde E., Amaziane B., El Ossmani M., Moulay M. Numerical Modeling and Simulation of Fully Coupled Processes of Reactive Multiphase Flow in Porous Media. J. Math. Study. 52 (4), 359–377 (2019). | |
dc.relation.referencesen | [7] Pohland F. G., Al-Yousfi B. Design and Operation of Landfills for optimum stabilization and biogaz production. Water Science & Technology. 30 (12), 117–124 (1994). | |
dc.relation.referencesen | [8] Harmand J., Lobry C., Rapaport A., Sari T. The Chemostat: Mathematical Theory of Microorganisms Cultures. ISTE Wiley (2017). | |
dc.relation.referencesen | [9] Smith H. L., Waltman P. The theory of the chemostat: dynamics of microbial competition (Vol. 13). Cambridge University Press (1995). | |
dc.relation.referencesen | [10] Doll´e G., Duran O., Feyeux N., Fr´enod E., Giacomini M., Prud’Homme C. Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++. ESAIM: Proceedings and Surveys. 55, 83–110 (2016). | |
dc.relation.referencesen | [11] Rouez M. D´egradation ana´erobie de d´echets solides: Caract´erisation, facteurs d’influence et mod´elisations. Laboratoire de G´enie Civil et d’Ing´enierie Environnementale. Lyon, Institut National des Sciences Appliqu´ees Docteur, 259 (2008). | |
dc.relation.referencesen | [12] Fekih-Salem R., Harmand J., Lobry C., Rapaport A., Sari T. Extensions of the chemostat model with flocculation. Journal of Mathematical Analysis and Applications. 397 (1), 292–306 (2013). | |
dc.relation.referencesen | [13] Rapaport A., Nidelet T., El Aida S., Harmand J. About biomass overyielding of mixed cultures in batch processes. Mathematical Biosciences. 322, 108322 (2020). | |
dc.relation.referencesen | [14] Rapaport A., Nidelet T., Harmand J. About biomass overyielding of mixed cultures in batch processes. 8th IFAC Conference on Foundations of Systems Biology in Engineering (FOSBE), Valencia, Spain, 15–18 Oct. (2019). | |
dc.relation.referencesen | [15] Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (2), 219–227 (2020). | |
dc.relation.referencesen | [16] Dimitrova N., Krastanov M. Model-based optimization of biogas production in an anaerobic biodegradation process. Computers and Mathematics with Applications. 68 (9), 986–993 (2014). | |
dc.relation.referencesen | [17] Bernard O., Hadj-Sadok Z., Dochain D., Genovesi A., Steyer J. P. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnology and Bioengineering. 75 (4), 424–438 (2001). | |
dc.relation.referencesen | [18] Benyahia B., Sari T., Cherki B., Harmand J. Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. Journal of Process Control. 22 (6), 1008–1019 (2012). | |
dc.relation.referencesen | [19] Didi I., Dib H., Cherki B. A Luenberger-type observer for the AM2 model. Journal of Process Control. 32, 117–126 (2015). | |
dc.relation.referencesen | [20] Arzate J. A., Kirstein M., Ertem F. C., Kielhorn E., Ramirez Malule H., Neubauer P., Cruz-Bournazou M. N., Junne S. Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates. Chemie Ingenieur Technik. 89, 686–695 (2017). | |
dc.relation.referencesen | [21] Hmissi M., Harmand J., Alcaraz-Gonzalez V., Shayeb H. Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester. Water Science and Technology. 77 (4), 948–959 (2018). | |
dc.relation.referencesen | [22] Abaali M., Harmand J., Mghazli Z. Impact of Dual Substrate Limitation on Biodenitrification Modeling in Porous Media. Processes. 8 (8), 890 (2020). | |
dc.relation.referencesen | [23] Pinder G. F., Gray W. G. Essentials of multiphase flow and transport in porous media. John Wiley and Sons (2008). | |
dc.relation.referencesen | [24] Agostini F., Sundberg C., Navia R. Is biodegradable waste a porous environment? A review. Waste Management and Research. 30 (10), 1001–1015 (2012). | |
dc.relation.referencesen | [25] Ouchtout S., Mghazli Z., Harmand J., Rapaport A., Belhachmi Z. Analysis of an anaerobic digestion model in landfill with mortality term. Communications on Pure and Applied Analysis. 19 (4), 2333–2346 (2020). | |
dc.relation.referencesen | [26] Shi J., Wu Y., Zou X. Coexistence of Competing Species for Intermediate Dispersal Rates in a ReactionDiffusion Chemostat Model. Journal of Dynamics and Differential Equations. 32 (2), 1085–1112 (2020). | |
dc.relation.referencesen | [27] Nguyen-Ngoc D., Leye B., Monga O., Garnier P., Nunan N. Modeling microbial decomposition in real 3D soil structures using partial differential equations. International Journal of Geosciences. 4 (10A), 15–26 (2013). | |
dc.relation.referencesen | [28] Vanrolleghem P. A., Dochain D. Dynamical Modelling and Estimation in Wastewater Treatment Processes. IWA Publishing (2001). | |
dc.relation.referencesen | [29] Hecht F. New development in FreeFem++. Journal of numerical mathematics. 20 (3–4), 251–266 (2012). | |
dc.relation.referencesen | [30] Lanini S. Analyse et mod´elisation des transferts de masse et de chaleur au sein des d´echarges d’ordures m´enag`eres. Doctoral dissertation, Institut National Polytechnique de Toulouse (1998). | |
dc.relation.referencesen | [31] Bellenfant G. Mod´elisation de la production de lixiviat en centre de stockage de d´echets m´enagers. Doctoral dissertation, Institut National Polytechnique de Lorraine-INPL (2001). | |
dc.relation.referencesen | [32] Aran C. Mod´elisation des Ecoulements de Fluides et des Transferts de Chaleur au Sein des D´echets M´enagers. Application `a la R´einjection de Lixiviat dans un Centre de Stockage. Ph.D. thesis, Institut National Polytechnique de Toulouse, France (2001). | |
dc.relation.referencesen | [33] Helmig R. Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer-Verlag (1997). | |
dc.relation.referencesen | [34] Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media (Vol. 2). Siam (2006). | |
dc.relation.referencesen | [35] Kindlein J., Dinkler D., Ahrens H. Numerical modeling of multiphase flow and transport processes in landfills. Waste Management and Research. 24 (4), 376–387 (2006). | |
dc.relation.referencesen | [36] Gabbouhy M., Mghazli Z. Un r´esultat d’existence de solution faible d’un syst`eme parabolique-elliptique non lin´eaire doublement d´eg´en´er´e. Annales de la Facult´e des sciences de Toulouse: Math´ematiques. 10 (3), 533–546 (2001). | |
dc.relation.referencesen | [37] Aza¨ıez M., Deville M., Mund E. H. El´ements finis pour les fluides incompressibles. PPUR Presses poly- techniques (2011). | |
dc.relation.referencesen | [38] Lichtner P. C. Continuum formulation of multicomponent-multiphase reactive transport. Reviews in Mineralogy & Geochemistry. 34, 1–82 (1996). | |
dc.relation.referencesen | [39] Gholamifard S. Mod´elisation des ´ecoulements diphasiques bioactifs dans les installations de stockage de d´echets. Doctoral dissertation, Universit´e Paris-Est (2009). | |
dc.relation.referencesen | [40] Van Genuchten M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44 (5), 892–898 (1980). | |
dc.relation.referencesen | [41] Campbell G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science. 117 (6), 311–314 (1974). | |
dc.relation.referencesen | [42] Brooks R. H., Corey A. T. Hydraulic Properties of Porous Media. Colorado State Univ. Hydrology Paper No. 3 (1964). | |
dc.relation.referencesen | [43] Bothe D., Fischer A., Pierre M., Rolland G. Global wellposedness for a class of reaction-advectionanisotropic-diffusion systems. Journal of Evolution Equations. 17 (1), 101–130 (2017). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | анаеробний біорозклад | |
dc.subject | стисливий двофазний потік | |
dc.subject | виробництво біогазу | |
dc.subject | спряжена модель | |
dc.subject | метод скінченних елементів | |
dc.subject | anaerobic biodegradation | |
dc.subject | compressible two-phase flow | |
dc.subject | biogas production | |
dc.subject | coupled model | |
dc.subject | finite element method | |
dc.title | A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill | |
dc.title.alternative | Спряжений стисливий двофазний потік з біологічною динамікою, який моделює процес анаеробного біорозкладу відходів на сміттєзвалищі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1