Electrical Interaction of Electron-Proton Tandem

dc.citation.epage42
dc.citation.issue2
dc.citation.spage38
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЧабан, Василь
dc.contributor.authorTchaban, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-26T08:15:44Z
dc.date.available2023-04-26T08:15:44Z
dc.date.created2021-10-10
dc.date.issued2021-10-10
dc.description.abstractНа основі адаптованого закону Кулона на випадок рухомих мас з урахуванням скінченної швидкости поширення електричного поля одержано диференціальні рівняння електромеханічного стану тандема “електронпротон”. Просимульовано реальні стани, а також низку нереальних перехідних станів захоплення електрона протоном на власну орбіту. Наперекір заборонам квантової фізики в полі мікросвіту введено математичне поняття електромеханічної чорної діри з радіусом 15 5.6358 10-= × emr на кшталт тієї, що існує в небесній механіці. Просимульовано перехідні процеси, що засвідчують колапс законів електрики і механіки за порогом r(t) < rem. З цього приводу розпочато дискусію.
dc.description.abstractBased on the adapted Coulomb's law for the case of moving masses, taking into account the finite velocity of electric field propagation, differential equations of the electromechanical state of the electronproton tandem are obtained. The real states are simulated, as well as a number of unreal transition states of electron capture by a proton into its own orbit. Contrary to the prohibitions of quantum physics in the field of microworld, the mathematical concept of an electromechanical black hole with a radius 15 5,6358 10 em r-= × m similar to that taking place in celestial mechanics has been introduced. The transients indicating the collapse of the laws of electricity and mechanics at distances r(t) < rem are simulated. A discussion has been started on this issue.
dc.format.extent38-42
dc.format.pages5
dc.identifier.citationTchaban V. Electrical Interaction of Electron-Proton Tandem / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 11. — No 2. — P. 38–42.
dc.identifier.citationenTchaban V. (2021) Electrical Interaction of Electron-Proton Tandem. Computational Problems of Electrical Engineering (Lviv), vol. 11, no 2, pp. 38-42.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58467
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (11), 2021
dc.relation.references[1] V. Tchaban, “Lorenz Force of vortex Ektctric Field”, Computational Problems of Electrical Engineering, vol. 11, no 2, pp. 33–36, 2020.
dc.relation.references[2] Tchaban V. “Radial Component of vortex Electric Field Force”, Computational Problems of Electrical Engineering, vol. 12, no 1, pp. 33–36, 2021.
dc.relation.references[3] C. J. Foot, Atomic Physics. – 2004. – ISBN 13: 9780198506966.
dc.relation.references[4] S. J. Clark and R. V. Tucker, “Gauge symmetry and gravitoelectromagnetism”, Classical and Quantum Gravity : journa, vol. 17, pp. 4125–4157, 2000.
dc.relation.references[5] V. Tchaban. Panta Rhei, Lviv: “Space M”, p. 118, 2020. (Ukrainian).
dc.relation.references[6] I. A. Klymychyn and I. P. Krachko, Astronomy, Kyiv: „Znannia Ukrainy”, p. 190, 2003. (Ukrainian)
dc.relation.references[7] H. Poincare. On Science (translated from Frans.), Moscow: Science, 1983. (Russian)
dc.relation.references[8] E.Wichman, Quantum physics (translated from Engl.). – Moscow: Science, p. 392, 1986. (Russian)
dc.relation.referencesen[1] V. Tchaban, "Lorenz Force of vortex Ektctric Field", Computational Problems of Electrical Engineering, vol. 11, no 2, pp. 33–36, 2020.
dc.relation.referencesen[2] Tchaban V. "Radial Component of vortex Electric Field Force", Computational Problems of Electrical Engineering, vol. 12, no 1, pp. 33–36, 2021.
dc.relation.referencesen[3] C. J. Foot, Atomic Physics, 2004, ISBN 13: 9780198506966.
dc.relation.referencesen[4] S. J. Clark and R. V. Tucker, "Gauge symmetry and gravitoelectromagnetism", Classical and Quantum Gravity : journa, vol. 17, pp. 4125–4157, 2000.
dc.relation.referencesen[5] V. Tchaban. Panta Rhei, Lviv: "Space M", p. 118, 2020. (Ukrainian).
dc.relation.referencesen[6] I. A. Klymychyn and I. P. Krachko, Astronomy, Kyiv: "Znannia Ukrainy", p. 190, 2003. (Ukrainian)
dc.relation.referencesen[7] H. Poincare. On Science (translated from Frans.), Moscow: Science, 1983. (Russian)
dc.relation.referencesen[8] E.Wichman, Quantum physics (translated from Engl.), Moscow: Science, p. 392, 1986. (Russian)
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.subjectCoulomb's law of moving masses
dc.subjectelectron-proton pair
dc.subjectdifferential equations of electromechanical state
dc.subjectcollapse of laws of electricity and mechanics
dc.titleElectrical Interaction of Electron-Proton Tandem
dc.title.alternativeЕлектрична взаємодія тандему “електрон-протон”
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v11n2_Tchaban_V-Electrical_Interaction_of_38-42.pdf
Size:
244.8 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: