Electrical Interaction of Electron-Proton Tandem
dc.citation.epage | 42 | |
dc.citation.issue | 2 | |
dc.citation.spage | 38 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Чабан, Василь | |
dc.contributor.author | Tchaban, Vasyl | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-26T08:15:44Z | |
dc.date.available | 2023-04-26T08:15:44Z | |
dc.date.created | 2021-10-10 | |
dc.date.issued | 2021-10-10 | |
dc.description.abstract | На основі адаптованого закону Кулона на випадок рухомих мас з урахуванням скінченної швидкости поширення електричного поля одержано диференціальні рівняння електромеханічного стану тандема “електронпротон”. Просимульовано реальні стани, а також низку нереальних перехідних станів захоплення електрона протоном на власну орбіту. Наперекір заборонам квантової фізики в полі мікросвіту введено математичне поняття електромеханічної чорної діри з радіусом 15 5.6358 10-= × emr на кшталт тієї, що існує в небесній механіці. Просимульовано перехідні процеси, що засвідчують колапс законів електрики і механіки за порогом r(t) < rem. З цього приводу розпочато дискусію. | |
dc.description.abstract | Based on the adapted Coulomb's law for the case of moving masses, taking into account the finite velocity of electric field propagation, differential equations of the electromechanical state of the electronproton tandem are obtained. The real states are simulated, as well as a number of unreal transition states of electron capture by a proton into its own orbit. Contrary to the prohibitions of quantum physics in the field of microworld, the mathematical concept of an electromechanical black hole with a radius 15 5,6358 10 em r-= × m similar to that taking place in celestial mechanics has been introduced. The transients indicating the collapse of the laws of electricity and mechanics at distances r(t) < rem are simulated. A discussion has been started on this issue. | |
dc.format.extent | 38-42 | |
dc.format.pages | 5 | |
dc.identifier.citation | Tchaban V. Electrical Interaction of Electron-Proton Tandem / Vasyl Tchaban // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 11. — No 2. — P. 38–42. | |
dc.identifier.citationen | Tchaban V. (2021) Electrical Interaction of Electron-Proton Tandem. Computational Problems of Electrical Engineering (Lviv), vol. 11, no 2, pp. 38-42. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/58467 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 2 (11), 2021 | |
dc.relation.references | [1] V. Tchaban, “Lorenz Force of vortex Ektctric Field”, Computational Problems of Electrical Engineering, vol. 11, no 2, pp. 33–36, 2020. | |
dc.relation.references | [2] Tchaban V. “Radial Component of vortex Electric Field Force”, Computational Problems of Electrical Engineering, vol. 12, no 1, pp. 33–36, 2021. | |
dc.relation.references | [3] C. J. Foot, Atomic Physics. – 2004. – ISBN 13: 9780198506966. | |
dc.relation.references | [4] S. J. Clark and R. V. Tucker, “Gauge symmetry and gravitoelectromagnetism”, Classical and Quantum Gravity : journa, vol. 17, pp. 4125–4157, 2000. | |
dc.relation.references | [5] V. Tchaban. Panta Rhei, Lviv: “Space M”, p. 118, 2020. (Ukrainian). | |
dc.relation.references | [6] I. A. Klymychyn and I. P. Krachko, Astronomy, Kyiv: „Znannia Ukrainy”, p. 190, 2003. (Ukrainian) | |
dc.relation.references | [7] H. Poincare. On Science (translated from Frans.), Moscow: Science, 1983. (Russian) | |
dc.relation.references | [8] E.Wichman, Quantum physics (translated from Engl.). – Moscow: Science, p. 392, 1986. (Russian) | |
dc.relation.referencesen | [1] V. Tchaban, "Lorenz Force of vortex Ektctric Field", Computational Problems of Electrical Engineering, vol. 11, no 2, pp. 33–36, 2020. | |
dc.relation.referencesen | [2] Tchaban V. "Radial Component of vortex Electric Field Force", Computational Problems of Electrical Engineering, vol. 12, no 1, pp. 33–36, 2021. | |
dc.relation.referencesen | [3] C. J. Foot, Atomic Physics, 2004, ISBN 13: 9780198506966. | |
dc.relation.referencesen | [4] S. J. Clark and R. V. Tucker, "Gauge symmetry and gravitoelectromagnetism", Classical and Quantum Gravity : journa, vol. 17, pp. 4125–4157, 2000. | |
dc.relation.referencesen | [5] V. Tchaban. Panta Rhei, Lviv: "Space M", p. 118, 2020. (Ukrainian). | |
dc.relation.referencesen | [6] I. A. Klymychyn and I. P. Krachko, Astronomy, Kyiv: "Znannia Ukrainy", p. 190, 2003. (Ukrainian) | |
dc.relation.referencesen | [7] H. Poincare. On Science (translated from Frans.), Moscow: Science, 1983. (Russian) | |
dc.relation.referencesen | [8] E.Wichman, Quantum physics (translated from Engl.), Moscow: Science, p. 392, 1986. (Russian) | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.subject | Coulomb's law of moving masses | |
dc.subject | electron-proton pair | |
dc.subject | differential equations of electromechanical state | |
dc.subject | collapse of laws of electricity and mechanics | |
dc.title | Electrical Interaction of Electron-Proton Tandem | |
dc.title.alternative | Електрична взаємодія тандему “електрон-протон” | |
dc.type | Article |