Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite
| dc.citation.epage | 102 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Хімія та хімічна технологія | |
| dc.citation.spage | 94 | |
| dc.citation.volume | 18 | |
| dc.contributor.affiliation | Lviv State University of Life Safety | |
| dc.contributor.author | Konanets, Roman | |
| dc.contributor.author | Stepova, Kateryna | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-24T06:19:51Z | |
| dc.date.created | 2024-03-01 | |
| dc.date.issued | 2024-03-01 | |
| dc.description.abstract | Представлено результати адсорбції іонів Cu2+ на природному та термічно обробленому та НВЧ-опроміненому клиноптилоліті та глауконіті. Проведено експерименти з рентгенівської фотоелектронної спектроскопії зразків. Залежність між адсорбованою речовиною та рівноважною концентрацією в стічних водах описано чотирма двопараметричними та чотирма трипараметричними моделями ізотерм адсорбції. | |
| dc.description.abstract | The paper presents the results of the Cu2+ adsorption on natural and thermally/microwave-treated clinoptilolite and glauconite. XPS experiments were performed. The relationship between the adsorbed matter and the equilibrium concentration in wastewater is described by four two-parameter isotherm models and four three-parameter adsorption isotherm models. | |
| dc.format.extent | 94-102 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Konanets R. Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite / Roman Konanets, Kateryna Stepova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 94–102. | |
| dc.identifier.citationen | Konanets R. Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite / Roman Konanets, Kateryna Stepova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 94–102. | |
| dc.identifier.doi | doi.org/10.23939/chcht18.01.094 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111774 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія та хімічна технологія, 1 (18), 2024 | |
| dc.relation.ispartof | Chemistry & Chemical Technology, 1 (18), 2024 | |
| dc.relation.references | [1] Barker, A. J.; Clausen, J. L.; Douglas, T. A.; Bednar, A. J.; Griggs, C. S.; Martin, W. A. Environmental Impact of Metals Resulting from Military Training Activities: A Review. Chemosphere 2021, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110 | |
| dc.relation.references | [2] Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health. 2023, 20, 3885. https://doi.org/10.3390/ijerph20053885 | |
| dc.relation.references | [3] Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995 | |
| dc.relation.references | [4] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011 | |
| dc.relation.references | [5] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47(X–XII), 160–168. https://doi.org/10.24425/jwld.2020.135043 | |
| dc.relation.references | [6] Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H., Rashid; R., Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801 | |
| dc.relation.references | [7] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117 | |
| dc.relation.references | [8] Djebbar, M.; Djafri, F. Adsorption of Zinc Ions in Water on Natural and Treated Clay. Chem. Chem. Technol. 2018, 12, 272–278. https://doi.org/10.23939/chcht12.02.272 | |
| dc.relation.references | [9] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267 | |
| dc.relation.references | [10] Malovanyy, M., Sakalova, H. Vasylinycz, T., Palamarchuk, O., Semchuk, J. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167–176. http://dx.doi.org/10.12911/22998993/102841 | |
| dc.relation.references | [11] Petrushka, I.; Petrushka, K.; Bliatnyk, B. Improvement of Adsorption Processes of Wastewater Treatment from Nickel Ions. Environ. Probl. 2020, 5, 83–87. https://doi.org/10.23939/ep2020.02.083 | |
| dc.relation.references | [12] Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. https://doi.org/10.1016/j.rineng.2020.100189 | |
| dc.relation.references | [13] Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C. L.; Franscescon, F.; Freitas, L.; de Mello, J. M.; Fiori, M. A.; Oliveira, J. V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008 | |
| dc.relation.references | [14] Spoljaric, N.; Crawford, W. A. Glauconitic Greensand: A Possible Filter of Heavy Metal Cations from Polluted Waters. Environ. Geol. 1978, 2, 215–221. https://doi.org/10.1007/BF02380487 | |
| dc.relation.references | [15] Spoljaric, N.; Crawford, W. A. Removal of Contaminants from Landfill Leachates by Filtration through Glauconitic Greensands. Environ. Geol. 1978, 2, 359–363. https://doi.org/10.1007/BF02380510 | |
| dc.relation.references | [16] Sysa, L. V.; Stepova, K. V.; Petrova, M. A.; Kontsur, A. Z. Microwave-Treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126–134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134 | |
| dc.relation.references | [17] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6/6 (90), 26–32. https://doi.org/10.15587/1729-4061.2017.116090 | |
| dc.relation.references | [18] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. https://doi.org/10.1021/ja02242a004 | |
| dc.relation.references | [19] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. | |
| dc.relation.references | [20] Hansen, J.B. Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts. In Ammonia. Nielsen, A., Ed; Springer: Berlin, Heidelberg, 1995; pp 149–190. https://doi.org/10.1007/978-3-642-79197-0_4 | |
| dc.relation.references | [21] Kiełbasa, K.; Kamińska, A.; Niedoba, O.; Michalkiewicz, B. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials 2021, 14, 7458. https://doi.org/10.3390/ma14237458 | |
| dc.relation.references | [22] Jeppu, G.; Clement, P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129-130, 46–53. https://doi.org/10.1016/j.jconhyd.2011.12.001 | |
| dc.relation.references | [23] Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1026. https://doi.org/10.1021/j150576a611 | |
| dc.relation.references | [24] Toth, J. State Equations of the Solid-Gas Interface Layer. Acta Chim. Hung. 1971, 69, 311–317. | |
| dc.relation.references | [25] Aranovich, G.L. The Theory of Polymolecular Adsorption. Langmuir 1992, 8, 736–739. https://doi.org/10.1021/la00038a071 | |
| dc.relation.references | [26] Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chem. Eng. J. 2010, 160, 408–416. https://doi.org/10.1016/j.cej.2010.03.016 | |
| dc.relation.references | [27] Kajama, M. N. Hydrogen Permeation Using Nanostructured Silica Membranes. WIT Trans. Ecol. Environ. 2015, 192, 447–456. https://doi.org/10.2495/SDP150381 | |
| dc.relation.references | [28] Dhaouadi, H.; M’Henni, F. Vat Dye Sorption onto Crude Dehydrated Sewage Sludge. J. Hazard. Mater. 2009, 164, 448–458. https://doi.org/10.1016/j.jhazmat.2008.08.029 | |
| dc.relation.references | [29] Ozdes, D.; Duran, C.; Senturk, H. B.; Avan, H.; Bicer, B. Kinetics, Thermodynamics, and Equilibrium Evaluation of Adsorptive Removal of Methylene Blue onto Natural Illitic Clay Mineral. Desalin. Water Treat. 2013, 52, 208–218. https://doi.org/10.1080/19443994.2013.787554 | |
| dc.relation.references | [30] Özcan, A. S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite. J. Colloid Interface Sci. 2005, 266, 73–81. https://doi.org/10.1016/j.jcis.2004.07.035 | |
| dc.relation.references | [31] Aharoni, C.; Tompkins, F. C. Kinetics of Adsorption and Desorption and the Elovich Equation. Adv. Catal. 1970, 21, 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5 | |
| dc.relation.references | [32] Koble, R. A.; Corrigan, T. E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. https://doi.org/10.1021/ie50506a049 | |
| dc.relation.references | [33] Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817 | |
| dc.relation.references | [34] Le, N. C.; Van Phuc, D. Sorption of Lead (II), Cobalt (II) and Copper (II) Ions from Aqueous Solutions by γ-MnO2 Nanostructure. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025014. https://doi.org/10.1088/2043-6262/6/2/025014 | |
| dc.relation.references | [35] Jafari Behbahani, T.J.; Jafari Behbahani, Z. A New Study on Asphaltene Adsorption in Porous Media. Pet. Coal 2014, 56, 459–466. | |
| dc.relation.referencesen | [1] Barker, A. J.; Clausen, J. L.; Douglas, T. A.; Bednar, A. J.; Griggs, C. S.; Martin, W. A. Environmental Impact of Metals Resulting from Military Training Activities: A Review. Chemosphere 2021, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110 | |
| dc.relation.referencesen | [2] Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health. 2023, 20, 3885. https://doi.org/10.3390/ijerph20053885 | |
| dc.relation.referencesen | [3] Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995 | |
| dc.relation.referencesen | [4] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011 | |
| dc.relation.referencesen | [5] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47(X–XII), 160–168. https://doi.org/10.24425/jwld.2020.135043 | |
| dc.relation.referencesen | [6] Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H., Rashid; R., Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801 | |
| dc.relation.referencesen | [7] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117 | |
| dc.relation.referencesen | [8] Djebbar, M.; Djafri, F. Adsorption of Zinc Ions in Water on Natural and Treated Clay. Chem. Chem. Technol. 2018, 12, 272–278. https://doi.org/10.23939/chcht12.02.272 | |
| dc.relation.referencesen | [9] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267 | |
| dc.relation.referencesen | [10] Malovanyy, M., Sakalova, H. Vasylinycz, T., Palamarchuk, O., Semchuk, J. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167–176. http://dx.doi.org/10.12911/22998993/102841 | |
| dc.relation.referencesen | [11] Petrushka, I.; Petrushka, K.; Bliatnyk, B. Improvement of Adsorption Processes of Wastewater Treatment from Nickel Ions. Environ. Probl. 2020, 5, 83–87. https://doi.org/10.23939/ep2020.02.083 | |
| dc.relation.referencesen | [12] Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. https://doi.org/10.1016/j.rineng.2020.100189 | |
| dc.relation.referencesen | [13] Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C. L.; Franscescon, F.; Freitas, L.; de Mello, J. M.; Fiori, M. A.; Oliveira, J. V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008 | |
| dc.relation.referencesen | [14] Spoljaric, N.; Crawford, W. A. Glauconitic Greensand: A Possible Filter of Heavy Metal Cations from Polluted Waters. Environ. Geol. 1978, 2, 215–221. https://doi.org/10.1007/BF02380487 | |
| dc.relation.referencesen | [15] Spoljaric, N.; Crawford, W. A. Removal of Contaminants from Landfill Leachates by Filtration through Glauconitic Greensands. Environ. Geol. 1978, 2, 359–363. https://doi.org/10.1007/BF02380510 | |
| dc.relation.referencesen | [16] Sysa, L. V.; Stepova, K. V.; Petrova, M. A.; Kontsur, A. Z. Microwave-Treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126–134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134 | |
| dc.relation.referencesen | [17] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6/6 (90), 26–32. https://doi.org/10.15587/1729-4061.2017.116090 | |
| dc.relation.referencesen | [18] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. https://doi.org/10.1021/ja02242a004 | |
| dc.relation.referencesen | [19] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. | |
| dc.relation.referencesen | [20] Hansen, J.B. Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts. In Ammonia. Nielsen, A., Ed; Springer: Berlin, Heidelberg, 1995; pp 149–190. https://doi.org/10.1007/978-3-642-79197-0_4 | |
| dc.relation.referencesen | [21] Kiełbasa, K.; Kamińska, A.; Niedoba, O.; Michalkiewicz, B. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials 2021, 14, 7458. https://doi.org/10.3390/ma14237458 | |
| dc.relation.referencesen | [22] Jeppu, G.; Clement, P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129-130, 46–53. https://doi.org/10.1016/j.jconhyd.2011.12.001 | |
| dc.relation.referencesen | [23] Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1026. https://doi.org/10.1021/j150576a611 | |
| dc.relation.referencesen | [24] Toth, J. State Equations of the Solid-Gas Interface Layer. Acta Chim. Hung. 1971, 69, 311–317. | |
| dc.relation.referencesen | [25] Aranovich, G.L. The Theory of Polymolecular Adsorption. Langmuir 1992, 8, 736–739. https://doi.org/10.1021/la00038a071 | |
| dc.relation.referencesen | [26] Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chem. Eng. J. 2010, 160, 408–416. https://doi.org/10.1016/j.cej.2010.03.016 | |
| dc.relation.referencesen | [27] Kajama, M. N. Hydrogen Permeation Using Nanostructured Silica Membranes. WIT Trans. Ecol. Environ. 2015, 192, 447–456. https://doi.org/10.2495/SDP150381 | |
| dc.relation.referencesen | [28] Dhaouadi, H.; M’Henni, F. Vat Dye Sorption onto Crude Dehydrated Sewage Sludge. J. Hazard. Mater. 2009, 164, 448–458. https://doi.org/10.1016/j.jhazmat.2008.08.029 | |
| dc.relation.referencesen | [29] Ozdes, D.; Duran, C.; Senturk, H. B.; Avan, H.; Bicer, B. Kinetics, Thermodynamics, and Equilibrium Evaluation of Adsorptive Removal of Methylene Blue onto Natural Illitic Clay Mineral. Desalin. Water Treat. 2013, 52, 208–218. https://doi.org/10.1080/19443994.2013.787554 | |
| dc.relation.referencesen | [30] Özcan, A. S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite. J. Colloid Interface Sci. 2005, 266, 73–81. https://doi.org/10.1016/j.jcis.2004.07.035 | |
| dc.relation.referencesen | [31] Aharoni, C.; Tompkins, F. C. Kinetics of Adsorption and Desorption and the Elovich Equation. Adv. Catal. 1970, 21, 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5 | |
| dc.relation.referencesen | [32] Koble, R. A.; Corrigan, T. E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. https://doi.org/10.1021/ie50506a049 | |
| dc.relation.referencesen | [33] Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817 | |
| dc.relation.referencesen | [34] Le, N. C.; Van Phuc, D. Sorption of Lead (II), Cobalt (II) and Copper (II) Ions from Aqueous Solutions by g-MnO2 Nanostructure. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025014. https://doi.org/10.1088/2043-6262/6/2/025014 | |
| dc.relation.referencesen | [35] Jafari Behbahani, T.J.; Jafari Behbahani, Z. A New Study on Asphaltene Adsorption in Porous Media. Pet. Coal 2014, 56, 459–466. | |
| dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2020.129110 | |
| dc.relation.uri | https://doi.org/10.3390/ijerph20053885 | |
| dc.relation.uri | https://doi.org/10.1016/j.envpol.2021.116995 | |
| dc.relation.uri | https://doi.org/10.1016/j.jenvman.2010.11.011 | |
| dc.relation.uri | https://doi.org/10.24425/jwld.2020.135043 | |
| dc.relation.uri | https://doi.org/10.1016/j.enmm.2023.100801 | |
| dc.relation.uri | https://doi.org/10.23939/chcht11.01.117 | |
| dc.relation.uri | https://doi.org/10.23939/chcht12.02.272 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.02.267 | |
| dc.relation.uri | http://dx.doi.org/10.12911/22998993/102841 | |
| dc.relation.uri | https://doi.org/10.23939/ep2020.02.083 | |
| dc.relation.uri | https://doi.org/10.1016/j.rineng.2020.100189 | |
| dc.relation.uri | https://doi.org/10.1016/j.psep.2016.11.008 | |
| dc.relation.uri | https://doi.org/10.1007/BF02380487 | |
| dc.relation.uri | https://doi.org/10.1007/BF02380510 | |
| dc.relation.uri | https://doi.org/10.32434/0321-4095-2019-126-5-126-134 | |
| dc.relation.uri | https://doi.org/10.15587/1729-4061.2017.116090 | |
| dc.relation.uri | https://doi.org/10.1021/ja02242a004 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-642-79197-0_4 | |
| dc.relation.uri | https://doi.org/10.3390/ma14237458 | |
| dc.relation.uri | https://doi.org/10.1016/j.jconhyd.2011.12.001 | |
| dc.relation.uri | https://doi.org/10.1021/j150576a611 | |
| dc.relation.uri | https://doi.org/10.1021/la00038a071 | |
| dc.relation.uri | https://doi.org/10.1016/j.cej.2010.03.016 | |
| dc.relation.uri | https://doi.org/10.2495/SDP150381 | |
| dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2008.08.029 | |
| dc.relation.uri | https://doi.org/10.1080/19443994.2013.787554 | |
| dc.relation.uri | https://doi.org/10.1016/j.jcis.2004.07.035 | |
| dc.relation.uri | https://doi.org/10.1016/S0360-0564(08)60563-5 | |
| dc.relation.uri | https://doi.org/10.1021/ie50506a049 | |
| dc.relation.uri | https://doi.org/10.1155/2017/3039817 | |
| dc.relation.uri | https://doi.org/10.1088/2043-6262/6/2/025014 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Konanets R., Stepova K., 2024 | |
| dc.subject | адсорбція | |
| dc.subject | стічні води | |
| dc.subject | нелінійне моделювання | |
| dc.subject | ізотерма рівноваги | |
| dc.subject | аналіз похибок | |
| dc.subject | adsorption | |
| dc.subject | wastewater | |
| dc.subject | non-linear fitting | |
| dc.subject | equilibrium isotherm | |
| dc.subject | error analysis | |
| dc.title | Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite | |
| dc.title.alternative | Нелінійне моделювання ізотерми адсорбції для міді зі стічних вод природним та модифікованим клиноптилолітом і глауконітом | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1