Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite

dc.citation.epage102
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage94
dc.citation.volume18
dc.contributor.affiliationLviv State University of Life Safety
dc.contributor.authorKonanets, Roman
dc.contributor.authorStepova, Kateryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:51Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractПредставлено результати адсорбції іонів Cu2+ на природному та термічно обробленому та НВЧ-опроміненому клиноптилоліті та глауконіті. Проведено експерименти з рентгенівської фотоелектронної спектроскопії зразків. Залежність між адсорбованою речовиною та рівноважною концентрацією в стічних водах описано чотирма двопараметричними та чотирма трипараметричними моделями ізотерм адсорбції.
dc.description.abstractThe paper presents the results of the Cu2+ adsorption on natural and thermally/microwave-treated clinoptilolite and glauconite. XPS experiments were performed. The relationship between the adsorbed matter and the equilibrium concentration in wastewater is described by four two-parameter isotherm models and four three-parameter adsorption isotherm models.
dc.format.extent94-102
dc.format.pages9
dc.identifier.citationKonanets R. Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite / Roman Konanets, Kateryna Stepova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 94–102.
dc.identifier.citationenKonanets R. Nonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite / Roman Konanets, Kateryna Stepova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 94–102.
dc.identifier.doidoi.org/10.23939/chcht18.01.094
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111774
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Barker, A. J.; Clausen, J. L.; Douglas, T. A.; Bednar, A. J.; Griggs, C. S.; Martin, W. A. Environmental Impact of Metals Resulting from Military Training Activities: A Review. Chemosphere 2021, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110
dc.relation.references[2] Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health. 2023, 20, 3885. https://doi.org/10.3390/ijerph20053885
dc.relation.references[3] Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
dc.relation.references[4] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.references[5] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47(X–XII), 160–168. https://doi.org/10.24425/jwld.2020.135043
dc.relation.references[6] Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H., Rashid; R., Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801
dc.relation.references[7] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117
dc.relation.references[8] Djebbar, M.; Djafri, F. Adsorption of Zinc Ions in Water on Natural and Treated Clay. Chem. Chem. Technol. 2018, 12, 272–278. https://doi.org/10.23939/chcht12.02.272
dc.relation.references[9] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
dc.relation.references[10] Malovanyy, M., Sakalova, H. Vasylinycz, T., Palamarchuk, O., Semchuk, J. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167–176. http://dx.doi.org/10.12911/22998993/102841
dc.relation.references[11] Petrushka, I.; Petrushka, K.; Bliatnyk, B. Improvement of Adsorption Processes of Wastewater Treatment from Nickel Ions. Environ. Probl. 2020, 5, 83–87. https://doi.org/10.23939/ep2020.02.083
dc.relation.references[12] Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. https://doi.org/10.1016/j.rineng.2020.100189
dc.relation.references[13] Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C. L.; Franscescon, F.; Freitas, L.; de Mello, J. M.; Fiori, M. A.; Oliveira, J. V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008
dc.relation.references[14] Spoljaric, N.; Crawford, W. A. Glauconitic Greensand: A Possible Filter of Heavy Metal Cations from Polluted Waters. Environ. Geol. 1978, 2, 215–221. https://doi.org/10.1007/BF02380487
dc.relation.references[15] Spoljaric, N.; Crawford, W. A. Removal of Contaminants from Landfill Leachates by Filtration through Glauconitic Greensands. Environ. Geol. 1978, 2, 359–363. https://doi.org/10.1007/BF02380510
dc.relation.references[16] Sysa, L. V.; Stepova, K. V.; Petrova, M. A.; Kontsur, A. Z. Microwave-Treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126–134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134
dc.relation.references[17] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6/6 (90), 26–32. https://doi.org/10.15587/1729-4061.2017.116090
dc.relation.references[18] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. https://doi.org/10.1021/ja02242a004
dc.relation.references[19] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
dc.relation.references[20] Hansen, J.B. Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts. In Ammonia. Nielsen, A., Ed; Springer: Berlin, Heidelberg, 1995; pp 149–190. https://doi.org/10.1007/978-3-642-79197-0_4
dc.relation.references[21] Kiełbasa, K.; Kamińska, A.; Niedoba, O.; Michalkiewicz, B. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials 2021, 14, 7458. https://doi.org/10.3390/ma14237458
dc.relation.references[22] Jeppu, G.; Clement, P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129-130, 46–53. https://doi.org/10.1016/j.jconhyd.2011.12.001
dc.relation.references[23] Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1026. https://doi.org/10.1021/j150576a611
dc.relation.references[24] Toth, J. State Equations of the Solid-Gas Interface Layer. Acta Chim. Hung. 1971, 69, 311–317.
dc.relation.references[25] Aranovich, G.L. The Theory of Polymolecular Adsorption. Langmuir 1992, 8, 736–739. https://doi.org/10.1021/la00038a071
dc.relation.references[26] Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chem. Eng. J. 2010, 160, 408–416. https://doi.org/10.1016/j.cej.2010.03.016
dc.relation.references[27] Kajama, M. N. Hydrogen Permeation Using Nanostructured Silica Membranes. WIT Trans. Ecol. Environ. 2015, 192, 447–456. https://doi.org/10.2495/SDP150381
dc.relation.references[28] Dhaouadi, H.; M’Henni, F. Vat Dye Sorption onto Crude Dehydrated Sewage Sludge. J. Hazard. Mater. 2009, 164, 448–458. https://doi.org/10.1016/j.jhazmat.2008.08.029
dc.relation.references[29] Ozdes, D.; Duran, C.; Senturk, H. B.; Avan, H.; Bicer, B. Kinetics, Thermodynamics, and Equilibrium Evaluation of Adsorptive Removal of Methylene Blue onto Natural Illitic Clay Mineral. Desalin. Water Treat. 2013, 52, 208–218. https://doi.org/10.1080/19443994.2013.787554
dc.relation.references[30] Özcan, A. S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite. J. Colloid Interface Sci. 2005, 266, 73–81. https://doi.org/10.1016/j.jcis.2004.07.035
dc.relation.references[31] Aharoni, C.; Tompkins, F. C. Kinetics of Adsorption and Desorption and the Elovich Equation. Adv. Catal. 1970, 21, 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5
dc.relation.references[32] Koble, R. A.; Corrigan, T. E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. https://doi.org/10.1021/ie50506a049
dc.relation.references[33] Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
dc.relation.references[34] Le, N. C.; Van Phuc, D. Sorption of Lead (II), Cobalt (II) and Copper (II) Ions from Aqueous Solutions by γ-MnO2 Nanostructure. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025014. https://doi.org/10.1088/2043-6262/6/2/025014
dc.relation.references[35] Jafari Behbahani, T.J.; Jafari Behbahani, Z. A New Study on Asphaltene Adsorption in Porous Media. Pet. Coal 2014, 56, 459–466.
dc.relation.referencesen[1] Barker, A. J.; Clausen, J. L.; Douglas, T. A.; Bednar, A. J.; Griggs, C. S.; Martin, W. A. Environmental Impact of Metals Resulting from Military Training Activities: A Review. Chemosphere 2021, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110
dc.relation.referencesen[2] Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health. 2023, 20, 3885. https://doi.org/10.3390/ijerph20053885
dc.relation.referencesen[3] Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
dc.relation.referencesen[4] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.referencesen[5] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47(X–XII), 160–168. https://doi.org/10.24425/jwld.2020.135043
dc.relation.referencesen[6] Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H., Rashid; R., Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100801. https://doi.org/10.1016/j.enmm.2023.100801
dc.relation.referencesen[7] Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117
dc.relation.referencesen[8] Djebbar, M.; Djafri, F. Adsorption of Zinc Ions in Water on Natural and Treated Clay. Chem. Chem. Technol. 2018, 12, 272–278. https://doi.org/10.23939/chcht12.02.272
dc.relation.referencesen[9] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
dc.relation.referencesen[10] Malovanyy, M., Sakalova, H. Vasylinycz, T., Palamarchuk, O., Semchuk, J. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167–176. http://dx.doi.org/10.12911/22998993/102841
dc.relation.referencesen[11] Petrushka, I.; Petrushka, K.; Bliatnyk, B. Improvement of Adsorption Processes of Wastewater Treatment from Nickel Ions. Environ. Probl. 2020, 5, 83–87. https://doi.org/10.23939/ep2020.02.083
dc.relation.referencesen[12] Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. https://doi.org/10.1016/j.rineng.2020.100189
dc.relation.referencesen[13] Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C. L.; Franscescon, F.; Freitas, L.; de Mello, J. M.; Fiori, M. A.; Oliveira, J. V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008
dc.relation.referencesen[14] Spoljaric, N.; Crawford, W. A. Glauconitic Greensand: A Possible Filter of Heavy Metal Cations from Polluted Waters. Environ. Geol. 1978, 2, 215–221. https://doi.org/10.1007/BF02380487
dc.relation.referencesen[15] Spoljaric, N.; Crawford, W. A. Removal of Contaminants from Landfill Leachates by Filtration through Glauconitic Greensands. Environ. Geol. 1978, 2, 359–363. https://doi.org/10.1007/BF02380510
dc.relation.referencesen[16] Sysa, L. V.; Stepova, K. V.; Petrova, M. A.; Kontsur, A. Z. Microwave-Treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126–134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134
dc.relation.referencesen[17] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6/6 (90), 26–32. https://doi.org/10.15587/1729-4061.2017.116090
dc.relation.referencesen[18] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. https://doi.org/10.1021/ja02242a004
dc.relation.referencesen[19] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
dc.relation.referencesen[20] Hansen, J.B. Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts. In Ammonia. Nielsen, A., Ed; Springer: Berlin, Heidelberg, 1995; pp 149–190. https://doi.org/10.1007/978-3-642-79197-0_4
dc.relation.referencesen[21] Kiełbasa, K.; Kamińska, A.; Niedoba, O.; Michalkiewicz, B. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials 2021, 14, 7458. https://doi.org/10.3390/ma14237458
dc.relation.referencesen[22] Jeppu, G.; Clement, P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129-130, 46–53. https://doi.org/10.1016/j.jconhyd.2011.12.001
dc.relation.referencesen[23] Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1026. https://doi.org/10.1021/j150576a611
dc.relation.referencesen[24] Toth, J. State Equations of the Solid-Gas Interface Layer. Acta Chim. Hung. 1971, 69, 311–317.
dc.relation.referencesen[25] Aranovich, G.L. The Theory of Polymolecular Adsorption. Langmuir 1992, 8, 736–739. https://doi.org/10.1021/la00038a071
dc.relation.referencesen[26] Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two-Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chem. Eng. J. 2010, 160, 408–416. https://doi.org/10.1016/j.cej.2010.03.016
dc.relation.referencesen[27] Kajama, M. N. Hydrogen Permeation Using Nanostructured Silica Membranes. WIT Trans. Ecol. Environ. 2015, 192, 447–456. https://doi.org/10.2495/SDP150381
dc.relation.referencesen[28] Dhaouadi, H.; M’Henni, F. Vat Dye Sorption onto Crude Dehydrated Sewage Sludge. J. Hazard. Mater. 2009, 164, 448–458. https://doi.org/10.1016/j.jhazmat.2008.08.029
dc.relation.referencesen[29] Ozdes, D.; Duran, C.; Senturk, H. B.; Avan, H.; Bicer, B. Kinetics, Thermodynamics, and Equilibrium Evaluation of Adsorptive Removal of Methylene Blue onto Natural Illitic Clay Mineral. Desalin. Water Treat. 2013, 52, 208–218. https://doi.org/10.1080/19443994.2013.787554
dc.relation.referencesen[30] Özcan, A. S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite. J. Colloid Interface Sci. 2005, 266, 73–81. https://doi.org/10.1016/j.jcis.2004.07.035
dc.relation.referencesen[31] Aharoni, C.; Tompkins, F. C. Kinetics of Adsorption and Desorption and the Elovich Equation. Adv. Catal. 1970, 21, 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5
dc.relation.referencesen[32] Koble, R. A.; Corrigan, T. E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. https://doi.org/10.1021/ie50506a049
dc.relation.referencesen[33] Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
dc.relation.referencesen[34] Le, N. C.; Van Phuc, D. Sorption of Lead (II), Cobalt (II) and Copper (II) Ions from Aqueous Solutions by g-MnO2 Nanostructure. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025014. https://doi.org/10.1088/2043-6262/6/2/025014
dc.relation.referencesen[35] Jafari Behbahani, T.J.; Jafari Behbahani, Z. A New Study on Asphaltene Adsorption in Porous Media. Pet. Coal 2014, 56, 459–466.
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2020.129110
dc.relation.urihttps://doi.org/10.3390/ijerph20053885
dc.relation.urihttps://doi.org/10.1016/j.envpol.2021.116995
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.urihttps://doi.org/10.24425/jwld.2020.135043
dc.relation.urihttps://doi.org/10.1016/j.enmm.2023.100801
dc.relation.urihttps://doi.org/10.23939/chcht11.01.117
dc.relation.urihttps://doi.org/10.23939/chcht12.02.272
dc.relation.urihttps://doi.org/10.23939/chcht16.02.267
dc.relation.urihttp://dx.doi.org/10.12911/22998993/102841
dc.relation.urihttps://doi.org/10.23939/ep2020.02.083
dc.relation.urihttps://doi.org/10.1016/j.rineng.2020.100189
dc.relation.urihttps://doi.org/10.1016/j.psep.2016.11.008
dc.relation.urihttps://doi.org/10.1007/BF02380487
dc.relation.urihttps://doi.org/10.1007/BF02380510
dc.relation.urihttps://doi.org/10.32434/0321-4095-2019-126-5-126-134
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.116090
dc.relation.urihttps://doi.org/10.1021/ja02242a004
dc.relation.urihttps://doi.org/10.1007/978-3-642-79197-0_4
dc.relation.urihttps://doi.org/10.3390/ma14237458
dc.relation.urihttps://doi.org/10.1016/j.jconhyd.2011.12.001
dc.relation.urihttps://doi.org/10.1021/j150576a611
dc.relation.urihttps://doi.org/10.1021/la00038a071
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.03.016
dc.relation.urihttps://doi.org/10.2495/SDP150381
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.08.029
dc.relation.urihttps://doi.org/10.1080/19443994.2013.787554
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.07.035
dc.relation.urihttps://doi.org/10.1016/S0360-0564(08)60563-5
dc.relation.urihttps://doi.org/10.1021/ie50506a049
dc.relation.urihttps://doi.org/10.1155/2017/3039817
dc.relation.urihttps://doi.org/10.1088/2043-6262/6/2/025014
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Konanets R., Stepova K., 2024
dc.subjectадсорбція
dc.subjectстічні води
dc.subjectнелінійне моделювання
dc.subjectізотерма рівноваги
dc.subjectаналіз похибок
dc.subjectadsorption
dc.subjectwastewater
dc.subjectnon-linear fitting
dc.subjectequilibrium isotherm
dc.subjecterror analysis
dc.titleNonlinear Isotherm Adsorption Modelling for Copper Removal from Wastewater by Natural and Modified Clinoptilolite and Glauconite
dc.title.alternativeНелінійне моделювання ізотерми адсорбції для міді зі стічних вод природним та модифікованим клиноптилолітом і глауконітом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Konanets_R-Nonlinear_Isotherm_Adsorption_94-102.pdf
Size:
7.07 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Konanets_R-Nonlinear_Isotherm_Adsorption_94-102__COVER.png
Size:
521.15 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: