Coke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production

dc.citation.epage336
dc.citation.issue2
dc.citation.spage328
dc.contributor.affiliationUkrainian State Research Institute for Carbochemistry
dc.contributor.affiliationNational Technical University “Kharkiv Polytechnic Institute”
dc.contributor.affiliationO. M. Beketov National University of Urban Economy in Kharkiv
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorBannikov, Leonid
dc.contributor.authorMiroshnichenko, Denis
dc.contributor.authorPylypenko, Oleksii
dc.contributor.authorPyshyev, Serhiy
dc.contributor.authorFedevych, Oleh
dc.contributor.authorMeshchanin, Valeriy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:02Z
dc.date.available2024-01-22T11:13:02Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractДосліджені процеси корозії сталей у біохімічно очищених водах установок гасіння коксу. Проведено гравіметричні дослідження зразків сталей за 373 і 773 K, що дало змогу встановити, що при нагріванні сталей Ст.3 і 12Х1МФ з подальшим охолодженням у воді спостерігається різний характер їх корозійного руйнування. Описано типи корозії, які виникають при контакті вуглецевих і легованих сталей з біохімічно очищеними водами коксохімічних підприємств, що були оброблені гідроксидом натрію. Показано, що результатом корозійного руйнування сталей у всіх досліджених середовищах є утворення плівок гідратованих оксидів заліза з різним характером адгезії до поверхні зразків. Доведено, що обробка води приводить до деякого зниження величин масового і глибинного показників корозії для Ст.3 і 12Х1МФ, однак не дає істотного ефекту при постійному контакті сталі з гарячою водою.
dc.description.abstractSteel corrosion processes that occur due to the effects of the biochemically treated water in coke quenching plenums have been studied. Model investigations into the processes of the corrosion failure of carbon St. 3 steel and alloyed 18X1MF steel were carried out to study the behavior of the metal exposed to the action of the primary but treated water used for the coke quenching after the metal is heated to 373 K and 773 K. Different types of the corrosion that results from the contact of the carbon steel and alloy steel with the sodium hydroxide biochemically treated water of the coke-chemical production have been described. It was shown that the corrosion failure of the steels results from the formation of the films of hydrated iron oxides that appear in all the test media and these films show different behavior of adhesion to specimen surfaces. It was proved that the water treatment results in a certain decrease of the values of the mass and in-depth corrosion factors for St.3 and 12X1MF steels, however it fails to produce an essential effect when the steel is in constant touch with hot water.
dc.format.extent328-336
dc.format.pages9
dc.identifier.citationCoke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production / Leonid Bannikov, Denis Miroshnichenko, Oleksii Pylypenko, Serhiy Pyshyev, Oleh Fedevych, Valeriy Meshchanin // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 328–336.
dc.identifier.citationenCoke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production / Leonid Bannikov, Denis Miroshnichenko, Oleksii Pylypenko, Serhiy Pyshyev, Oleh Fedevych, Valeriy Meshchanin // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 328–336.
dc.identifier.doidoi.org/10.23939/chcht16.02.328
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60973
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Loison, R.; Foch, P.; Boyer, A. Coke. Quality and Production; Butterworth-Heinemann, 1989.
dc.relation.references[2] Skljar, M. Intensifikatsiya Koksovaniya i Kachestvo Koksa; Metallurgiya, 1976 (In Russian).
dc.relation.references[3] Saranchuk, V.; Іl'jashov, M.; Oshovs'kij, V.; Bіlec'kij, V. Osnovy Khіmіi і Fіzyky Goryuchykh Kopalyn; Shіdnyi vidavnychyi dіm, 2008 (In Ukrainian).
dc.relation.references[4] Zhang, Z.; Song, S.; Huang, J.; Ji, L.; Wu F. Investigation of Corrosion Caused by Constituents of Refinery Wastewater Effluent Used as Circulating Cooling Water. Water Environ. Res. 2003, 75, 61–65. https://doi.org/10.2175/106143003X140836
dc.relation.references[5] Tanaka, N.; Sato, S.; Watanabe, I.; Yamada, Y.; Sakurada, O. Corrosion in Tap Water and Hot Water Supply Facilities of Stainless Steel Type 304 Pipes. Mat. Sci. Appl. 2018, 9, 68–80. http://dx.doi.org/10.4236/msa.2018.91005
dc.relation.references[6] Sang, X.; Wang, Z.; Li, J.; Wang, H.; Su, F.; Liu, Z.; Zhang, L.; Zhu Z. Corrosion Protection of Carbon Steel in Circulating Cooling Water by Open-chain Carboxyethyltin and Transition Metal Co-functionalized Tungstogermanates. ChemistrySelect 2010, 4, 7358–7362. https://doi.org/10.1002/slct.201800789
dc.relation.references[7] Topilnytsky, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12, 400–404. https://doi.org/10.23939/chcht12.03.400
dc.relation.references[8] Shmandiy, V.; Bezdeneznych, L.; Kharlamova, O.; Svjatenko, A.; Malovanyy, M.; Petrushka, K.; Polyuzhyn, I. Methods of Salt Content Stabilization in Circulating Water Supply Systems. Chem. Chem. Technol. 2017, 11, 242–246. https://doi.org/10.23939/chcht11.02.242
dc.relation.references[9] Yang, B., He, J., Zhang, G., Guo, L. Vanadium: Extraction, Manufacturing and Applications; Elsevier, 2020.
dc.relation.references[10] Bondar, O.; Vorobyova, V.; Kurmakova, I.; Chygyrynets, O. Aminooxoethylpyridinium Chlorides as Inhibitors of Mild Steel Acid Corrosion. Chem. Chem. Technol. 2018, 12, 127-133. https://doi.org/10.23939/chcht12.01.127
dc.relation.references[11] Standard Test Methods for Ammonia Nitrogen in Water, 2021. https://www.astm.org/d1426-15r21e01.html (accessed 2021-12-22).
dc.relation.references[12] Standard Test Methods for Phenolic Compounds in Water, 2020. https://www.astm.org/d1783-01r20.html (accessed 2020-01-17).
dc.relation.references[13] Standard Test Method for Sulfate Ion in Water, 2017. https://www.astm.org/Standards/D516.htm (accessed 2020-02-03).
dc.relation.references[14] Standard Test Method for Sulfide Ion in Water, 2017. https://www.astm.org/d4658-15.html (accessed 2020-02-08).
dc.relation.references[15] Standard Test Methods for Calcium and Magnesium in Water, 2021. https://www.astm.org/d0511-14r21e01.html (accessed 2021-12-06).
dc.relation.references[16] Standard Test Method for Hardness in Water, 2017. https://www.astm.org/d1126-17.html (accessed 2017-12-15).
dc.relation.references[17] Standard Test Method for Thiocyanate in Water, 2010. https://www.astm.org/d4193-02.html (accessed 2010-12-31).
dc.relation.references[18] Standard Test Methods for Cyanides in Water, 2018. https://www.astm.org/d2036-09r15.html (accessed 2010-02-09).
dc.relation.references[19] Standard Test Methods for Chlorides in Water, 2021. https://www.astm.org/d0512-12.html (accessed 2020-10-19).
dc.relation.references[20] Standard Test Methods for Nitrite-Nitrate in Water, 2021. https://www.astm.org/d3867-16r21e01.html (accessed 2010-12-23).
dc.relation.references[21] Standard Test Methods for Iron in Water, 2016. https://www.astm.org/d1068-15.html (accessed 2016-12-27).
dc.relation.references[22] Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water, 2018. https://www.astm.org/d5907-13.html (accessed 2018-05-31).
dc.relation.references[23] Deyab, M. A.; Guibal, E. Enhancement of Corrosion Resistance of the Cooling Systems in Desalination Plants by Green Inhibitor. Sci. Rep. 2020, 10, 4812. https://www.nature.com/articles/s41598-020-61810-9
dc.relation.references[24] Jin, J.; Wu, G.; He, K; Chen, J.; Xu, G.; Guan, Y. Effect of Ions on Carbon Steel Corrosion in Cooling Systems With Reclaimed Wastewater as the Alternative Makeup Water. Desalination Water Treat. 2013, 52, 7565–7574. https://doi.org/10.1080/19443994.2013.832636
dc.relation.references[25] Pilipenko, A.; Pancheva, H.; Reznichenko, G.; Myrgorod, O.; Miroshnichenko, N.; Sincheskul, A. The Study of Inhibiting Structural Material Corrosion in Water Recycling Systems by Sodium Hydroxide. EasternEuropean J. Enterp. Technol. 2017, 2, 21–28. http://journals.uran.ua/eejet/article/view/95989
dc.relation.references[26] Pancheva, H.; Reznichenko, G.; Miroshnichenko, N.; Sincheskul, A.; Pilipenko, A.; Loboichenko, V. Study Into the Influence of Concentration of Ions of Chlorine and Temperature of Circulating Water on the Corrosion Stability of Carbon Steel and Cast Iron. EasternEuropean J. Enterp. Technol. 2017, 4, 59–64. https://doi.org/10.15587/1729-4061.2017.108908
dc.relation.references[27] Smyrnov, O. O.; Shepil, T. E.; Kozin, V. Yu.; Bezhenko, A. O.; Rutkovska, K. S.; Pylypenko, O. I. Corrosion Resistance of Structural Materials in Tungstate Solutions. Mater. Sci. 2020, 55, 664–671. https://doi.org/10.1007/s11003-020-00357-6
dc.relation.references[28] Ahmed, S. A.; Makki H. F. Books of Abstracts, 2nd International Conference on Materials Engineering & Science (IConMEAS 2019), Baghdad, Iraq, September 25-29, 2019; Dahham, O. S.; Zulkepli, N. N. Ed.: AIP Publishing, 2020.
dc.relation.references[29] Shin, S.-B.; Song, S.-J.; Shin, Y.-W.; Kim, J.-G.; Park, B.-J.; Suh, Y.-C. Effect of Molybdenum on the Corrosion of Low Alloy Steels in Synthetic Seawater. Mater. Trans. 2016, 57, 2116–2121. https://doi:10.2320/matertrans.M2016222
dc.relation.referencesen[1] Loison, R.; Foch, P.; Boyer, A. Coke. Quality and Production; Butterworth-Heinemann, 1989.
dc.relation.referencesen[2] Skljar, M. Intensifikatsiya Koksovaniya i Kachestvo Koksa; Metallurgiya, 1976 (In Russian).
dc.relation.referencesen[3] Saranchuk, V.; Il'jashov, M.; Oshovs'kij, V.; Bilec'kij, V. Osnovy Khimii i Fizyky Goryuchykh Kopalyn; Shidnyi vidavnychyi dim, 2008 (In Ukrainian).
dc.relation.referencesen[4] Zhang, Z.; Song, S.; Huang, J.; Ji, L.; Wu F. Investigation of Corrosion Caused by Constituents of Refinery Wastewater Effluent Used as Circulating Cooling Water. Water Environ. Res. 2003, 75, 61–65. https://doi.org/10.2175/106143003X140836
dc.relation.referencesen[5] Tanaka, N.; Sato, S.; Watanabe, I.; Yamada, Y.; Sakurada, O. Corrosion in Tap Water and Hot Water Supply Facilities of Stainless Steel Type 304 Pipes. Mat. Sci. Appl. 2018, 9, 68–80. http://dx.doi.org/10.4236/msa.2018.91005
dc.relation.referencesen[6] Sang, X.; Wang, Z.; Li, J.; Wang, H.; Su, F.; Liu, Z.; Zhang, L.; Zhu Z. Corrosion Protection of Carbon Steel in Circulating Cooling Water by Open-chain Carboxyethyltin and Transition Metal Co-functionalized Tungstogermanates. ChemistrySelect 2010, 4, 7358–7362. https://doi.org/10.1002/slct.201800789
dc.relation.referencesen[7] Topilnytsky, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12, 400–404. https://doi.org/10.23939/chcht12.03.400
dc.relation.referencesen[8] Shmandiy, V.; Bezdeneznych, L.; Kharlamova, O.; Svjatenko, A.; Malovanyy, M.; Petrushka, K.; Polyuzhyn, I. Methods of Salt Content Stabilization in Circulating Water Supply Systems. Chem. Chem. Technol. 2017, 11, 242–246. https://doi.org/10.23939/chcht11.02.242
dc.relation.referencesen[9] Yang, B., He, J., Zhang, G., Guo, L. Vanadium: Extraction, Manufacturing and Applications; Elsevier, 2020.
dc.relation.referencesen[10] Bondar, O.; Vorobyova, V.; Kurmakova, I.; Chygyrynets, O. Aminooxoethylpyridinium Chlorides as Inhibitors of Mild Steel Acid Corrosion. Chem. Chem. Technol. 2018, 12, 127-133. https://doi.org/10.23939/chcht12.01.127
dc.relation.referencesen[11] Standard Test Methods for Ammonia Nitrogen in Water, 2021. https://www.astm.org/d1426-15r21e01.html (accessed 2021-12-22).
dc.relation.referencesen[12] Standard Test Methods for Phenolic Compounds in Water, 2020. https://www.astm.org/d1783-01r20.html (accessed 2020-01-17).
dc.relation.referencesen[13] Standard Test Method for Sulfate Ion in Water, 2017. https://www.astm.org/Standards/D516.htm (accessed 2020-02-03).
dc.relation.referencesen[14] Standard Test Method for Sulfide Ion in Water, 2017. https://www.astm.org/d4658-15.html (accessed 2020-02-08).
dc.relation.referencesen[15] Standard Test Methods for Calcium and Magnesium in Water, 2021. https://www.astm.org/d0511-14r21e01.html (accessed 2021-12-06).
dc.relation.referencesen[16] Standard Test Method for Hardness in Water, 2017. https://www.astm.org/d1126-17.html (accessed 2017-12-15).
dc.relation.referencesen[17] Standard Test Method for Thiocyanate in Water, 2010. https://www.astm.org/d4193-02.html (accessed 2010-12-31).
dc.relation.referencesen[18] Standard Test Methods for Cyanides in Water, 2018. https://www.astm.org/d2036-09r15.html (accessed 2010-02-09).
dc.relation.referencesen[19] Standard Test Methods for Chlorides in Water, 2021. https://www.astm.org/d0512-12.html (accessed 2020-10-19).
dc.relation.referencesen[20] Standard Test Methods for Nitrite-Nitrate in Water, 2021. https://www.astm.org/d3867-16r21e01.html (accessed 2010-12-23).
dc.relation.referencesen[21] Standard Test Methods for Iron in Water, 2016. https://www.astm.org/d1068-15.html (accessed 2016-12-27).
dc.relation.referencesen[22] Standard Test Methods for Filterable Matter (Total Dissolved Solids) and Nonfilterable Matter (Total Suspended Solids) in Water, 2018. https://www.astm.org/d5907-13.html (accessed 2018-05-31).
dc.relation.referencesen[23] Deyab, M. A.; Guibal, E. Enhancement of Corrosion Resistance of the Cooling Systems in Desalination Plants by Green Inhibitor. Sci. Rep. 2020, 10, 4812. https://www.nature.com/articles/s41598-020-61810-9
dc.relation.referencesen[24] Jin, J.; Wu, G.; He, K; Chen, J.; Xu, G.; Guan, Y. Effect of Ions on Carbon Steel Corrosion in Cooling Systems With Reclaimed Wastewater as the Alternative Makeup Water. Desalination Water Treat. 2013, 52, 7565–7574. https://doi.org/10.1080/19443994.2013.832636
dc.relation.referencesen[25] Pilipenko, A.; Pancheva, H.; Reznichenko, G.; Myrgorod, O.; Miroshnichenko, N.; Sincheskul, A. The Study of Inhibiting Structural Material Corrosion in Water Recycling Systems by Sodium Hydroxide. EasternEuropean J. Enterp. Technol. 2017, 2, 21–28. http://journals.uran.ua/eejet/article/view/95989
dc.relation.referencesen[26] Pancheva, H.; Reznichenko, G.; Miroshnichenko, N.; Sincheskul, A.; Pilipenko, A.; Loboichenko, V. Study Into the Influence of Concentration of Ions of Chlorine and Temperature of Circulating Water on the Corrosion Stability of Carbon Steel and Cast Iron. EasternEuropean J. Enterp. Technol. 2017, 4, 59–64. https://doi.org/10.15587/1729-4061.2017.108908
dc.relation.referencesen[27] Smyrnov, O. O.; Shepil, T. E.; Kozin, V. Yu.; Bezhenko, A. O.; Rutkovska, K. S.; Pylypenko, O. I. Corrosion Resistance of Structural Materials in Tungstate Solutions. Mater. Sci. 2020, 55, 664–671. https://doi.org/10.1007/s11003-020-00357-6
dc.relation.referencesen[28] Ahmed, S. A.; Makki H. F. Books of Abstracts, 2nd International Conference on Materials Engineering & Science (IConMEAS 2019), Baghdad, Iraq, September 25-29, 2019; Dahham, O. S.; Zulkepli, N. N. Ed., AIP Publishing, 2020.
dc.relation.referencesen[29] Shin, S.-B.; Song, S.-J.; Shin, Y.-W.; Kim, J.-G.; Park, B.-J.; Suh, Y.-C. Effect of Molybdenum on the Corrosion of Low Alloy Steels in Synthetic Seawater. Mater. Trans. 2016, 57, 2116–2121. https://doi:10.2320/matertrans.M2016222
dc.relation.urihttps://doi.org/10.2175/106143003X140836
dc.relation.urihttp://dx.doi.org/10.4236/msa.2018.91005
dc.relation.urihttps://doi.org/10.1002/slct.201800789
dc.relation.urihttps://doi.org/10.23939/chcht12.03.400
dc.relation.urihttps://doi.org/10.23939/chcht11.02.242
dc.relation.urihttps://doi.org/10.23939/chcht12.01.127
dc.relation.urihttps://www.astm.org/d1426-15r21e01.html
dc.relation.urihttps://www.astm.org/d1783-01r20.html
dc.relation.urihttps://www.astm.org/Standards/D516.htm
dc.relation.urihttps://www.astm.org/d4658-15.html
dc.relation.urihttps://www.astm.org/d0511-14r21e01.html
dc.relation.urihttps://www.astm.org/d1126-17.html
dc.relation.urihttps://www.astm.org/d4193-02.html
dc.relation.urihttps://www.astm.org/d2036-09r15.html
dc.relation.urihttps://www.astm.org/d0512-12.html
dc.relation.urihttps://www.astm.org/d3867-16r21e01.html
dc.relation.urihttps://www.astm.org/d1068-15.html
dc.relation.urihttps://www.astm.org/d5907-13.html
dc.relation.urihttps://www.nature.com/articles/s41598-020-61810-9
dc.relation.urihttps://doi.org/10.1080/19443994.2013.832636
dc.relation.urihttp://journals.uran.ua/eejet/article/view/95989
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.108908
dc.relation.urihttps://doi.org/10.1007/s11003-020-00357-6
dc.relation.urihttps://doi:10.2320/matertrans.M2016222
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Bannikov L., Miroshnichenko D., Pylypenko O., Pyshyev S., Fedevych O., Meshchanin V., 2022
dc.subjectкорозія
dc.subjectгасіння коксу
dc.subjectоксид заліза
dc.subjectвуглецева сталь
dc.subjectгравіметрія
dc.subjectполяризаційна залежність
dc.subjectCorrosion
dc.subjectCoke Quenching
dc.subjectIron Oxide
dc.subjectCarbon Steel
dc.subjectGravimetry
dc.subjectPolarization Dependence
dc.titleCoke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production
dc.title.alternativeЗалежність корозії обладнання установок гасіння коксу від якості біохімічно очищених вод коксохімічного виробництва
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n2_Bannikov_L-Coke_Quenching_Plenum_328-336.pdf
Size:
707.25 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n2_Bannikov_L-Coke_Quenching_Plenum_328-336__COVER.png
Size:
483.93 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: