Activation of Mo2B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide
dc.citation.epage | 23 | |
dc.citation.issue | 1 | |
dc.citation.spage | 18 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Komarenska, Zoryana | |
dc.contributor.author | Oliynyk, Lilianna | |
dc.contributor.author | Makota, Oksana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:40Z | |
dc.date.available | 2024-02-09T10:29:40Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Вивчено закономірності активування каталізатора Мо2В у реакції епоксидування α етилалілетилакрилату трет-бутилгідропероксидом. Показано, що процес активування каталізатора описується топохімічним рівнянням Аврамі-Єрофеєва і містить дві послідовні стадії – зародкоутворення і формування нової фази, активної в реакції епоксидування. Утворення епоксиду відбувається тільки в присутності активованої форми каталізатора. Обчислено ефективні й топохімічні константи процесу. | |
dc.description.abstract | The regularities of Mo2B catalyst activation in the epoxidation reaction of alfa-ethylallyl ethyl acrylate with tert-butyl hydroperoxide have been studied. It has been shown that the catalyst activation process is described by the Avrami-Erofeev topokinetic equation and includes two successive stages – the nucleation and formation of a new phase active in the epoxidation reaction. The formation of epoxy only occurs in the presence of the activated form of the catalyst. The effective and topochemical process constants have been calculated. | |
dc.format.extent | 18-23 | |
dc.format.pages | 6 | |
dc.identifier.citation | Komarenska Z. Activation of Mo2B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide / Zoryana Komarenska, Lilianna Oliynyk, Oksana Makota // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 18–23. | |
dc.identifier.citationen | Komarenska Z. Activation of Mo2B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide / Zoryana Komarenska, Lilianna Oliynyk, Oksana Makota // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 18–23. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.018 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61225 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part II: Application of Carboxy-Containing Peroxy Oligomer (CPO). Materials 2021, 14, 1285. https://doi.org/10.3390/ma14051285 | |
dc.relation.references | [2] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320 | |
dc.relation.references | [3] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Kusinska-Lipka, J. Epoxy Composites Filled with Natural Calcium Carbonate. 2. Epoxy Composites Obtained in the Presence of Monomethacrylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 343-352. https://doi.org/10.23939/chcht14.03.343 | |
dc.relation.references | [4] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Ivashkiv, O. Epoxy Composites Filled with Natural Calcium Carbonate. 1. Epoxy Composites Obtained in the Presence of Monoperoxy Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2019, 13, 360-364. https://doi.org/10.23939/chcht13.03.360 | |
dc.relation.references | [5] Demchuk, Yu.; Gunka, V.; Pyshyev, S.; Sidun, Iu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.references | [6] Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzinska, K.; Bratychak, M. Poly(butyleneterephthalate) Carbon Nanotubes Nanocomposites. Part II. Structure and properties. Polimery 2016, 61, 24-30. https://doi.org/10.14314/polimery.2016.024 | |
dc.relation.references | [7] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxycontaining Derivatives in Bitumen – Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.references | [8] Bratychak, M.; Bashta, B.; Astakhova, O.; Shyshchak, O.; Zubal, O. Synthesis Mechanism and Properties of Epoxy Resins Modified with Adipic Acid. Chem. Chem. Technol. 2019, 13, 52-58. https://doi.org/10.23939/chcht13.01.052 | |
dc.relation.references | [9] Bratychak, M.; Ripak, O.; Namiesnik, J.; Shyshchak, O.; Astakhova, O. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 2. Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2018, 12, 93-100. https://doi.org/10.23939/chcht12.01.093 | |
dc.relation.references | [10] Yamazaki, T.; Iida, M.; Kawasaki-Takasuka, T.; Agou, T. Regio- as well as Stereoselective Epoxide Ring Opening Reactions Using 3,3,3-Trifluoroprop-1 yne. J Fluor Chem. 2022, 257-258, 109971. https://doi.org/10.1016/j.jfluchem.2022.109971 | |
dc.relation.references | [11] Hanson, K.G.; Lin, C.-H.; Abu-Omar, M.M. Crosslinking of Renewable Polyesters with Epoxides to Form Bio-Based Epoxythermosets. Polymer 2022, 238, 124363. https://doi.org/10.1016/j.polymer.2021.124363 | |
dc.relation.references | [12] Park, H.-Y.; Yeo, J.-G.; Choi, J.; Choe, G.-B.; Kim, G.-N.; Koh, Y.-H.; Yang, S.C.; Jung, Y.-G. Ceramic Green and Fired Body with a Uniform Microstructure Prepared Using Living Characteristics of Hoto-Curable Cycloaliphatic Epoxide:Applicability of Cycloaliphatic Epoxide in Photo-Polymerization-Based 3Dprinting. J. Eur. Ceram. Soc. 2022, 42, 589-599. https://doi.org/10.1016/j.jeurceramsoc.2021.10.015 | |
dc.relation.references | [13] Sobani, M.; Soucek, M.D. Low Temperature Fracture Toughness of Polysulfide Modified BPA-Epoxide Primers. Prog. Org. Coat. 2022, 163, 106626. https://doi.org/10.1016/j.porgcoat.2021.106626 | |
dc.relation.references | [14] Xu, X.; Zhang, D.; Wang, K.; Jia, Y.; Yang, C.; Shen, B.; Lai, C.; Yong, Q. In-situ Lignin Modification with Polyethylene Glycol-Epoxides to Boost Enzymatic Hydrolysis of Combined-Pretreated Masson Pine. Bioresour. Technol. 2022, 344, 126315. https://doi.org/10.1016/j.biortech.2021.126315. | |
dc.relation.references | [15] Abu Saleh, SK; Hazra, A.; Hajra, S. Regioselective Hydroperoxylation of Aziridines and Epoxides Only with Aqueous Hydrogen Peroxide. Adv. Synth. Catal. 2022, 364, 391-404. https://doi.org/10.1002/adsc.202100858 | |
dc.relation.references | [16] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7 | |
dc.relation.references | [17] Andringa, R.L.H.; Jonker, M.; Minnaard, A.J. Synthesis of Phosphatidic Acids via Cobalt(Salen) Catalyzed Epoxide Ring-Opening with Dibenzyl Phosphate. Org. Biomol. Chem. 2022, 20, 2200-2204. https://doi.org/10.1039/D2OB00168C | |
dc.relation.references | [18] Calderini, E.; Wessel, J.; Süss, Ph.; Schrepfer, P.; Wardenga, R.; Schallmey, A. Selective Ring-Opening of Di-Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019, 11, 2099-2106. https://doi.org/10.1002/cctc.201900103 | |
dc.relation.references | [19] Sen, R.; Goeppert, A.; Surya Prakash, G.K. Integrated Carbon Capture and Utilization to Methanol with Epoxide-Functionalized Polyamines Under Homogeneous Catalytic Conditions. J. Organomet. Chem. 2022, 965-966, 122331. https://doi.org/10.1016/j.jorganchem.2022.122331 | |
dc.relation.references | [20] Li, Y.; Zhai, G.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Synergistic Effect between Boron Containing Metal-Organic Frameworks and Light Leading to Enhanced CO2 Cycloaddition with Epoxides. Chem. Eng. J. 2022, 437, 135363. https://doi.org/10.1016/j.cej.2022.135363 | |
dc.relation.references | [21] Faizan, M.; Srivastav, N.; Pawar, R. Azaboratrane as an Exceptionally Potential Organocatalyst for the Activation of CO2 and Coupling with Epoxide. Mol. Catal. 2022, 521, 112201. https://doi.org/10.1016/j.mcat.2022.112201 | |
dc.relation.references | [22] Ge, Y.; Cheng, G.; Ke, H. Triethanolamine Borate as Bifunctional Lewis Pair Catalyst for the Cycloaddition of CO2 with Epoxides. J. CO2 Util. 2022, 57, 101873. https://doi.org/10.1016/j.jcou.2021.101873 | |
dc.relation.references | [23] Yang, X.; Liu, Z.; Chen, P.; Liu, F.; Zhao, T. Effective Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Acetylcholine Bromide-Based Deep Eutectic Solvents. J. CO2 Util. 2022, 58, 101936. https://doi.org/10.1016/j.jcou.2022.101936 | |
dc.relation.references | [24] Wang, Y.; Liu, Y.; Su, Q.; Li, Y.; Deng, L.; Dong, L.; Fu, M.; Liu, S.; Cheng, W. Poly(Ionic Liquid) Materials Tailored by Carboxyl Groups for the Gas Phase-Conversion of Epoxide and CO2 into Cyclic Carbonates. J. CO2 Util. 2022, 60, 101976. https://doi.org/10.1016/j.jcou.2022.101976 | |
dc.relation.references | [25] D'Elia, V.; Kleij, A.W. Surface Science Approach to the Heterogeneous Cycloaddition of CO2 to Epoxides Catalyzed by Siteisolated Metal Complexes and Single Atoms: A Review. Green Chemical Engineering 2022, 3, 210-227. https://doi.org/10.1016/j.gce.2022.01.005 | |
dc.relation.references | [26] Ivashchuk, O. Catalytic Intensification of the Cyclohexane Oxidation. Chem. Chem. Technol. 2017, 11, 430-436. https://doi.org/10.23939/chcht11.04.430 | |
dc.relation.references | [27] Khalameida, S.; Samsonenko, M.; Sydorchuk, V.; Zakutevskyy, O.; Starchevskyy, V.; Lakhnik, A. Improving the Photocatalytic Properties of Tin Dioxide Doped with Titanium and Copper in the Degradation of Rhodamine B and Safranin T. React. Kinet. Mech. Catal. 2022, 135, 1665–1685. https://doi.org/10.1007/s11144-022-02206-w | |
dc.relation.references | [28] Starchevskyy, V.; Shparij, M.; Hrynchuk, Y.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloroethane. Chem. Chem. Technol. 2020, 14, 394-402. https://doi.org/10.23939/chcht14.03.394 | |
dc.relation.references | [29] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142 | |
dc.relation.references | [30] Shpariy, M.; Starchevskyy, V.; Znak, Z.; Mnykh, R.; Poliuzhyn, I. Extraction Of Iron-Containing Catalyst from Chlororganic Wastes Generated by Ethylene Chlorination. East.-Eur. J. Enterp. Technol. 2020, 2/10, 19-26. https://doi.org/10.15587/1729-4061.2020.201696 | |
dc.relation.references | [31] Khalameida, S.V.; Samsonenko, M.N.; Sydorchuk, V.V.; Starchevskyy, V.L.; Zakutevskyy, O.I.; Khyzhun, O.Yu. Photocatalytic Properties of Tin Dioxide Doped with Chromium(III), Silver and Zinc Compounds in the Oxidation of Organic Substrates by the Action of Visible Light. Theor. Exp. Chem. 2017, 53, 40-46. https://doi.org/10.1007%2Fs11237-017-9499-5 | |
dc.relation.references | [32] Trach, Yu. Kinetics of the Reaction Between Ethylallyl Ethylacrylate and tert-Butyl Hydroperoxide in the Presence of Molybdenum Catalysts. Pol. J. Chem. 2002, 76, 1323-1332. | |
dc.relation.references | [33] Trach, Yu.B.; Nikipanchuk, M.V.; Komarenskaya, Z.M. Reaction Kinetics of the Hydroperoxide Epoxidation of 1-Octene in the Presence of Mo2B. Kinet. Catal. 2004, 45, 504-507. https://link.springer.com/article/10.1023/B:KICA.0000038077.72162.54 | |
dc.relation.references | [34] Makota, O.; Wolf, J.; Trach, Yu.; Schulze, B. Epoxidation of Cyclooctene with Hydroperoxy Sultams Catalyzed by Molybdenum Boride. Appl. Catal. A–Gen. 2007, 323, 174-180. https://doi.org/10.1016/j.apcata.2007.02.013 | |
dc.relation.references | [35] Makota, O.; Eilfeld, A.; Trach, Yu.; Schulze, B.; Sieler, J. Novel Hydroperoxy Sultam, 2-(6-Bromo-pyrid-2-yl)-2,3,4,5,6,7-hexahydro-1,2- benzisothiazol-3-hydroperoxy 1,1-dioxide: Synthesis, Crystal Structure and Kinetics of Catalytic Interaction with Cyclooctene. New J. Chem. 2008, 32, 1020-1026. https://doi.org/10.1039/B717726G | |
dc.relation.references | [36] Markevich, V.S.; Ulyanova, V.N.; Loginova, V.A. Oil refining and petrochemistry 1979, 11, 47-48. | |
dc.relation.references | [37] Trach, Yu.B.; Nikipanchuk M.V.; Komarenskaya Z.M. Neftekhimiya 2003, 43, 386. | |
dc.relation.references | [38] Trach, Yu.B.; Chernii, M.O. Ukrainskii khimichnyi zhurnal 2003, 69, 112-116. | |
dc.relation.references | [39] Makota, O.; Trach, Y.; Saldan, I.; Evers, E.; Narayana Kalevaru, V.; Martin, A. Decomposition of tert-Butyl Hydroperoxide in the Presence of Selected Initiators and Catalysts. Chem. Chem. Technol. 2018, 12, 154-157. https://doi.org/10.23939/chcht12.02.154 | |
dc.relation.references | [40] Trach, Yu.B.; Makota, O.I. Effect of Olefin Concentration on the Degradation of tert-Butyl Hydroperoxide and the Epoxidation of Octene-1 in the Presence of Molybdenum Boride. Pet. Chem. 2005, 45, 327-329. | |
dc.relation.references | [41] Trach, Yu.B.; Makota, O.I. The Basic Features of the Hydroperoxide Epoxidation of Ethylallyl Ethacrylate in the Presence of Molybdenum Boride. Neftekhimiya 2004, 44, 52–57. | |
dc.relation.references | [42] Pyrig, I.Yu.; Nikipanchuk, M.V.; Chernyak, B.I. Kinet. Catal. 1983, XXIV, 600-605. | |
dc.relation.references | [43] Nikipanchuk, M.V.; Komarenskaya, Z.M.; Cherniy, M.O. On the Activation of Mo2B and MoB Catalysts in Oct-1-ene Epoxidation with tert-Butyl Hydroperoxide. Kinet. Catal. 2014, 55, 212-216. https://doi.org/10.1134/S0023158414020062 | |
dc.relation.references | [44] Nykypanchuk, M.V.; Chernii, M.O.; Komarenskaya, Z.М. The Effect of Reaction Conditions on MoB Activation in 1-Octene Epoxidation with tert_Butyl Hydroperoxide. Kinet. Catal. 2016, 57, 368-372. | |
dc.relation.references | [45] Nykypanchuk, M.V.; Komarenska, Z.М.; Zhukrovska, M.O. Effect of the Phase Composition of Molybdenum Boride on its Catalytic Properties in the Epoxidation of 1-Octene by tert-Butyl Hydroperoxide. Theor. Exp. Chem. 2019, 54, 407-413. | |
dc.relation.references | [46] Trach, Yu.B.; Komarenskaya, Z.M.; Nikipanchuk, M.V.; Pyrig, I.Yu.; Romanyuk, G.V. Hydroperoxide Epoxidation of Ethylallyl Ethylacrylate in the Presence of Mo2B. Theor. Exp. Chem. 2001, 37, 80-83. | |
dc.relation.references | [47] Komarenska, Z.M; Romaniuk, G.V.; Koval, Z.М.; Nikipanchuk, М.V. Vplyv produktiv reaktsii i reaktantiv na pochatkovu shvydkist reaktsii vzaemodii tret-butylhidroperoksydu z etylaliletylakrylatom u prysutnosti Mo2O. Voprosy Khimii i Khimicheskoi Tekhnologii 2010, 4, 25-28. | |
dc.relation.references | [48] Milas, N.A.; Surgenor, D.M. Studies in Organic Peroxides. VIII. t-Butyl Hydroperoxide and Di-t-butyl Peroxide. J. Am. Chem. Soc. 1946, 68, 205-208. https://doi.org/10.1021/ja01206a017 | |
dc.relation.references | [49] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.references | [50] Komarenskaya, Z.M.; Chernyak, B.I.; Mishchenko, G.M.; Trach, Yu.B. Chemiluminescence in the Oxidation of Cyclooctene by Molecular Oxygen. Theor. Exp. Chem. 1999, 35, 330–333. https://doi.org/10.1007/BF02522791 | |
dc.relation.references | [51] Arslanov, V.V.; Sheinina, L.S.; Bulgakova, R.A.; Belomestnykh, A.V. Enhanced Reactivity of the Epoxy Oligomers in Organized Monolayers at the Air-Water Interface. Langmuir 1995, 11, 3953-3958. https://doi.org/10.1021/la00010a054 | |
dc.relation.references | [52] Hardiman, K.M.; Cooper, C.G.; Adesina, A.A.; Lange, R. Post-mortem characterization of coke-induced deactivated alumina-supported Co–Ni catalysts. Chem. Eng. Sci. 2006, 61, 2565-2573. https://doi.org/10.1016/j.ces.2005.11.021 | |
dc.relation.references | [53] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M.A. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6, 845-852. https://doi.org/10.1039/C7TA08814K | |
dc.relation.referencesen | [1] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part II: Application of Carboxy-Containing Peroxy Oligomer (CPO). Materials 2021, 14, 1285. https://doi.org/10.3390/ma14051285 | |
dc.relation.referencesen | [2] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320 | |
dc.relation.referencesen | [3] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Kusinska-Lipka, J. Epoxy Composites Filled with Natural Calcium Carbonate. 2. Epoxy Composites Obtained in the Presence of Monomethacrylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 343-352. https://doi.org/10.23939/chcht14.03.343 | |
dc.relation.referencesen | [4] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Sienkiewicz, M.; Ivashkiv, O. Epoxy Composites Filled with Natural Calcium Carbonate. 1. Epoxy Composites Obtained in the Presence of Monoperoxy Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2019, 13, 360-364. https://doi.org/10.23939/chcht13.03.360 | |
dc.relation.referencesen | [5] Demchuk, Yu.; Gunka, V.; Pyshyev, S.; Sidun, Iu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.referencesen | [6] Piesowicz, E.; Irska, I.; Bryll, K.; Gawdzinska, K.; Bratychak, M. Poly(butyleneterephthalate) Carbon Nanotubes Nanocomposites. Part II. Structure and properties. Polimery 2016, 61, 24-30. https://doi.org/10.14314/polimery.2016.024 | |
dc.relation.referencesen | [7] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxycontaining Derivatives in Bitumen – Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.referencesen | [8] Bratychak, M.; Bashta, B.; Astakhova, O.; Shyshchak, O.; Zubal, O. Synthesis Mechanism and Properties of Epoxy Resins Modified with Adipic Acid. Chem. Chem. Technol. 2019, 13, 52-58. https://doi.org/10.23939/chcht13.01.052 | |
dc.relation.referencesen | [9] Bratychak, M.; Ripak, O.; Namiesnik, J.; Shyshchak, O.; Astakhova, O. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 2. Coumarone-Indene Resins with Epoxy Groups. Chem. Chem. Technol. 2018, 12, 93-100. https://doi.org/10.23939/chcht12.01.093 | |
dc.relation.referencesen | [10] Yamazaki, T.; Iida, M.; Kawasaki-Takasuka, T.; Agou, T. Regio- as well as Stereoselective Epoxide Ring Opening Reactions Using 3,3,3-Trifluoroprop-1 yne. J Fluor Chem. 2022, 257-258, 109971. https://doi.org/10.1016/j.jfluchem.2022.109971 | |
dc.relation.referencesen | [11] Hanson, K.G.; Lin, C.-H.; Abu-Omar, M.M. Crosslinking of Renewable Polyesters with Epoxides to Form Bio-Based Epoxythermosets. Polymer 2022, 238, 124363. https://doi.org/10.1016/j.polymer.2021.124363 | |
dc.relation.referencesen | [12] Park, H.-Y.; Yeo, J.-G.; Choi, J.; Choe, G.-B.; Kim, G.-N.; Koh, Y.-H.; Yang, S.C.; Jung, Y.-G. Ceramic Green and Fired Body with a Uniform Microstructure Prepared Using Living Characteristics of Hoto-Curable Cycloaliphatic Epoxide:Applicability of Cycloaliphatic Epoxide in Photo-Polymerization-Based 3Dprinting. J. Eur. Ceram. Soc. 2022, 42, 589-599. https://doi.org/10.1016/j.jeurceramsoc.2021.10.015 | |
dc.relation.referencesen | [13] Sobani, M.; Soucek, M.D. Low Temperature Fracture Toughness of Polysulfide Modified BPA-Epoxide Primers. Prog. Org. Coat. 2022, 163, 106626. https://doi.org/10.1016/j.porgcoat.2021.106626 | |
dc.relation.referencesen | [14] Xu, X.; Zhang, D.; Wang, K.; Jia, Y.; Yang, C.; Shen, B.; Lai, C.; Yong, Q. In-situ Lignin Modification with Polyethylene Glycol-Epoxides to Boost Enzymatic Hydrolysis of Combined-Pretreated Masson Pine. Bioresour. Technol. 2022, 344, 126315. https://doi.org/10.1016/j.biortech.2021.126315. | |
dc.relation.referencesen | [15] Abu Saleh, SK; Hazra, A.; Hajra, S. Regioselective Hydroperoxylation of Aziridines and Epoxides Only with Aqueous Hydrogen Peroxide. Adv. Synth. Catal. 2022, 364, 391-404. https://doi.org/10.1002/adsc.202100858 | |
dc.relation.referencesen | [16] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7 | |
dc.relation.referencesen | [17] Andringa, R.L.H.; Jonker, M.; Minnaard, A.J. Synthesis of Phosphatidic Acids via Cobalt(Salen) Catalyzed Epoxide Ring-Opening with Dibenzyl Phosphate. Org. Biomol. Chem. 2022, 20, 2200-2204. https://doi.org/10.1039/D2OB00168C | |
dc.relation.referencesen | [18] Calderini, E.; Wessel, J.; Süss, Ph.; Schrepfer, P.; Wardenga, R.; Schallmey, A. Selective Ring-Opening of Di-Substituted Epoxides Catalysed by Halohydrin Dehalogenases. ChemCatChem 2019, 11, 2099-2106. https://doi.org/10.1002/cctc.201900103 | |
dc.relation.referencesen | [19] Sen, R.; Goeppert, A.; Surya Prakash, G.K. Integrated Carbon Capture and Utilization to Methanol with Epoxide-Functionalized Polyamines Under Homogeneous Catalytic Conditions. J. Organomet. Chem. 2022, 965-966, 122331. https://doi.org/10.1016/j.jorganchem.2022.122331 | |
dc.relation.referencesen | [20] Li, Y.; Zhai, G.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Synergistic Effect between Boron Containing Metal-Organic Frameworks and Light Leading to Enhanced CO2 Cycloaddition with Epoxides. Chem. Eng. J. 2022, 437, 135363. https://doi.org/10.1016/j.cej.2022.135363 | |
dc.relation.referencesen | [21] Faizan, M.; Srivastav, N.; Pawar, R. Azaboratrane as an Exceptionally Potential Organocatalyst for the Activation of CO2 and Coupling with Epoxide. Mol. Catal. 2022, 521, 112201. https://doi.org/10.1016/j.mcat.2022.112201 | |
dc.relation.referencesen | [22] Ge, Y.; Cheng, G.; Ke, H. Triethanolamine Borate as Bifunctional Lewis Pair Catalyst for the Cycloaddition of CO2 with Epoxides. J. CO2 Util. 2022, 57, 101873. https://doi.org/10.1016/j.jcou.2021.101873 | |
dc.relation.referencesen | [23] Yang, X.; Liu, Z.; Chen, P.; Liu, F.; Zhao, T. Effective Synthesis of Cyclic Carbonates from CO2 and Epoxides Catalyzed by Acetylcholine Bromide-Based Deep Eutectic Solvents. J. CO2 Util. 2022, 58, 101936. https://doi.org/10.1016/j.jcou.2022.101936 | |
dc.relation.referencesen | [24] Wang, Y.; Liu, Y.; Su, Q.; Li, Y.; Deng, L.; Dong, L.; Fu, M.; Liu, S.; Cheng, W. Poly(Ionic Liquid) Materials Tailored by Carboxyl Groups for the Gas Phase-Conversion of Epoxide and CO2 into Cyclic Carbonates. J. CO2 Util. 2022, 60, 101976. https://doi.org/10.1016/j.jcou.2022.101976 | |
dc.relation.referencesen | [25] D'Elia, V.; Kleij, A.W. Surface Science Approach to the Heterogeneous Cycloaddition of CO2 to Epoxides Catalyzed by Siteisolated Metal Complexes and Single Atoms: A Review. Green Chemical Engineering 2022, 3, 210-227. https://doi.org/10.1016/j.gce.2022.01.005 | |
dc.relation.referencesen | [26] Ivashchuk, O. Catalytic Intensification of the Cyclohexane Oxidation. Chem. Chem. Technol. 2017, 11, 430-436. https://doi.org/10.23939/chcht11.04.430 | |
dc.relation.referencesen | [27] Khalameida, S.; Samsonenko, M.; Sydorchuk, V.; Zakutevskyy, O.; Starchevskyy, V.; Lakhnik, A. Improving the Photocatalytic Properties of Tin Dioxide Doped with Titanium and Copper in the Degradation of Rhodamine B and Safranin T. React. Kinet. Mech. Catal. 2022, 135, 1665–1685. https://doi.org/10.1007/s11144-022-02206-w | |
dc.relation.referencesen | [28] Starchevskyy, V.; Shparij, M.; Hrynchuk, Y.; Reutskyy, V.; Kurta, S.; Hatsevych, O. Modification of the Catalytic System or the Industrial Chlorine Processing of Ethylene in 1,2-Dichloroethane. Chem. Chem. Technol. 2020, 14, 394-402. https://doi.org/10.23939/chcht14.03.394 | |
dc.relation.referencesen | [29] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142 | |
dc.relation.referencesen | [30] Shpariy, M.; Starchevskyy, V.; Znak, Z.; Mnykh, R.; Poliuzhyn, I. Extraction Of Iron-Containing Catalyst from Chlororganic Wastes Generated by Ethylene Chlorination. East.-Eur. J. Enterp. Technol. 2020, 2/10, 19-26. https://doi.org/10.15587/1729-4061.2020.201696 | |
dc.relation.referencesen | [31] Khalameida, S.V.; Samsonenko, M.N.; Sydorchuk, V.V.; Starchevskyy, V.L.; Zakutevskyy, O.I.; Khyzhun, O.Yu. Photocatalytic Properties of Tin Dioxide Doped with Chromium(III), Silver and Zinc Compounds in the Oxidation of Organic Substrates by the Action of Visible Light. Theor. Exp. Chem. 2017, 53, 40-46. https://doi.org/10.1007%2Fs11237-017-9499-5 | |
dc.relation.referencesen | [32] Trach, Yu. Kinetics of the Reaction Between Ethylallyl Ethylacrylate and tert-Butyl Hydroperoxide in the Presence of Molybdenum Catalysts. Pol. J. Chem. 2002, 76, 1323-1332. | |
dc.relation.referencesen | [33] Trach, Yu.B.; Nikipanchuk, M.V.; Komarenskaya, Z.M. Reaction Kinetics of the Hydroperoxide Epoxidation of 1-Octene in the Presence of Mo2B. Kinet. Catal. 2004, 45, 504-507. https://link.springer.com/article/10.1023/B:KICA.0000038077.72162.54 | |
dc.relation.referencesen | [34] Makota, O.; Wolf, J.; Trach, Yu.; Schulze, B. Epoxidation of Cyclooctene with Hydroperoxy Sultams Catalyzed by Molybdenum Boride. Appl. Catal. A–Gen. 2007, 323, 174-180. https://doi.org/10.1016/j.apcata.2007.02.013 | |
dc.relation.referencesen | [35] Makota, O.; Eilfeld, A.; Trach, Yu.; Schulze, B.; Sieler, J. Novel Hydroperoxy Sultam, 2-(6-Bromo-pyrid-2-yl)-2,3,4,5,6,7-hexahydro-1,2- benzisothiazol-3-hydroperoxy 1,1-dioxide: Synthesis, Crystal Structure and Kinetics of Catalytic Interaction with Cyclooctene. New J. Chem. 2008, 32, 1020-1026. https://doi.org/10.1039/B717726G | |
dc.relation.referencesen | [36] Markevich, V.S.; Ulyanova, V.N.; Loginova, V.A. Oil refining and petrochemistry 1979, 11, 47-48. | |
dc.relation.referencesen | [37] Trach, Yu.B.; Nikipanchuk M.V.; Komarenskaya Z.M. Neftekhimiya 2003, 43, 386. | |
dc.relation.referencesen | [38] Trach, Yu.B.; Chernii, M.O. Ukrainskii khimichnyi zhurnal 2003, 69, 112-116. | |
dc.relation.referencesen | [39] Makota, O.; Trach, Y.; Saldan, I.; Evers, E.; Narayana Kalevaru, V.; Martin, A. Decomposition of tert-Butyl Hydroperoxide in the Presence of Selected Initiators and Catalysts. Chem. Chem. Technol. 2018, 12, 154-157. https://doi.org/10.23939/chcht12.02.154 | |
dc.relation.referencesen | [40] Trach, Yu.B.; Makota, O.I. Effect of Olefin Concentration on the Degradation of tert-Butyl Hydroperoxide and the Epoxidation of Octene-1 in the Presence of Molybdenum Boride. Pet. Chem. 2005, 45, 327-329. | |
dc.relation.referencesen | [41] Trach, Yu.B.; Makota, O.I. The Basic Features of the Hydroperoxide Epoxidation of Ethylallyl Ethacrylate in the Presence of Molybdenum Boride. Neftekhimiya 2004, 44, 52–57. | |
dc.relation.referencesen | [42] Pyrig, I.Yu.; Nikipanchuk, M.V.; Chernyak, B.I. Kinet. Catal. 1983, XXIV, 600-605. | |
dc.relation.referencesen | [43] Nikipanchuk, M.V.; Komarenskaya, Z.M.; Cherniy, M.O. On the Activation of Mo2B and MoB Catalysts in Oct-1-ene Epoxidation with tert-Butyl Hydroperoxide. Kinet. Catal. 2014, 55, 212-216. https://doi.org/10.1134/S0023158414020062 | |
dc.relation.referencesen | [44] Nykypanchuk, M.V.; Chernii, M.O.; Komarenskaya, Z.M. The Effect of Reaction Conditions on MoB Activation in 1-Octene Epoxidation with tert_Butyl Hydroperoxide. Kinet. Catal. 2016, 57, 368-372. | |
dc.relation.referencesen | [45] Nykypanchuk, M.V.; Komarenska, Z.M.; Zhukrovska, M.O. Effect of the Phase Composition of Molybdenum Boride on its Catalytic Properties in the Epoxidation of 1-Octene by tert-Butyl Hydroperoxide. Theor. Exp. Chem. 2019, 54, 407-413. | |
dc.relation.referencesen | [46] Trach, Yu.B.; Komarenskaya, Z.M.; Nikipanchuk, M.V.; Pyrig, I.Yu.; Romanyuk, G.V. Hydroperoxide Epoxidation of Ethylallyl Ethylacrylate in the Presence of Mo2B. Theor. Exp. Chem. 2001, 37, 80-83. | |
dc.relation.referencesen | [47] Komarenska, Z.M; Romaniuk, G.V.; Koval, Z.M.; Nikipanchuk, M.V. Vplyv produktiv reaktsii i reaktantiv na pochatkovu shvydkist reaktsii vzaemodii tret-butylhidroperoksydu z etylaliletylakrylatom u prysutnosti Mo2O. Voprosy Khimii i Khimicheskoi Tekhnologii 2010, 4, 25-28. | |
dc.relation.referencesen | [48] Milas, N.A.; Surgenor, D.M. Studies in Organic Peroxides. VIII. t-Butyl Hydroperoxide and Di-t-butyl Peroxide. J. Am. Chem. Soc. 1946, 68, 205-208. https://doi.org/10.1021/ja01206a017 | |
dc.relation.referencesen | [49] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.referencesen | [50] Komarenskaya, Z.M.; Chernyak, B.I.; Mishchenko, G.M.; Trach, Yu.B. Chemiluminescence in the Oxidation of Cyclooctene by Molecular Oxygen. Theor. Exp. Chem. 1999, 35, 330–333. https://doi.org/10.1007/BF02522791 | |
dc.relation.referencesen | [51] Arslanov, V.V.; Sheinina, L.S.; Bulgakova, R.A.; Belomestnykh, A.V. Enhanced Reactivity of the Epoxy Oligomers in Organized Monolayers at the Air-Water Interface. Langmuir 1995, 11, 3953-3958. https://doi.org/10.1021/la00010a054 | |
dc.relation.referencesen | [52] Hardiman, K.M.; Cooper, C.G.; Adesina, A.A.; Lange, R. Post-mortem characterization of coke-induced deactivated alumina-supported Co–Ni catalysts. Chem. Eng. Sci. 2006, 61, 2565-2573. https://doi.org/10.1016/j.ces.2005.11.021 | |
dc.relation.referencesen | [53] Zubyk, H.; Mykhailiv, O.; Papathanassiou, A.; Sulikowski, B.; Zambrzycka-Szelewa, E.; Bratychak, M.; Plonska-Brzezinska, M.A. A Phenol-Formaldehyde Polymeric Network to Generate Organic Aerogels: Synthesis, Physicochemical Characteristics and Potential Applications. J. Mater. Chem. A 2018, 6, 845-852. https://doi.org/10.1039/P.7TA08814K | |
dc.relation.uri | https://doi.org/10.3390/ma14051285 | |
dc.relation.uri | https://doi.org/10.3390/ma14051320 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.343 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.03.360 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.uri | https://doi.org/10.14314/polimery.2016.024 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.01.052 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.01.093 | |
dc.relation.uri | https://doi.org/10.1016/j.jfluchem.2022.109971 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2021.124363 | |
dc.relation.uri | https://doi.org/10.1016/j.jeurceramsoc.2021.10.015 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2021.106626 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2021.126315 | |
dc.relation.uri | https://doi.org/10.1002/adsc.202100858 | |
dc.relation.uri | https://doi.org/10.1007/s10019-002-0157-7 | |
dc.relation.uri | https://doi.org/10.1039/D2OB00168C | |
dc.relation.uri | https://doi.org/10.1002/cctc.201900103 | |
dc.relation.uri | https://doi.org/10.1016/j.jorganchem.2022.122331 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2022.135363 | |
dc.relation.uri | https://doi.org/10.1016/j.mcat.2022.112201 | |
dc.relation.uri | https://doi.org/10.1016/j.jcou.2021.101873 | |
dc.relation.uri | https://doi.org/10.1016/j.jcou.2022.101936 | |
dc.relation.uri | https://doi.org/10.1016/j.jcou.2022.101976 | |
dc.relation.uri | https://doi.org/10.1016/j.gce.2022.01.005 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.430 | |
dc.relation.uri | https://doi.org/10.1007/s11144-022-02206-w | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.394 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.01.142 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2020.201696 | |
dc.relation.uri | https://doi.org/10.1007%2Fs11237-017-9499-5 | |
dc.relation.uri | https://link.springer.com/article/10.1023/B:KICA.0000038077.72162.54 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2007.02.013 | |
dc.relation.uri | https://doi.org/10.1039/B717726G | |
dc.relation.uri | https://doi.org/10.23939/chcht12.02.154 | |
dc.relation.uri | https://doi.org/10.1134/S0023158414020062 | |
dc.relation.uri | https://doi.org/10.1021/ja01206a017 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.uri | https://doi.org/10.1007/BF02522791 | |
dc.relation.uri | https://doi.org/10.1021/la00010a054 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2005.11.021 | |
dc.relation.uri | https://doi.org/10.1039/C7TA08814K | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Komarenska Z., Oliynyk L., Makota O., 2023 | |
dc.subject | окиснення | |
dc.subject | кінетичні закономірності | |
dc.subject | каталізатор | |
dc.subject | олефін | |
dc.subject | oxidation | |
dc.subject | kinetic laws | |
dc.subject | catalyst olefin | |
dc.title | Activation of Mo2B Catalyst in the Epoxidation Reaction of α-Ethylallyl Ethyl Acrylate with tert-Butyl Hydroperoxide | |
dc.title.alternative | Активування каталізатора Мо2В в реакції епоксидування α-етилалілетилакрилату трет-бутилгідропероксидом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1