Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree

dc.citation.epage645
dc.citation.issue3
dc.citation.spage636
dc.contributor.affiliationUniversity of Batna
dc.contributor.affiliationUniversity of Biskra
dc.contributor.authorAdel, Khiouani
dc.contributor.authorEddine, Hachani Salah
dc.contributor.authorAbdelhek, Meklid
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:00Z
dc.date.available2024-02-12T08:52:00Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМетою цієї роботи є дослідження доцільності використання активованого вугілля, отриманого з дерева Juniperus thurifera, як адсорбента для вилучення фенолу з води за допомогою адсорбції. Досліджено вплив початкової концентрації фенолу, часу контакту, pH і маси адсорбента на адсорбційну здатність фенолу. Найбільша адсорбційна здатність досягається за рН=3,4, концентрації фенолу 50 мг/л, маси адсорбенту 100 мг і тривалості 24 год. Рівняння ізотерм Фрейндліха, Ленгмюра та Темкіна були використані для опису наших експериментальних даних. Встановлено, що модель Фрейндліха є найкращою моделлю з R2 = 0,9893. Термодинамічні результати показали, що адсорбція фенолу на активованому вугіллі була спонтанною й екзотермічною. Крім того, дослідження кінетики адсорбції показало, що процес адсорбції відповідає кінетичній моделі псевдопершого порядку.
dc.description.abstractThe present paper aims to study the feasibility of using an activated carbon prepared by Juniperus thurifera tree as an adsorbent to remove phenol from water by adsorption. The impact of initial phenol concentration, contact time, pH, and adsorbent mass on phenol adsorp-tion capacity was investigated. It was reported that the highest adsorption capacity is achieved at pH=3.4, phenol concentration of 50 mg/L, adsorbent mass of 100 mg, and time 24 h. Freundlich, Langmuir, and Temkin isotherm equations were used to best fit our experimental data. Hence, Freundlich model was found to be the best model with R2 = 0.9893. The thermodynamic results revealed that the adsorption of phenol onto the activated carbon was spontaneous and exothermic. Furthermore, the adsorption kinetic study indicated that the adsorption process follows the pseudo-first-order kinetic model.
dc.format.extent636-645
dc.format.pages10
dc.identifier.citationAdel K. Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree / Khiouani Adel, Hachani Salah Eddine, Meklid Abdelhek // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 636–645.
dc.identifier.citationenAdel K. Removal of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree / Khiouani Adel, Hachani Salah Eddine, Meklid Abdelhek // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 636–645.
dc.identifier.doidoi.org/10.23939/chcht17.03.636
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61269
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Damjanović, L.; Rakić, V.; Rac, V.; Stošić, D.; Auroux, A. The Investigation of Phenol Removal from Aqueous Solutions by Zeo-lites as Solid Adsorbents. J. Hazard. Mater. 2010, 184, 477-484. https://doi.org/10.1016/j.jhazmat.2010.08.059
dc.relation.references[2] Lin, S.H.; Juang, R.S. Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. J. Environ. Manage. 2009, 90, 1336-1349. https://doi.org/10.1016/j.jenvman.2008.09.003
dc.relation.references[3] Megharaj, M.; Pearson, H.W.; Venkateswarlu, K. Toxicity of Phenol and Three Nitrophenols Towards Growth and Metabolic Activities of Nostoc Linckia, Isolated from Soil. Arch. Environ. Contam. Toxicol. 1991, 21, 578-584. https://doi.org/10.1007/BF01183881
dc.relation.references[4] Yang, L.; Wang, Y.; Song, J.; Zhao, W.; He, X.; Chen, J.; Xiao, M. Promotion of Plant Growth and in situ Degradation of Phenol by an Engineered Pseudomonas fluorescens Strain in Different Contaminated Environments. Soil Biol. Biochem. 2011, 43, 915-922. https://doi.org/10.1016/j.soilbio.2011.01.001
dc.relation.references[5] World Health Organization, Guidelines for Drinking Water Quality, Health Criteria and Supporting Information; World Health Organization: Geneva, Switzerland, 1984; pp. 1-127.
dc.relation.references[6] Dutta, N.N.; Brothakur, S.; Baruah, R. A Novel Process for Recovery of Phenol from Alkaline Wastewater: Laboratory Study and Predesign Cost Estimate. Water Environ. Res. 1998, 70, 4-9. https://doi.org/10.2175/106143098X126838
dc.relation.references[7] Baup, S.; Jaffre, C.; Wolbert, D.; Laplanche, A. Adsorption of Pesticides onto Granular Activated Carbon: Determination of Sur-face Diffusivities Using Simple Batch Experiments. Adsorption 2000, 6, 219-228. https://doi.org/10.1023/A:1008937210953
dc.relation.references[8] Md Ahmaruzzaman. Adsorption of Phenolic Compounds on Low-Cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48-67. https://doi.org/10.1016/j.cis.2008.07.002
dc.relation.references[9] Kim, T.Y.; Jin, H.J.; Park, S.S.; Kim, S.J.; Cho, S.Y. Adsorption Equilibrium of Copper Ion and Phenol by Powdered Activated Carbon, Alginate Bead and Alginate-Activated Carbon Bead. J. Ind. Eng. Chem. 2008, 14, 714-719. https://doi.org/10.1016/j.jiec.2008.07.004
dc.relation.references[10] Fan, J.; Zhang, J.; Zhang, C.; Ren, L.; Shi, Q. Adsorption of 2,4,6-Trichlorophenol from Aqueous Solution onto Activated Carbon Derived from loosestrife. Desalination 2011, 267, 139-146. https://doi.org/10.1016/j.desal.2010.09.016
dc.relation.references[11] Haghighat, M.H.; Mohammad-Khah, A. Removal of Triha-lomethanes from Water using Modified Montmorillonite. Acta Chim. Slov. 2020, 67, 1072. http://dx.doi.org/10.17344/acsi.2020.5832
dc.relation.references[12] Ren, S.; Deng, J.; Meng, Z.; Wang, T.; Xie, T.; Xu, S. En-hanced Removal of Phenol by Novel Magnetic Bentonite Compo-sites Modified with Amphoteric-Cationic Surfactants. Powder Technol. 2019, 356, 284-294. https://doi.org/10.1016/j.powtec.2019.08.024
dc.relation.references[13] Ouallal, H.; Dehmani, Y.; Moussout, H.; Messaoudi, L.; Azrour, M. Kinetic, Isotherm and Mechanism Investigations of the Removal of Phenols from Water by Raw and Calcined Clays. He-liyon 2019, 5, e01616. https://doi.org/10.1016/j.heliyon.2019.e01616
dc.relation.references[14] Bouiahya, K.; Es-saidi, I.; El Bekkali, C.; Laghzizil, A.; Ro-bert, D.; Nunzi, J.M.; Saoiabi, A. Synthesis and Properties of Alumina-Hydroxyapatite Composites from Natural Phosphate for Phenol Removal from Water. Colloids Interface Sci. Commun. 2019, 31, 100188. https://doi.org/10.1016/j.colcom.2019.100188
dc.relation.references[15] Liao, Q.; Sun, J.; Gao, L. The Adsorption of Resorcinol from Water Using Multi-Walled Carbon Nanotubes. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 312, 160-165. https://doi.org/10.1016/j.colsurfa.2007.06.045
dc.relation.references[16] Chakraborty, A.; Deva, D.; Sharma, A.; Verma, N. Adsor-bents Based on Carbon Microfibers and Carbon Nanofibers for the Removal of Phenol and Lead from Water. J. Colloid Interface Sci. 2011, 359, 228-239. http://dx.doi.org/10.1016/j.jcis.2011.03.057
dc.relation.references[17] Sulaymon, A.H.; Ahmed, K.W. Competitive Adsorption of Furfural and Phenolic Compounds onto Activated Carbon in Fixed Bed Column. Environ. Sci. Technol. 2008, 42, 392-397. https://doi.org/10.1021/es070516j
dc.relation.references[18] Okasha, A.Y.; Ibrahim, H.G. Phenol Removal from Aqueous Systems by Sorption of Using Some Local Waste Materials. Elec. J. Env. Agricult. Food Chem. 2010, 9, 796-807.
dc.relation.references[19] Senthilkumaar, S.; Krishna, S.K.; Kalaamani, P.; Subbura-maan, C.V.; Ganapathi Subramaniam, N. Adsorption of Organo-phosphorous Pesticide from Aqueous Solution Using “Waste” Jute Fiber Carbon. Mod. Appl. Sci. 2010, 4, 67-83.
dc.relation.references[20] Ekop, A.S.; Eddy, N.O. Thermodynamic Study on the Ad-sorption of Pb2+ and Zn2+ From Aqueous Solution by Human Hair. J. Chem. 2010, 7, 849239. https://doi.org/10.1155/2010/849239
dc.relation.references[21] Mukherjee, S.; Kumar, S.A.; Misra, K.; Fan, M. Removal of Phenols from Water Environment by Activated Carbon, Bagasse Ash and Wood Charcoal. Chem. Eng. J. 2007, 129, 133-142. https://doi.org/10.1016/j.cej.2006.10.030
dc.relation.references[22] Gauquelin, T.; Bertaudière, V.; Cambecèdes, J.; Largier, G. Le Genevrier Thurifere (Juniperus Thurifera L.) Dans les Pyrenees: Etat de Conservation et Perspectives. Acta Bot. Barc. 2003, 49, 83-94.
dc.relation.references[23] Humelnicu, D.; Ignat, M.; Suchea, M. Evaluation of Adsorp-tion Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+ , Cu2+ and Zn2+. Acta Chim. Slov. 2015, 62, 947. http://dx.doi.org/10.17344/acsi.2015.1825
dc.relation.references[24] Maulina, S.; Mentari, V.A. IOP Conf. Series: Materials Science and Engineering, 2019; pp. 012023.
dc.relation.references[25] Mahalakshmy, R.; Idraneel, P.; Viswanatan, B. Surface Func-tionalities of Nitric Acid Treated Carbon – A Density Functional Theory Based Vibrational Analysis. Indian J. Chem. 2009, 48, 352-356. http://nopr.niscpr.res.in/handle/123456789/3371
dc.relation.references[26] El Nemr, A.; Abdelwahab, O.; El-Sikaily, A.; Khaled, A. Removal of Direct Blue-86 from Aqueous Solution by New Acti-vated Carbon Developed from Orange Peel. J. Hazard. Mater. 2009, 161, 102-110. https://doi.org/10.1016/j.jhazmat.2008.03.060
dc.relation.references[27] Yan, M.A.; Gao, N.; Chu, W.; Li, C. Removal of Phenol by Powdered Activated Carbon Adsorption. Front. Environ. Sci. Eng. 2013, 7, 158-165. https://doi.org/10.1007/s11783-012-0479-7
dc.relation.references[28] Lagergren, S. Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1-39.
dc.relation.references[29] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorp-tion Processes. Process. Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.references[30] Weber, W.J.; Morris, J.C. Advances in Water Pollution Re-search: Removal of Biologically Resistant Pollutant from Wastewa-ter by Adsorption. In Proceedings of 1st International Conference on Water Pollution Symposium; Pergamon: Oxford, 1962; pp. 231-266.
dc.relation.references[31] Hameed, B.H. Equilibrium and Kinetics Studies of 2,4,6-Trichlorophenol Adsorption onto Activated Clay. Colloid Surf. A: Physicochem. Eng. Aspects 2007, 307, 45-52. https://doi.org/10.1016/j.colsurfa.2007.05.002
dc.relation.references[32] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
dc.relation.references[33] Ullah, H.; Nafees, M.; Iqbal, F.; Awan, S.; Shah, A.; Waseem, A. Adsorption Kinetics of Malachite Green and Methylene Blue from Aqueous Solutions Using Surfactant-Modified Organoclays. Acta Chim. Slov. 2017, 64, 449.
dc.relation.references[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-471.
dc.relation.references[35] Senturk, I.; Alzein, M. Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermody-namic Studies. Acta Chim. Slov. 2020, 67, 55-69. https://doi.org/10.17344/acsi.2019.5195
dc.relation.references[36] Temkin, M.I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. 1940, 12, 327-356.
dc.relation.referencesen[1] Damjanović, L.; Rakić, V.; Rac, V.; Stošić, D.; Auroux, A. The Investigation of Phenol Removal from Aqueous Solutions by Zeo-lites as Solid Adsorbents. J. Hazard. Mater. 2010, 184, 477-484. https://doi.org/10.1016/j.jhazmat.2010.08.059
dc.relation.referencesen[2] Lin, S.H.; Juang, R.S. Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. J. Environ. Manage. 2009, 90, 1336-1349. https://doi.org/10.1016/j.jenvman.2008.09.003
dc.relation.referencesen[3] Megharaj, M.; Pearson, H.W.; Venkateswarlu, K. Toxicity of Phenol and Three Nitrophenols Towards Growth and Metabolic Activities of Nostoc Linckia, Isolated from Soil. Arch. Environ. Contam. Toxicol. 1991, 21, 578-584. https://doi.org/10.1007/BF01183881
dc.relation.referencesen[4] Yang, L.; Wang, Y.; Song, J.; Zhao, W.; He, X.; Chen, J.; Xiao, M. Promotion of Plant Growth and in situ Degradation of Phenol by an Engineered Pseudomonas fluorescens Strain in Different Contaminated Environments. Soil Biol. Biochem. 2011, 43, 915-922. https://doi.org/10.1016/j.soilbio.2011.01.001
dc.relation.referencesen[5] World Health Organization, Guidelines for Drinking Water Quality, Health Criteria and Supporting Information; World Health Organization: Geneva, Switzerland, 1984; pp. 1-127.
dc.relation.referencesen[6] Dutta, N.N.; Brothakur, S.; Baruah, R. A Novel Process for Recovery of Phenol from Alkaline Wastewater: Laboratory Study and Predesign Cost Estimate. Water Environ. Res. 1998, 70, 4-9. https://doi.org/10.2175/106143098X126838
dc.relation.referencesen[7] Baup, S.; Jaffre, C.; Wolbert, D.; Laplanche, A. Adsorption of Pesticides onto Granular Activated Carbon: Determination of Sur-face Diffusivities Using Simple Batch Experiments. Adsorption 2000, 6, 219-228. https://doi.org/10.1023/A:1008937210953
dc.relation.referencesen[8] Md Ahmaruzzaman. Adsorption of Phenolic Compounds on Low-Cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48-67. https://doi.org/10.1016/j.cis.2008.07.002
dc.relation.referencesen[9] Kim, T.Y.; Jin, H.J.; Park, S.S.; Kim, S.J.; Cho, S.Y. Adsorption Equilibrium of Copper Ion and Phenol by Powdered Activated Carbon, Alginate Bead and Alginate-Activated Carbon Bead. J. Ind. Eng. Chem. 2008, 14, 714-719. https://doi.org/10.1016/j.jiec.2008.07.004
dc.relation.referencesen[10] Fan, J.; Zhang, J.; Zhang, C.; Ren, L.; Shi, Q. Adsorption of 2,4,6-Trichlorophenol from Aqueous Solution onto Activated Carbon Derived from loosestrife. Desalination 2011, 267, 139-146. https://doi.org/10.1016/j.desal.2010.09.016
dc.relation.referencesen[11] Haghighat, M.H.; Mohammad-Khah, A. Removal of Triha-lomethanes from Water using Modified Montmorillonite. Acta Chim. Slov. 2020, 67, 1072. http://dx.doi.org/10.17344/acsi.2020.5832
dc.relation.referencesen[12] Ren, S.; Deng, J.; Meng, Z.; Wang, T.; Xie, T.; Xu, S. En-hanced Removal of Phenol by Novel Magnetic Bentonite Compo-sites Modified with Amphoteric-Cationic Surfactants. Powder Technol. 2019, 356, 284-294. https://doi.org/10.1016/j.powtec.2019.08.024
dc.relation.referencesen[13] Ouallal, H.; Dehmani, Y.; Moussout, H.; Messaoudi, L.; Azrour, M. Kinetic, Isotherm and Mechanism Investigations of the Removal of Phenols from Water by Raw and Calcined Clays. He-liyon 2019, 5, e01616. https://doi.org/10.1016/j.heliyon.2019.e01616
dc.relation.referencesen[14] Bouiahya, K.; Es-saidi, I.; El Bekkali, C.; Laghzizil, A.; Ro-bert, D.; Nunzi, J.M.; Saoiabi, A. Synthesis and Properties of Alumina-Hydroxyapatite Composites from Natural Phosphate for Phenol Removal from Water. Colloids Interface Sci. Commun. 2019, 31, 100188. https://doi.org/10.1016/j.colcom.2019.100188
dc.relation.referencesen[15] Liao, Q.; Sun, J.; Gao, L. The Adsorption of Resorcinol from Water Using Multi-Walled Carbon Nanotubes. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 312, 160-165. https://doi.org/10.1016/j.colsurfa.2007.06.045
dc.relation.referencesen[16] Chakraborty, A.; Deva, D.; Sharma, A.; Verma, N. Adsor-bents Based on Carbon Microfibers and Carbon Nanofibers for the Removal of Phenol and Lead from Water. J. Colloid Interface Sci. 2011, 359, 228-239. http://dx.doi.org/10.1016/j.jcis.2011.03.057
dc.relation.referencesen[17] Sulaymon, A.H.; Ahmed, K.W. Competitive Adsorption of Furfural and Phenolic Compounds onto Activated Carbon in Fixed Bed Column. Environ. Sci. Technol. 2008, 42, 392-397. https://doi.org/10.1021/es070516j
dc.relation.referencesen[18] Okasha, A.Y.; Ibrahim, H.G. Phenol Removal from Aqueous Systems by Sorption of Using Some Local Waste Materials. Elec. J. Env. Agricult. Food Chem. 2010, 9, 796-807.
dc.relation.referencesen[19] Senthilkumaar, S.; Krishna, S.K.; Kalaamani, P.; Subbura-maan, C.V.; Ganapathi Subramaniam, N. Adsorption of Organo-phosphorous Pesticide from Aqueous Solution Using "Waste" Jute Fiber Carbon. Mod. Appl. Sci. 2010, 4, 67-83.
dc.relation.referencesen[20] Ekop, A.S.; Eddy, N.O. Thermodynamic Study on the Ad-sorption of Pb2+ and Zn2+ From Aqueous Solution by Human Hair. J. Chem. 2010, 7, 849239. https://doi.org/10.1155/2010/849239
dc.relation.referencesen[21] Mukherjee, S.; Kumar, S.A.; Misra, K.; Fan, M. Removal of Phenols from Water Environment by Activated Carbon, Bagasse Ash and Wood Charcoal. Chem. Eng. J. 2007, 129, 133-142. https://doi.org/10.1016/j.cej.2006.10.030
dc.relation.referencesen[22] Gauquelin, T.; Bertaudière, V.; Cambecèdes, J.; Largier, G. Le Genevrier Thurifere (Juniperus Thurifera L.) Dans les Pyrenees: Etat de Conservation et Perspectives. Acta Bot. Barc. 2003, 49, 83-94.
dc.relation.referencesen[23] Humelnicu, D.; Ignat, M.; Suchea, M. Evaluation of Adsorp-tion Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+ , Cu2+ and Zn2+. Acta Chim. Slov. 2015, 62, 947. http://dx.doi.org/10.17344/acsi.2015.1825
dc.relation.referencesen[24] Maulina, S.; Mentari, V.A. IOP Conf. Series: Materials Science and Engineering, 2019; pp. 012023.
dc.relation.referencesen[25] Mahalakshmy, R.; Idraneel, P.; Viswanatan, B. Surface Func-tionalities of Nitric Acid Treated Carbon – A Density Functional Theory Based Vibrational Analysis. Indian J. Chem. 2009, 48, 352-356. http://nopr.niscpr.res.in/handle/123456789/3371
dc.relation.referencesen[26] El Nemr, A.; Abdelwahab, O.; El-Sikaily, A.; Khaled, A. Removal of Direct Blue-86 from Aqueous Solution by New Acti-vated Carbon Developed from Orange Peel. J. Hazard. Mater. 2009, 161, 102-110. https://doi.org/10.1016/j.jhazmat.2008.03.060
dc.relation.referencesen[27] Yan, M.A.; Gao, N.; Chu, W.; Li, C. Removal of Phenol by Powdered Activated Carbon Adsorption. Front. Environ. Sci. Eng. 2013, 7, 158-165. https://doi.org/10.1007/s11783-012-0479-7
dc.relation.referencesen[28] Lagergren, S. Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1-39.
dc.relation.referencesen[29] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorp-tion Processes. Process. Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.referencesen[30] Weber, W.J.; Morris, J.C. Advances in Water Pollution Re-search: Removal of Biologically Resistant Pollutant from Wastewa-ter by Adsorption. In Proceedings of 1st International Conference on Water Pollution Symposium; Pergamon: Oxford, 1962; pp. 231-266.
dc.relation.referencesen[31] Hameed, B.H. Equilibrium and Kinetics Studies of 2,4,6-Trichlorophenol Adsorption onto Activated Clay. Colloid Surf. A: Physicochem. Eng. Aspects 2007, 307, 45-52. https://doi.org/10.1016/j.colsurfa.2007.05.002
dc.relation.referencesen[32] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
dc.relation.referencesen[33] Ullah, H.; Nafees, M.; Iqbal, F.; Awan, S.; Shah, A.; Waseem, A. Adsorption Kinetics of Malachite Green and Methylene Blue from Aqueous Solutions Using Surfactant-Modified Organoclays. Acta Chim. Slov. 2017, 64, 449.
dc.relation.referencesen[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-471.
dc.relation.referencesen[35] Senturk, I.; Alzein, M. Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermody-namic Studies. Acta Chim. Slov. 2020, 67, 55-69. https://doi.org/10.17344/acsi.2019.5195
dc.relation.referencesen[36] Temkin, M.I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochim. 1940, 12, 327-356.
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.08.059
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2008.09.003
dc.relation.urihttps://doi.org/10.1007/BF01183881
dc.relation.urihttps://doi.org/10.1016/j.soilbio.2011.01.001
dc.relation.urihttps://doi.org/10.2175/106143098X126838
dc.relation.urihttps://doi.org/10.1023/A:1008937210953
dc.relation.urihttps://doi.org/10.1016/j.cis.2008.07.002
dc.relation.urihttps://doi.org/10.1016/j.jiec.2008.07.004
dc.relation.urihttps://doi.org/10.1016/j.desal.2010.09.016
dc.relation.urihttp://dx.doi.org/10.17344/acsi.2020.5832
dc.relation.urihttps://doi.org/10.1016/j.powtec.2019.08.024
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2019.e01616
dc.relation.urihttps://doi.org/10.1016/j.colcom.2019.100188
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2007.06.045
dc.relation.urihttp://dx.doi.org/10.1016/j.jcis.2011.03.057
dc.relation.urihttps://doi.org/10.1021/es070516j
dc.relation.urihttps://doi.org/10.1155/2010/849239
dc.relation.urihttps://doi.org/10.1016/j.cej.2006.10.030
dc.relation.urihttp://dx.doi.org/10.17344/acsi.2015.1825
dc.relation.urihttp://nopr.niscpr.res.in/handle/123456789/3371
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.03.060
dc.relation.urihttps://doi.org/10.1007/s11783-012-0479-7
dc.relation.urihttps://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2007.05.002
dc.relation.urihttps://doi.org/10.1021/ja02242a004
dc.relation.urihttps://doi.org/10.17344/acsi.2019.5195
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Adel K., Eddine H. S., Abdelhek M., 2023
dc.subjectактивоване вугілля
dc.subjectдерева Juniperus thurifera
dc.subjectфенол
dc.subjectадсорбція
dc.subjectactivated carbon
dc.subjectJuniperus thurifera tree
dc.subjectphenol
dc.subjectadsorption
dc.titleRemoval of Phenol from Water Using an Activated Carbon Prepared from Juniperus Thurifera Tree
dc.title.alternativeВилучення фенолу з води за допомогою активованого вугілля, отриманого з дерева Juniperus Turifera.
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n3_Adel_K-Removal_of_Phenol_from_Water_636-645.pdf
Size:
754.51 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n3_Adel_K-Removal_of_Phenol_from_Water_636-645__COVER.png
Size:
529.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: