Моделі і методи прогнозування рекомендацій для колаборативних рекомендаційних систем

dc.citation.epage75
dc.citation.issue901
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі
dc.citation.spage68
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЛобур, М. В.
dc.contributor.authorШварц, М. Є.
dc.contributor.authorСтех, Ю. В.
dc.contributor.authorLobur, Mykhaylo
dc.contributor.authorShvarts, Mykhaylo
dc.contributor.authorStekh, Yuriy
dc.coverage.placenameЛьвів
dc.date.accessioned2019-02-27T11:07:13Z
dc.date.available2019-02-27T11:07:13Z
dc.date.created2018-02 26
dc.date.issued2018-02 26
dc.description.abstractУ цій статті проаналізовано сучасний стан моделей і методів побудови рекомендаційних систем. Виділено основні класи задач, які вирішують рекомендаційні системи. Показано особливості застосування методу колаборативної (спільної) фільтрації. Розроблено метод мішаної категоріально-чисельної кластеризації для пошуку груп користувачів, який використовує числові рейтингові і демографічні характеристики користувачів, розроблено гібридний метод пошуку груп користувачів, який використовує коефіцієнт розрідженості матриці користувач-предмет.
dc.description.abstractThis article analyzes the current state of models and methods for constructing recommender systems. The main classes of tasks that solve recommender systems are highlighted. The features of the application of the method of collaborative (joint) filtering are shown. A mixed numerical-categorical clustering method for searching for user groups that uses numerical rating and demographic characteristics of users has been developed, a hybrid method for searching for user groups has been developed that uses the coefficient of usersubject matrix sparseness
dc.format.extent68-75
dc.format.pages8
dc.identifier.citationЛобур М. В. Моделі і методи прогнозування рекомендацій для колаборативних рекомендаційних систем / М. В. Лобур, М. Є. Шварц, Ю. В. Стех // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2018. — № 901. — С. 68–75. — (Інформаційні системи, мережі та технології).
dc.identifier.citationenLobur M. Models and methods for forecasting recommendations for collaborative recommender systems / Mykhaylo Lobur, Mykhaylo Shvarts, Yuriy Stekh // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Informatsiini systemy ta merezhi. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — No 901. — P. 68–75. — (Information systems, networks and technology).
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44549
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 901, 2018
dc.relation.references1. J. A. Konstan Recommender systems: from algorithms to user experience / J. A. Konstan J. A. // User Modeling and User-Adapted Interaction. – 2012 – Vol. 22. – No. 1–2. – P. 101–123.
dc.relation.references2. Schafer J. B. E-Commerce Recommendation Applications / J. B. Schafer J. B., J. A. Konstan, J. Riedl // Data Mining and Knowledge Discovery. – 2001. – Vol. 5 – No. 1–2. – P. 115–123.
dc.relation.references3. Sarwar B. Analysis of recommendation algorithms for e-commerce / B. Sarwar, G. Karypis, J. Konstan, J. Riedl // In Proceedings of the 2nd ACM conference on Electronic. – Minnesota, USA – October 17–20, 2000. – P. 158–167.
dc.relation.references4. Pu P, Chen L, Hu R. A user-centric evaluation framework for recommender systems / P. Pu, L. Chen, R. Hu // In: Proceedings of the fifth ACM conference on Recommender Systems (RecSys’11), ACM. – New York, NY, USA. – 2011. – P. 57–164. 5. я к 2.
dc.relation.references5. Candillier L. Comparing Stateof-the-Art Collaborative Filtering Systems / L. Candillier, F. Meyer, M. Boullé // In Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, LNCS. – Vol. 4571. – 2007. – P. 548–562.
dc.relation.references6. Su X., Khoshgoftaar T. M. A survey of collaborative filtering techniques / X. Su, T. M. Khoshgoftaar // Adv. Artif. Intell. – Vol. 4571. – 2007 – P. 1–19.
dc.relation.references7. Isinkaye F. O. Recommendation systems: Principles, methods and evaluation / F. O. Isinkaye, Y. O. Folajimi B. A. Ojokoh // Egyptian Informatics Journal. – Vol. 16. – 2015. – P.261–273.
dc.relation.references8. Das D. A Survey on Recommendation System / D. Das, L. Sahoo, S. Datta // International Journal of Computer Applications. – Vol. 160. – No. 7. – 2017. – P.6–10.
dc.relation.references9. Bobadilla J. Recommender systems survey / J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez // Knowledge-Based Systems. – Vol. 46. – 2013. – P. 109–132.
dc.relation.references10. Resnick P., Varian H. R. Recommender systems / P. Resnick, H. R. Varian // Communications of the ACM. – Vol. 40. – 1997. – P. 56–58.
dc.relation.references11. G. Adomavicius, A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions / Adomavicius G., Tuzhilin A. // IEEE Transactions on Knowledge and Data Engineerin. – Vol. 17. – 2005. – P. 734–749.
dc.relation.references12. Jameson A., Smyth B. Recommendation to groups / Jameson A., Smyth B. // In The adaptive web: methods and strategies of web personalization. – 2007. – P. 596–627.
dc.relation.references13. Konstan J. GroupLens: applying collaborative filtering to usenet news / J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, J. Riedl // Commun. ACM – Vol. 40. – No. 3. – 1997. – P.77–87.
dc.relation.references14. J. Masthoff Group modeling: selecting a sequence of television items to suit a group of viewers / J. Masthoff // User Model. User-Adap. Inter. – Vol. 14. – No. 1. – 2004 – P. 37–85.
dc.relation.references15. L. Boratto, S. Carta, “State-of-the-art in group recommendation and new approaches for automatic identification of groups” / L. Boratto, S. Carta // In Information Retrieval and Mining in Distributed Environments. – Vol. 324. – Springer Berlin Heidelberg – 2011. – P. 1–20.
dc.relation.references16. Guha S. Rock: A robust clustering algorithm for categorical attributes / S. Guha, R. Rastogi, K. Shim // Information Systems. – Vol. 25. – No. 5. – 2000. – P. 345–366.
dc.relation.referencesen1. J. A. Konstan Recommender systems: from algorithms to user experience, J. A. Konstan J. A., User Modeling and User-Adapted Interaction, 2012 – Vol. 22, No. 1–2, P. 101–123.
dc.relation.referencesen2. Schafer J. B. E-Commerce Recommendation Applications, J. B. Schafer J. B., J. A. Konstan, J. Riedl, Data Mining and Knowledge Discovery, 2001, Vol. 5 – No. 1–2, P. 115–123.
dc.relation.referencesen3. Sarwar B. Analysis of recommendation algorithms for e-commerce, B. Sarwar, G. Karypis, J. Konstan, J. Riedl, In Proceedings of the 2nd ACM conference on Electronic, Minnesota, USA – October 17–20, 2000, P. 158–167.
dc.relation.referencesen4. Pu P, Chen L, Hu R. A user-centric evaluation framework for recommender systems, P. Pu, L. Chen, R. Hu, In: Proceedings of the fifth ACM conference on Recommender Systems (RecSys’11), ACM, New York, NY, USA, 2011, P. 57–164. 5. ia k 2.
dc.relation.referencesen5. Candillier L. Comparing Stateof-the-Art Collaborative Filtering Systems, L. Candillier, F. Meyer, M. Boullé, In Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, LNCS, Vol. 4571, 2007, P. 548–562.
dc.relation.referencesen6. Su X., Khoshgoftaar T. M. A survey of collaborative filtering techniques, X. Su, T. M. Khoshgoftaar, Adv. Artif. Intell, Vol. 4571, 2007 – P. 1–19.
dc.relation.referencesen7. Isinkaye F. O. Recommendation systems: Principles, methods and evaluation, F. O. Isinkaye, Y. O. Folajimi B. A. Ojokoh, Egyptian Informatics Journal, Vol. 16, 2015, P.261–273.
dc.relation.referencesen8. Das D. A Survey on Recommendation System, D. Das, L. Sahoo, S. Datta, International Journal of Computer Applications, Vol. 160, No. 7, 2017, P.6–10.
dc.relation.referencesen9. Bobadilla J. Recommender systems survey, J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, Knowledge-Based Systems, Vol. 46, 2013, P. 109–132.
dc.relation.referencesen10. Resnick P., Varian H. R. Recommender systems, P. Resnick, H. R. Varian, Communications of the ACM, Vol. 40, 1997, P. 56–58.
dc.relation.referencesen11. G. Adomavicius, A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions, Adomavicius G., Tuzhilin A., IEEE Transactions on Knowledge and Data Engineerin, Vol. 17, 2005, P. 734–749.
dc.relation.referencesen12. Jameson A., Smyth B. Recommendation to groups, Jameson A., Smyth B., In The adaptive web: methods and strategies of web personalization, 2007, P. 596–627.
dc.relation.referencesen13. Konstan J. GroupLens: applying collaborative filtering to usenet news, J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, J. Riedl, Commun. ACM – Vol. 40, No. 3, 1997, P.77–87.
dc.relation.referencesen14. J. Masthoff Group modeling: selecting a sequence of television items to suit a group of viewers, J. Masthoff, User Model. User-Adap. Inter, Vol. 14, No. 1, 2004 – P. 37–85.
dc.relation.referencesen15. L. Boratto, S. Carta, "State-of-the-art in group recommendation and new approaches for automatic identification of groups", L. Boratto, S. Carta, In Information Retrieval and Mining in Distributed Environments, Vol. 324, Springer Berlin Heidelberg – 2011, P. 1–20.
dc.relation.referencesen16. Guha S. Rock: A robust clustering algorithm for categorical attributes, S. Guha, R. Rastogi, K. Shim, Information Systems, Vol. 25, No. 5, 2000, P. 345–366.
dc.rights.holder© Національний університет „Львівська політехніка“, 2018
dc.rights.holder© Лобур М. В., Шварц М. Є., Стех Ю. В., 2018
dc.subjectколаборативна фільтрація
dc.subjectпрогнозування рекомендацій
dc.subjectкатегоріальна кластеризація
dc.subjectгрупові рекомендації
dc.subjectcollaborative filtration
dc.subjectforecasting of recommendations
dc.subjectcategorical clustering
dc.subjectgroup recommendations
dc.subject.udc004.9
dc.titleМоделі і методи прогнозування рекомендацій для колаборативних рекомендаційних систем
dc.title.alternativeModels and methods for forecasting recommendations for collaborative recommender systems
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018n901_Lobur_M-Models_and_methods_for_forecasting_68-75.pdf
Size:
736.37 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018n901_Lobur_M-Models_and_methods_for_forecasting_68-75__COVER.png
Size:
453.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.02 KB
Format:
Plain Text
Description: