Modeling of quasisymmetric ring elements of the church using data of ground laser scanning

dc.citation.epage134
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage129
dc.citation.volume95
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorМаліцький, Андрій
dc.contributor.authorMalitskyi, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-07T08:41:41Z
dc.date.available2023-06-07T08:41:41Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractМета цієї роботи – розробити алгоритм математичного тривимірного моделювання типового даху української церкви за даними наземного лазерного сканування та знайти шляхи оптимізації моделі в залежно від набору вхідних даних. Методика. Точність моделювання залежить від даних лазерного сканування. Кількість отриманих точок та їхні точність будуть впливати на кінцевий результат – 3D-модель даху. Враховуючи типову конструкцію даху церкви у формі конусу, можна застосувати стандартний математичний алгоритм моделювання частини споруд типової церкви. Результати. Запропонований алгоритм розроблений у програмному середовищі MathCad. Для розроблення математичного алгоритму використано матеріали 3D-сканування української типової церкви. Алгоритм аналізує розташування точок сканування даху церкви та виконує його усереднення. В результаті роботи алгоритму відбраковано помилкові виміри та отримано модель частини даху, яка утворює оптимальну геометрію споруди. Наукова новизна та практична значущість. Запропонований математичний алгоритм дозволяє автоматизувати деякі процеси моделювання типової української церкви для проектних рішень. Такий спосіб моделювання може застосовуватися для подібних конструкцій інших будівель.
dc.description.abstractThe aim of this work is to develop an algorithm for mathematical three-dimensional modeling of a typical roof of a Ukrainian church based on ground-based laser scanning and to find ways to optimize the model depending on the input data set. Method. The accuracy of the simulation depends on the laser scan data. The number of points obtained and their accuracy will affect the final result – 3D model of the roof. Given the typical design of the church roof in the shape of a cone, you can apply the standard mathematical algorithm for modeling part of the buildings of a typical church. Result The proposed algorithm was developed in the MathCad software environment. 3D scanning materials of the Ukrainian typical church were used to develop the mathematical algorithm. The algorithm analyzes the location of the scanning points of the church roof and performs its averaging. As a result of the algorithm, erroneous measurements were rejected and a model of the part of the roof was obtained, which forms the optimal geometry of the structure. Scientific novelty and practical significance. The proposed mathematical algorithm allows to automate some modeling processes of a typical Ukrainian church for design decisions. This method of modeling can be used for similar structures of other buildings.
dc.format.extent129-134
dc.format.pages6
dc.identifier.citationMalitskyi A. Modeling of quasisymmetric ring elements of the church using data of ground laser scanning / Andrii Malitskyi // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 129–134.
dc.identifier.citationenMalitskyi A. Modeling of quasisymmetric ring elements of the church using data of ground laser scanning / Andrii Malitskyi // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 129–134.
dc.identifier.doidoi.org/10.23939/istcgcap2022.95.129
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59184
dc.language.isoen
dc.publisherВидавництво Львівської політехніки,
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання (95), 2022
dc.relation.ispartofGeodesy, Cartography and Aerial photography (95), 2022
dc.relation.referencesBudroni, A., & Boehm, J. (2010). Automated 3D
dc.relation.referencesreconstruction of interiors from point clouds.
dc.relation.referencesInternational Journal of Architectural
dc.relation.referencesComputing, 8(1), 55–73.
dc.relation.referenceshttps://journals.sagepub.com/doi/abs/10.1260/1478-0771.8.1.55.
dc.relation.referencesKatushkov, V. O., Schultz, R. V., & Sossa, B. R. (2012).
dc.relation.referencesThe relationship between the expected accuracy of
dc.relation.referencesground-based laser scanning and the requirements
dc.relation.referencesfor the accuracy of engineering and geodetic works.
dc.relation.referencesUrban Planning and Spatial Planning, (44), 238–248.
dc.relation.references(in Ukrainian).
dc.relation.referencesKrisko, O. A. (2014). Data processing obtained by NLS
dc.relation.referencesto create a geometric model of the actual surface of
dc.relation.referencesthin-walled shells of technical forms. Modern
dc.relation.referencesproblems of modeling, (2), 51–56. (in Ukrainian).
dc.relation.referencesMalitskyi A. Yu. (2017). Control of deviations of the
dc.relation.referencesphysical surface from the base one based on ground
dc.relation.referenceslaser scanning data. International scientific and
dc.relation.referencestechnical conference of young scientists “Geoterrace2017”, December 14–16, 2017, Lviv. (in Ukrainian).
dc.relation.referencesOchmann, S., Vock, R., & Klein, R. (2019). Automatic reconstruction of fully volumetric 3D building
dc.relation.referencesmodels from oriented point clouds. ISPRS journal of
dc.relation.referencesphotogrammetry and remote sensing, 151, 251–262.
dc.relation.referenceshttps://doi.org/10.1016/j.isprsjprs.2019.03.017.
dc.relation.referencesPang, G., Qiu, R., Huang, J., You, S., & Neumann, U.
dc.relation.references(2015, May). Automatic 3d industrial point cloud
dc.relation.referencesmodeling and recognition. In 2015 14th IAPR
dc.relation.referencesinternational conference on machine vision
dc.relation.referencesapplications (MVA) (pp. 22–25). IEEE.
dc.relation.referenceshttps://doi.org/10.1109/MVA.2015.7153124.
dc.relation.referencesPatil, A. K., Holi, P., Lee, S. K., & Chai, Y. H. (2017).
dc.relation.referencesAn adaptive approach for the reconstruction and
dc.relation.referencesmodeling of as-built 3D pipelines from point clouds.
dc.relation.referencesAutomation in construction, 75, 65–78.
dc.relation.referenceshttps://doi.org/10.1016/j.autcon.2016.12.002.
dc.relation.referencesPepe, M., Costantino, D., & Restuccia Garofalo, A.
dc.relation.references(2020). An efficient pipeline to obtain 3D model for
dc.relation.referencesHBIM and structural analysis purposes from 3D
dc.relation.referencespoint clouds. Applied Sciences, 10(4), 1235.
dc.relation.referenceshttps://doi.org/10.3390/app10041235.
dc.relation.referencesPoux, F., Neuville, R., Nys, G. A., & Billen, R. (2018). 3D point cloud semantic modelling: Integrated
dc.relation.referencesframework for indoor spaces and furniture.
dc.relation.referencesRemote Sensing, 10(9), 1412.
dc.relation.referenceshttps://doi.org/10.3390/rs10091412.
dc.relation.referencesRocha, G., Mateus, L., Fernández, J., & Ferreira, V.
dc.relation.references(2020). A scan-to-BIM methodology applied to
dc.relation.referencesheritage buildings. Heritage, 3(1), 47–67.
dc.relation.referenceshttps://doi.org/10.3390/heritage3010004.
dc.relation.referencesSchultz, R. W., Belous, B., & Goncheryuk, O. M.
dc.relation.references(2016). Monitoring of architectural monuments with
dc.relation.referencesthe help of ground laser scanning data. Contemporary
dc.relation.referencesproblems of architecture and urban planning, (46), 202–207. (in Ukrainian).
dc.relation.referencesScopigno, R., Callieri, M., Cignoni, P., Corsini, M.,
dc.relation.referencesDellepiane, M., Ponchio, F., & Ranzuglia, G.
dc.relation.references(2011). 3D models for cultural heritage: Beyond
dc.relation.referencesplain visualization. Computer, 44(7), 48–55.
dc.relation.referenceshttps://www.academia.edu/3064863/3D_Models_for_Cultural_Heritage_Beyond_Plain_Visualization?from=cover_page.
dc.relation.referencesTalapov, V. (2015). On some principles and
dc.relation.referencescharacteristics of information modeling of
dc.relation.referencesarchitectural monuments. Architecture and Modern
dc.relation.referencesInformation Technologies, 2 (31). (in Russian).
dc.relation.referenceshttps://cyberleninka.ru/article/n/o-nekotoryhzakonomernostyah-i-osobennostyah-informatsionnogo-modelirovaniya-pamyatnikov-arhitektury.
dc.relation.referencesVus A. Ya., & Maevsky, V. O. (2015). Mathematical
dc.relation.referencesSimulation of Log Cross Sections Based on the
dc.relation.referencesResults of their Scanning. Scientific Bulletin
dc.relation.referencesof NLTU of Ukraine, 25 (4), 337–345.
dc.relation.referenceshttps://cyberleninka.ru/article/n/matematichnemodelyuvannya-poperechnih-peretiniv-kolodi-zarezultatami-yiyi-skanuvannya.
dc.relation.referencesenBudroni, A., & Boehm, J. (2010). Automated 3D
dc.relation.referencesenreconstruction of interiors from point clouds.
dc.relation.referencesenInternational Journal of Architectural
dc.relation.referencesenComputing, 8(1), 55–73.
dc.relation.referencesenhttps://journals.sagepub.com/doi/abs/10.1260/1478-0771.8.1.55.
dc.relation.referencesenKatushkov, V. O., Schultz, R. V., & Sossa, B. R. (2012).
dc.relation.referencesenThe relationship between the expected accuracy of
dc.relation.referencesenground-based laser scanning and the requirements
dc.relation.referencesenfor the accuracy of engineering and geodetic works.
dc.relation.referencesenUrban Planning and Spatial Planning, (44), 238–248.
dc.relation.referencesen(in Ukrainian).
dc.relation.referencesenKrisko, O. A. (2014). Data processing obtained by NLS
dc.relation.referencesento create a geometric model of the actual surface of
dc.relation.referencesenthin-walled shells of technical forms. Modern
dc.relation.referencesenproblems of modeling, (2), 51–56. (in Ukrainian).
dc.relation.referencesenMalitskyi A. Yu. (2017). Control of deviations of the
dc.relation.referencesenphysical surface from the base one based on ground
dc.relation.referencesenlaser scanning data. International scientific and
dc.relation.referencesentechnical conference of young scientists "Geoterrace2017", December 14–16, 2017, Lviv. (in Ukrainian).
dc.relation.referencesenOchmann, S., Vock, R., & Klein, R. (2019). Automatic reconstruction of fully volumetric 3D building
dc.relation.referencesenmodels from oriented point clouds. ISPRS journal of
dc.relation.referencesenphotogrammetry and remote sensing, 151, 251–262.
dc.relation.referencesenhttps://doi.org/10.1016/j.isprsjprs.2019.03.017.
dc.relation.referencesenPang, G., Qiu, R., Huang, J., You, S., & Neumann, U.
dc.relation.referencesen(2015, May). Automatic 3d industrial point cloud
dc.relation.referencesenmodeling and recognition. In 2015 14th IAPR
dc.relation.referenceseninternational conference on machine vision
dc.relation.referencesenapplications (MVA) (pp. 22–25). IEEE.
dc.relation.referencesenhttps://doi.org/10.1109/MVA.2015.7153124.
dc.relation.referencesenPatil, A. K., Holi, P., Lee, S. K., & Chai, Y. H. (2017).
dc.relation.referencesenAn adaptive approach for the reconstruction and
dc.relation.referencesenmodeling of as-built 3D pipelines from point clouds.
dc.relation.referencesenAutomation in construction, 75, 65–78.
dc.relation.referencesenhttps://doi.org/10.1016/j.autcon.2016.12.002.
dc.relation.referencesenPepe, M., Costantino, D., & Restuccia Garofalo, A.
dc.relation.referencesen(2020). An efficient pipeline to obtain 3D model for
dc.relation.referencesenHBIM and structural analysis purposes from 3D
dc.relation.referencesenpoint clouds. Applied Sciences, 10(4), 1235.
dc.relation.referencesenhttps://doi.org/10.3390/app10041235.
dc.relation.referencesenPoux, F., Neuville, R., Nys, G. A., & Billen, R. (2018). 3D point cloud semantic modelling: Integrated
dc.relation.referencesenframework for indoor spaces and furniture.
dc.relation.referencesenRemote Sensing, 10(9), 1412.
dc.relation.referencesenhttps://doi.org/10.3390/rs10091412.
dc.relation.referencesenRocha, G., Mateus, L., Fernández, J., & Ferreira, V.
dc.relation.referencesen(2020). A scan-to-BIM methodology applied to
dc.relation.referencesenheritage buildings. Heritage, 3(1), 47–67.
dc.relation.referencesenhttps://doi.org/10.3390/heritage3010004.
dc.relation.referencesenSchultz, R. W., Belous, B., & Goncheryuk, O. M.
dc.relation.referencesen(2016). Monitoring of architectural monuments with
dc.relation.referencesenthe help of ground laser scanning data. Contemporary
dc.relation.referencesenproblems of architecture and urban planning, (46), 202–207. (in Ukrainian).
dc.relation.referencesenScopigno, R., Callieri, M., Cignoni, P., Corsini, M.,
dc.relation.referencesenDellepiane, M., Ponchio, F., & Ranzuglia, G.
dc.relation.referencesen(2011). 3D models for cultural heritage: Beyond
dc.relation.referencesenplain visualization. Computer, 44(7), 48–55.
dc.relation.referencesenhttps://www.academia.edu/3064863/3D_Models_for_Cultural_Heritage_Beyond_Plain_Visualization?from=cover_page.
dc.relation.referencesenTalapov, V. (2015). On some principles and
dc.relation.referencesencharacteristics of information modeling of
dc.relation.referencesenarchitectural monuments. Architecture and Modern
dc.relation.referencesenInformation Technologies, 2 (31). (in Russian).
dc.relation.referencesenhttps://cyberleninka.ru/article/n/o-nekotoryhzakonomernostyah-i-osobennostyah-informatsionnogo-modelirovaniya-pamyatnikov-arhitektury.
dc.relation.referencesenVus A. Ya., & Maevsky, V. O. (2015). Mathematical
dc.relation.referencesenSimulation of Log Cross Sections Based on the
dc.relation.referencesenResults of their Scanning. Scientific Bulletin
dc.relation.referencesenof NLTU of Ukraine, 25 (4), 337–345.
dc.relation.referencesenhttps://cyberleninka.ru/article/n/matematichnemodelyuvannya-poperechnih-peretiniv-kolodi-zarezultatami-yiyi-skanuvannya.
dc.relation.urihttps://journals.sagepub.com/doi/abs/10.1260/1478-0771.8.1.55
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2019.03.017
dc.relation.urihttps://doi.org/10.1109/MVA.2015.7153124
dc.relation.urihttps://doi.org/10.1016/j.autcon.2016.12.002
dc.relation.urihttps://doi.org/10.3390/app10041235
dc.relation.urihttps://doi.org/10.3390/rs10091412
dc.relation.urihttps://doi.org/10.3390/heritage3010004
dc.relation.urihttps://www.academia.edu/3064863/3D_Models_for_Cultural_Heritage_Beyond_Plain_Visualization?from=cover_page
dc.relation.urihttps://cyberleninka.ru/article/n/o-nekotoryhzakonomernostyah-i-osobennostyah-informatsionnogo-modelirovaniya-pamyatnikov-arhitektury
dc.relation.urihttps://cyberleninka.ru/article/n/matematichnemodelyuvannya-poperechnih-peretiniv-kolodi-zarezultatami-yiyi-skanuvannya
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subject3D-сканування
dc.subject3D-моделювання
dc.subjectалгоритм автоматичного моделювання
dc.subjectхмара точок
dc.subjectпобудова поверхні
dc.subject3D scanning
dc.subject3D modeling
dc.subjectautomatic modeling algorithm
dc.subjectpoint cloud
dc.subjectsurface construction
dc.subject.udc528.66
dc.titleModeling of quasisymmetric ring elements of the church using data of ground laser scanning
dc.title.alternativeМоделювання квазісиметричних кільцевих елементів церкви за даними наземного лазерного сканування
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v95_Malitskyi_A-Modeling_of_quasisymmetric_129-134.pdf
Size:
329.99 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v95_Malitskyi_A-Modeling_of_quasisymmetric_129-134__COVER.png
Size:
1.3 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: