Modeling of quasisymmetric ring elements of the church using data of ground laser scanning
dc.citation.epage | 134 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 129 | |
dc.citation.volume | 95 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Маліцький, Андрій | |
dc.contributor.author | Malitskyi, Andrii | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-07T08:41:41Z | |
dc.date.available | 2023-06-07T08:41:41Z | |
dc.date.created | 2022-02-22 | |
dc.date.issued | 2022-02-22 | |
dc.description.abstract | Мета цієї роботи – розробити алгоритм математичного тривимірного моделювання типового даху української церкви за даними наземного лазерного сканування та знайти шляхи оптимізації моделі в залежно від набору вхідних даних. Методика. Точність моделювання залежить від даних лазерного сканування. Кількість отриманих точок та їхні точність будуть впливати на кінцевий результат – 3D-модель даху. Враховуючи типову конструкцію даху церкви у формі конусу, можна застосувати стандартний математичний алгоритм моделювання частини споруд типової церкви. Результати. Запропонований алгоритм розроблений у програмному середовищі MathCad. Для розроблення математичного алгоритму використано матеріали 3D-сканування української типової церкви. Алгоритм аналізує розташування точок сканування даху церкви та виконує його усереднення. В результаті роботи алгоритму відбраковано помилкові виміри та отримано модель частини даху, яка утворює оптимальну геометрію споруди. Наукова новизна та практична значущість. Запропонований математичний алгоритм дозволяє автоматизувати деякі процеси моделювання типової української церкви для проектних рішень. Такий спосіб моделювання може застосовуватися для подібних конструкцій інших будівель. | |
dc.description.abstract | The aim of this work is to develop an algorithm for mathematical three-dimensional modeling of a typical roof of a Ukrainian church based on ground-based laser scanning and to find ways to optimize the model depending on the input data set. Method. The accuracy of the simulation depends on the laser scan data. The number of points obtained and their accuracy will affect the final result – 3D model of the roof. Given the typical design of the church roof in the shape of a cone, you can apply the standard mathematical algorithm for modeling part of the buildings of a typical church. Result The proposed algorithm was developed in the MathCad software environment. 3D scanning materials of the Ukrainian typical church were used to develop the mathematical algorithm. The algorithm analyzes the location of the scanning points of the church roof and performs its averaging. As a result of the algorithm, erroneous measurements were rejected and a model of the part of the roof was obtained, which forms the optimal geometry of the structure. Scientific novelty and practical significance. The proposed mathematical algorithm allows to automate some modeling processes of a typical Ukrainian church for design decisions. This method of modeling can be used for similar structures of other buildings. | |
dc.format.extent | 129-134 | |
dc.format.pages | 6 | |
dc.identifier.citation | Malitskyi A. Modeling of quasisymmetric ring elements of the church using data of ground laser scanning / Andrii Malitskyi // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 129–134. | |
dc.identifier.citationen | Malitskyi A. Modeling of quasisymmetric ring elements of the church using data of ground laser scanning / Andrii Malitskyi // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 129–134. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2022.95.129 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59184 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки, | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання (95), 2022 | |
dc.relation.ispartof | Geodesy, Cartography and Aerial photography (95), 2022 | |
dc.relation.references | Budroni, A., & Boehm, J. (2010). Automated 3D | |
dc.relation.references | reconstruction of interiors from point clouds. | |
dc.relation.references | International Journal of Architectural | |
dc.relation.references | Computing, 8(1), 55–73. | |
dc.relation.references | https://journals.sagepub.com/doi/abs/10.1260/1478-0771.8.1.55. | |
dc.relation.references | Katushkov, V. O., Schultz, R. V., & Sossa, B. R. (2012). | |
dc.relation.references | The relationship between the expected accuracy of | |
dc.relation.references | ground-based laser scanning and the requirements | |
dc.relation.references | for the accuracy of engineering and geodetic works. | |
dc.relation.references | Urban Planning and Spatial Planning, (44), 238–248. | |
dc.relation.references | (in Ukrainian). | |
dc.relation.references | Krisko, O. A. (2014). Data processing obtained by NLS | |
dc.relation.references | to create a geometric model of the actual surface of | |
dc.relation.references | thin-walled shells of technical forms. Modern | |
dc.relation.references | problems of modeling, (2), 51–56. (in Ukrainian). | |
dc.relation.references | Malitskyi A. Yu. (2017). Control of deviations of the | |
dc.relation.references | physical surface from the base one based on ground | |
dc.relation.references | laser scanning data. International scientific and | |
dc.relation.references | technical conference of young scientists “Geoterrace2017”, December 14–16, 2017, Lviv. (in Ukrainian). | |
dc.relation.references | Ochmann, S., Vock, R., & Klein, R. (2019). Automatic reconstruction of fully volumetric 3D building | |
dc.relation.references | models from oriented point clouds. ISPRS journal of | |
dc.relation.references | photogrammetry and remote sensing, 151, 251–262. | |
dc.relation.references | https://doi.org/10.1016/j.isprsjprs.2019.03.017. | |
dc.relation.references | Pang, G., Qiu, R., Huang, J., You, S., & Neumann, U. | |
dc.relation.references | (2015, May). Automatic 3d industrial point cloud | |
dc.relation.references | modeling and recognition. In 2015 14th IAPR | |
dc.relation.references | international conference on machine vision | |
dc.relation.references | applications (MVA) (pp. 22–25). IEEE. | |
dc.relation.references | https://doi.org/10.1109/MVA.2015.7153124. | |
dc.relation.references | Patil, A. K., Holi, P., Lee, S. K., & Chai, Y. H. (2017). | |
dc.relation.references | An adaptive approach for the reconstruction and | |
dc.relation.references | modeling of as-built 3D pipelines from point clouds. | |
dc.relation.references | Automation in construction, 75, 65–78. | |
dc.relation.references | https://doi.org/10.1016/j.autcon.2016.12.002. | |
dc.relation.references | Pepe, M., Costantino, D., & Restuccia Garofalo, A. | |
dc.relation.references | (2020). An efficient pipeline to obtain 3D model for | |
dc.relation.references | HBIM and structural analysis purposes from 3D | |
dc.relation.references | point clouds. Applied Sciences, 10(4), 1235. | |
dc.relation.references | https://doi.org/10.3390/app10041235. | |
dc.relation.references | Poux, F., Neuville, R., Nys, G. A., & Billen, R. (2018). 3D point cloud semantic modelling: Integrated | |
dc.relation.references | framework for indoor spaces and furniture. | |
dc.relation.references | Remote Sensing, 10(9), 1412. | |
dc.relation.references | https://doi.org/10.3390/rs10091412. | |
dc.relation.references | Rocha, G., Mateus, L., Fernández, J., & Ferreira, V. | |
dc.relation.references | (2020). A scan-to-BIM methodology applied to | |
dc.relation.references | heritage buildings. Heritage, 3(1), 47–67. | |
dc.relation.references | https://doi.org/10.3390/heritage3010004. | |
dc.relation.references | Schultz, R. W., Belous, B., & Goncheryuk, O. M. | |
dc.relation.references | (2016). Monitoring of architectural monuments with | |
dc.relation.references | the help of ground laser scanning data. Contemporary | |
dc.relation.references | problems of architecture and urban planning, (46), 202–207. (in Ukrainian). | |
dc.relation.references | Scopigno, R., Callieri, M., Cignoni, P., Corsini, M., | |
dc.relation.references | Dellepiane, M., Ponchio, F., & Ranzuglia, G. | |
dc.relation.references | (2011). 3D models for cultural heritage: Beyond | |
dc.relation.references | plain visualization. Computer, 44(7), 48–55. | |
dc.relation.references | https://www.academia.edu/3064863/3D_Models_for_Cultural_Heritage_Beyond_Plain_Visualization?from=cover_page. | |
dc.relation.references | Talapov, V. (2015). On some principles and | |
dc.relation.references | characteristics of information modeling of | |
dc.relation.references | architectural monuments. Architecture and Modern | |
dc.relation.references | Information Technologies, 2 (31). (in Russian). | |
dc.relation.references | https://cyberleninka.ru/article/n/o-nekotoryhzakonomernostyah-i-osobennostyah-informatsionnogo-modelirovaniya-pamyatnikov-arhitektury. | |
dc.relation.references | Vus A. Ya., & Maevsky, V. O. (2015). Mathematical | |
dc.relation.references | Simulation of Log Cross Sections Based on the | |
dc.relation.references | Results of their Scanning. Scientific Bulletin | |
dc.relation.references | of NLTU of Ukraine, 25 (4), 337–345. | |
dc.relation.references | https://cyberleninka.ru/article/n/matematichnemodelyuvannya-poperechnih-peretiniv-kolodi-zarezultatami-yiyi-skanuvannya. | |
dc.relation.referencesen | Budroni, A., & Boehm, J. (2010). Automated 3D | |
dc.relation.referencesen | reconstruction of interiors from point clouds. | |
dc.relation.referencesen | International Journal of Architectural | |
dc.relation.referencesen | Computing, 8(1), 55–73. | |
dc.relation.referencesen | https://journals.sagepub.com/doi/abs/10.1260/1478-0771.8.1.55. | |
dc.relation.referencesen | Katushkov, V. O., Schultz, R. V., & Sossa, B. R. (2012). | |
dc.relation.referencesen | The relationship between the expected accuracy of | |
dc.relation.referencesen | ground-based laser scanning and the requirements | |
dc.relation.referencesen | for the accuracy of engineering and geodetic works. | |
dc.relation.referencesen | Urban Planning and Spatial Planning, (44), 238–248. | |
dc.relation.referencesen | (in Ukrainian). | |
dc.relation.referencesen | Krisko, O. A. (2014). Data processing obtained by NLS | |
dc.relation.referencesen | to create a geometric model of the actual surface of | |
dc.relation.referencesen | thin-walled shells of technical forms. Modern | |
dc.relation.referencesen | problems of modeling, (2), 51–56. (in Ukrainian). | |
dc.relation.referencesen | Malitskyi A. Yu. (2017). Control of deviations of the | |
dc.relation.referencesen | physical surface from the base one based on ground | |
dc.relation.referencesen | laser scanning data. International scientific and | |
dc.relation.referencesen | technical conference of young scientists "Geoterrace2017", December 14–16, 2017, Lviv. (in Ukrainian). | |
dc.relation.referencesen | Ochmann, S., Vock, R., & Klein, R. (2019). Automatic reconstruction of fully volumetric 3D building | |
dc.relation.referencesen | models from oriented point clouds. ISPRS journal of | |
dc.relation.referencesen | photogrammetry and remote sensing, 151, 251–262. | |
dc.relation.referencesen | https://doi.org/10.1016/j.isprsjprs.2019.03.017. | |
dc.relation.referencesen | Pang, G., Qiu, R., Huang, J., You, S., & Neumann, U. | |
dc.relation.referencesen | (2015, May). Automatic 3d industrial point cloud | |
dc.relation.referencesen | modeling and recognition. In 2015 14th IAPR | |
dc.relation.referencesen | international conference on machine vision | |
dc.relation.referencesen | applications (MVA) (pp. 22–25). IEEE. | |
dc.relation.referencesen | https://doi.org/10.1109/MVA.2015.7153124. | |
dc.relation.referencesen | Patil, A. K., Holi, P., Lee, S. K., & Chai, Y. H. (2017). | |
dc.relation.referencesen | An adaptive approach for the reconstruction and | |
dc.relation.referencesen | modeling of as-built 3D pipelines from point clouds. | |
dc.relation.referencesen | Automation in construction, 75, 65–78. | |
dc.relation.referencesen | https://doi.org/10.1016/j.autcon.2016.12.002. | |
dc.relation.referencesen | Pepe, M., Costantino, D., & Restuccia Garofalo, A. | |
dc.relation.referencesen | (2020). An efficient pipeline to obtain 3D model for | |
dc.relation.referencesen | HBIM and structural analysis purposes from 3D | |
dc.relation.referencesen | point clouds. Applied Sciences, 10(4), 1235. | |
dc.relation.referencesen | https://doi.org/10.3390/app10041235. | |
dc.relation.referencesen | Poux, F., Neuville, R., Nys, G. A., & Billen, R. (2018). 3D point cloud semantic modelling: Integrated | |
dc.relation.referencesen | framework for indoor spaces and furniture. | |
dc.relation.referencesen | Remote Sensing, 10(9), 1412. | |
dc.relation.referencesen | https://doi.org/10.3390/rs10091412. | |
dc.relation.referencesen | Rocha, G., Mateus, L., Fernández, J., & Ferreira, V. | |
dc.relation.referencesen | (2020). A scan-to-BIM methodology applied to | |
dc.relation.referencesen | heritage buildings. Heritage, 3(1), 47–67. | |
dc.relation.referencesen | https://doi.org/10.3390/heritage3010004. | |
dc.relation.referencesen | Schultz, R. W., Belous, B., & Goncheryuk, O. M. | |
dc.relation.referencesen | (2016). Monitoring of architectural monuments with | |
dc.relation.referencesen | the help of ground laser scanning data. Contemporary | |
dc.relation.referencesen | problems of architecture and urban planning, (46), 202–207. (in Ukrainian). | |
dc.relation.referencesen | Scopigno, R., Callieri, M., Cignoni, P., Corsini, M., | |
dc.relation.referencesen | Dellepiane, M., Ponchio, F., & Ranzuglia, G. | |
dc.relation.referencesen | (2011). 3D models for cultural heritage: Beyond | |
dc.relation.referencesen | plain visualization. Computer, 44(7), 48–55. | |
dc.relation.referencesen | https://www.academia.edu/3064863/3D_Models_for_Cultural_Heritage_Beyond_Plain_Visualization?from=cover_page. | |
dc.relation.referencesen | Talapov, V. (2015). On some principles and | |
dc.relation.referencesen | characteristics of information modeling of | |
dc.relation.referencesen | architectural monuments. Architecture and Modern | |
dc.relation.referencesen | Information Technologies, 2 (31). (in Russian). | |
dc.relation.referencesen | https://cyberleninka.ru/article/n/o-nekotoryhzakonomernostyah-i-osobennostyah-informatsionnogo-modelirovaniya-pamyatnikov-arhitektury. | |
dc.relation.referencesen | Vus A. Ya., & Maevsky, V. O. (2015). Mathematical | |
dc.relation.referencesen | Simulation of Log Cross Sections Based on the | |
dc.relation.referencesen | Results of their Scanning. Scientific Bulletin | |
dc.relation.referencesen | of NLTU of Ukraine, 25 (4), 337–345. | |
dc.relation.referencesen | https://cyberleninka.ru/article/n/matematichnemodelyuvannya-poperechnih-peretiniv-kolodi-zarezultatami-yiyi-skanuvannya. | |
dc.relation.uri | https://journals.sagepub.com/doi/abs/10.1260/1478-0771.8.1.55 | |
dc.relation.uri | https://doi.org/10.1016/j.isprsjprs.2019.03.017 | |
dc.relation.uri | https://doi.org/10.1109/MVA.2015.7153124 | |
dc.relation.uri | https://doi.org/10.1016/j.autcon.2016.12.002 | |
dc.relation.uri | https://doi.org/10.3390/app10041235 | |
dc.relation.uri | https://doi.org/10.3390/rs10091412 | |
dc.relation.uri | https://doi.org/10.3390/heritage3010004 | |
dc.relation.uri | https://www.academia.edu/3064863/3D_Models_for_Cultural_Heritage_Beyond_Plain_Visualization?from=cover_page | |
dc.relation.uri | https://cyberleninka.ru/article/n/o-nekotoryhzakonomernostyah-i-osobennostyah-informatsionnogo-modelirovaniya-pamyatnikov-arhitektury | |
dc.relation.uri | https://cyberleninka.ru/article/n/matematichnemodelyuvannya-poperechnih-peretiniv-kolodi-zarezultatami-yiyi-skanuvannya | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | 3D-сканування | |
dc.subject | 3D-моделювання | |
dc.subject | алгоритм автоматичного моделювання | |
dc.subject | хмара точок | |
dc.subject | побудова поверхні | |
dc.subject | 3D scanning | |
dc.subject | 3D modeling | |
dc.subject | automatic modeling algorithm | |
dc.subject | point cloud | |
dc.subject | surface construction | |
dc.subject.udc | 528.66 | |
dc.title | Modeling of quasisymmetric ring elements of the church using data of ground laser scanning | |
dc.title.alternative | Моделювання квазісиметричних кільцевих елементів церкви за даними наземного лазерного сканування | |
dc.type | Article |
Files
License bundle
1 - 1 of 1