Synthesis, Characterization and Photophysical Study of 4,4’-Diamino-2,2’-stilbenedisulfonate with Lanthanide Ions Complexes

dc.citation.epage184
dc.citation.issue2
dc.citation.spage177
dc.contributor.affiliationFederal Institute of Rio Grande do Norte
dc.contributor.affiliationFederal University of Technology of Parana
dc.contributor.affiliationFederal University of Bahia
dc.contributor.authorOliveira, Roseane Silva
dc.contributor.authorCursino, Ana Cristina Trindade
dc.contributor.authorFabiana Roberta Gonçalves e Silva Hussei
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:03Z
dc.date.available2024-01-22T11:13:03Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractОдержано комплекс 4,4’-діаміно-2,2’-стилбендісульфонової кислоти (DSD) з йонами тривалентного лантаніду Eu3+ і Tb3+ у співвідношенні 3:1 (DSD:Ln). Комплекси у вигляді порошку мають чорний (Eu3+) і коричневий (Tb3+) кольори. За допомогою комплексометричного титрування та елементного аналізу CHN визначено загальну формулу комплексів: Eu(C14H12N2SO3SO3H)3∙3H2O та Tb(C14H12N2SO3SO3H)2(CF3SO3)∙3H2O. Зсув смуги DSD при 330 нм до більшої величини в інфрачервоних спектрах комплексів та зникнення смуг при 2921 та 2623 см-1 свідчать про утворення комплексів з йонами Eu3+ і Tb3+. За допомогою теплового аналізу визначено, що DSD є термостабільним до 573 К, а розклад комплексів вказує на другу та третю втрату маси для йонів Eu3+ і Tb3+, відповідно. За результатами люмінесцентного аналізу визначено, що комплекси не забезпечують випромінювання з лантаноїдної частини у видимій області, що може бути пов'язано з триплетними станами ліганду, які, ймовірно, мають меншу енергію, ніж емісійний стан йонів Eu3+ (5D0) and Tb3+ (5D4).
dc.description.abstractComplex of 4,4’-diamino-2,2’-stilbenedisulfonic acid (DSD) with trivalent lanthanide ions Eu3+ and Tb3+ were prepared at the ratio of 3:1 (DSD:Ln). The complexes with ions present in the form of powder show black (Eu3+) and brown (Tb3+) colors. The complexometric titration and CHN elemental analysis suggest that these complexes have the general formula Eu(C14H12N2SO3SO3H)3∙3H2O and Tb(C14H12N2SO3SO3H)2(CF3SO3)∙3H2O. The shift of the 330 nm band for DSD to a longer wavelength in the infrared spectra of the complexes and the disappearance of the bands at 2921 and 2623 cm-1 are indicative of the formation of complexes with ions Eu3+ and Tb3+. Thermal analysis shows that DSD is thermally stable up to 573 K and the decomposition process of the complexes shows two and three mass losses for ions Eu3+ and Tb3+, respectively. The analysis of luminescence indicates that the complexes do not present the emission from the lanthanide moiety in the visible region. This may be related to the ligand triplet states, which are probably at lower energy than the emission state of the Eu3+ (5D0) and Tb3+ (5D4) ions.
dc.format.extent177-184
dc.format.pages8
dc.identifier.citationOliveira R. S. Synthesis, Characterization and Photophysical Study of 4,4’-Diamino-2,2’-stilbenedisulfonate with Lanthanide Ions Complexes / Roseane Silva Oliveira, Ana Cristina Trindade Cursino, Fabiana Roberta Gonçalves e Silva Hussei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 177–184.
dc.identifier.citationenOliveira R. S. Synthesis, Characterization and Photophysical Study of 4,4’-Diamino-2,2’-stilbenedisulfonate with Lanthanide Ions Complexes / Roseane Silva Oliveira, Ana Cristina Trindade Cursino, Fabiana Roberta Gonçalves e Silva Hussei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 177–184.
dc.identifier.doidoi.org/10.23939/chcht16.02.177
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60975
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Malta, O.L.; Legendziewicz, J.; Huskowska, E.; Turowska-Tyrk, I.; Albuquerque, R.Q.; de Mello Donega, C.; M.R., E Silva, F.R.G. Experimental and Theoretical Study of Ligand Field, 4f–4f Intensities and Emission Quantum Yield in the Compound Eu(bpyO2)4(ClO4)3. J. Alloy. Compd. 2001, 324, 654-660. https://doi.org/10.1016/S0925-8388(01)01027-1
dc.relation.references[2] Bayer, E.; Rossner, W.; Grabmaier, B.; Alcalá, R.; Blasse, G. Time-Resolved Emission Spectroscopy of Pr3+ in a Fluoride Glass. Chem. Phys. Lett. 1993, 216, 228-230. https://doi.org/10.1016/0009-2614(93)E1250-K
dc.relation.references[3] Wong-Wah-Chung, P.; Mailhot, G.; Bolte, M. 4,4′-Diaminostilbene-2,2′-disulfonate (DSD) Behaviour: Under Irradiation in Water.: Decrease of its Activity as a Fluorescent Whitening Agent. J. Photochem. Photobiol. A 2001, 138, 275-280. https://doi.org/10.1016/S1010-6030(00)00400-7
dc.relation.references[4] Jiménez, M.M.; Pelletier, J.; Bobin, M.F.; Martini, M.C. Influence of Encapsulation on the In Vitro Percutaneous Absorption of Octyl Methoxycinnamate. Int. J. Pharm. 2004, 272, 45-55. https://doi.org/10.1016/j.ijpharm.2003.11.029
dc.relation.references[5] Tampucci, S.; Burgalassi, S.; Chetoni, P.; Monti, D. Cutaneous Permeation and Penetration of Sunscreens: Formulation Strategies and In Vitro Methods. Cosmetics 2018, 5, 1. https://doi.org/10.3390/cosmetics5010001
dc.relation.references[6] El-Toni, A.M.; Yin, S.; Sato, T. Silica Coating and Photochemical Properties of Layered Double Hydroxide/4,4’-diaminostilbene–2,2’-disulfonic Acid Nanocomposite. J. Colloid Interf. Sci. 2006, 293, 449-454. https://doi.org/10.1016/j.jcis.2005.06.057
dc.relation.references[7] Diffey, B.L. Solar Ultraviolet Radiation Effects on Biological Systems. Phys. Med. Biol. 1991, 36, 299. https://doi.org/10.1088/0031-9155/36/3/001
dc.relation.references[8] Cursino, A.C.T.; Gardolinski, J.E.F.C.; Wypych, F. Intercalation of Anionic Organic Ultraviolet Ray Absorbers into Layered Zinc Hydroxide Nitrate. J. Colloid Interf. Sci. 2010, 347, 49-55. https://doi.org/10.1016/j.jcis.2010.03.007
dc.relation.references[9] Cursino, A.C.N.; Mangrich, A.C.; da Costa Gardolinski, J.E.; Mattoso, N.; Wypych, F. Effect of Confinement of Anionic Organic Ultraviolet Ray Absorbers into Two-Dimensional Zinc Hydroxide Nitrate Galleries. J. Braz. Chem. Soc. 2011, 22, 1183. https://doi.org/10.1590/S0103-50532011000600026
dc.relation.references[10] Cosoveanu, V.; Danciu, V.; Cimpan, G.; Martre, A.-M.; Mousset, G.; Gocan, S. Determination of 4,4′-Diaminostilbene-2,2′-disulfonic Acid by Thin-Layer Chromatography and Densitometry. J. Chromatogr. A 1996, 727, 324-329. https://doi.org/10.1016/0021-9673(95)01097-1
dc.relation.references[11] Silverstein, R.M.; Webster, F.X.; Kiemle, D. Identificação Espectrométrica de Compostos Orgânicos; 7 edn., LTC., S.A., Rio de Janeiro, 2005.
dc.relation.references[12] Ye, X.; Bai, H.; Ho, W.S.W. Synthesis and Characterization of New Sulfonated Polyimides as Proton-Exchange Membranes for Fuel Cells. J. Membrane Sci. 2006, 279, 570-577. https://doi.org/10.1016/j.memsci.2005.12.049
dc.relation.references[13] Melo, D.M.D.A.; da Silva, H.E.B.; Zinner, L.B.; De Oliveira, O.A. Kinetic Study of the Coordination Compounds [M(DMA)3(H2O)6](CF3SO3)3, where M=Ce3+, Tb3+ and Lu3+. J. Alloy.Compd. 1998, 275-277, 801-805. https://doi.org/10.1016/S0925-8388(98)00445-9
dc.relation.references[14] Santos, B.S.; de Mello Donega, C.; de Sá, G.F. Photophysical Properties of Eu3+, Gd3+ and Tb3+ Complexes with 2-Hydroxy-2,4,6-cycloheptatrien-1-one. J. Lumin. 1997, 72-74, 535-537. https://doi.org/10.1016/S0022-2313(96)00379-1
dc.relation.references[15] Waldeck, D.H. Photoisomerization Dynamics of Stilbenes. Chem. Rev. 1991, 91, 415-436. https://doi.org/10.1021/cr00003a007
dc.relation.references[16] Strashnikova, N.; Papper, V.; Parkhomyuk, P.; Likhtenshtein, G.I.; Ratner, V.; Marks, R. Local Medium Effects in the Photochemical Behavior of Substituted Stilbenes Immobilized on Quartz Surfaces. J. Photochem. Photobiol. A 1999, 122, 133-142. https://doi.org/10.1016/S1010-6030(99)00009-X
dc.relation.referencesen[1] Malta, O.L.; Legendziewicz, J.; Huskowska, E.; Turowska-Tyrk, I.; Albuquerque, R.Q.; de Mello Donega, C.; M.R., E Silva, F.R.G. Experimental and Theoretical Study of Ligand Field, 4f–4f Intensities and Emission Quantum Yield in the Compound Eu(bpyO2)4(ClO4)3. J. Alloy. Compd. 2001, 324, 654-660. https://doi.org/10.1016/S0925-8388(01)01027-1
dc.relation.referencesen[2] Bayer, E.; Rossner, W.; Grabmaier, B.; Alcalá, R.; Blasse, G. Time-Resolved Emission Spectroscopy of Pr3+ in a Fluoride Glass. Chem. Phys. Lett. 1993, 216, 228-230. https://doi.org/10.1016/0009-2614(93)E1250-K
dc.relation.referencesen[3] Wong-Wah-Chung, P.; Mailhot, G.; Bolte, M. 4,4′-Diaminostilbene-2,2′-disulfonate (DSD) Behaviour: Under Irradiation in Water., Decrease of its Activity as a Fluorescent Whitening Agent. J. Photochem. Photobiol. A 2001, 138, 275-280. https://doi.org/10.1016/S1010-6030(00)00400-7
dc.relation.referencesen[4] Jiménez, M.M.; Pelletier, J.; Bobin, M.F.; Martini, M.C. Influence of Encapsulation on the In Vitro Percutaneous Absorption of Octyl Methoxycinnamate. Int. J. Pharm. 2004, 272, 45-55. https://doi.org/10.1016/j.ijpharm.2003.11.029
dc.relation.referencesen[5] Tampucci, S.; Burgalassi, S.; Chetoni, P.; Monti, D. Cutaneous Permeation and Penetration of Sunscreens: Formulation Strategies and In Vitro Methods. Cosmetics 2018, 5, 1. https://doi.org/10.3390/cosmetics5010001
dc.relation.referencesen[6] El-Toni, A.M.; Yin, S.; Sato, T. Silica Coating and Photochemical Properties of Layered Double Hydroxide/4,4’-diaminostilbene–2,2’-disulfonic Acid Nanocomposite. J. Colloid Interf. Sci. 2006, 293, 449-454. https://doi.org/10.1016/j.jcis.2005.06.057
dc.relation.referencesen[7] Diffey, B.L. Solar Ultraviolet Radiation Effects on Biological Systems. Phys. Med. Biol. 1991, 36, 299. https://doi.org/10.1088/0031-9155/36/3/001
dc.relation.referencesen[8] Cursino, A.C.T.; Gardolinski, J.E.F.C.; Wypych, F. Intercalation of Anionic Organic Ultraviolet Ray Absorbers into Layered Zinc Hydroxide Nitrate. J. Colloid Interf. Sci. 2010, 347, 49-55. https://doi.org/10.1016/j.jcis.2010.03.007
dc.relation.referencesen[9] Cursino, A.C.N.; Mangrich, A.C.; da Costa Gardolinski, J.E.; Mattoso, N.; Wypych, F. Effect of Confinement of Anionic Organic Ultraviolet Ray Absorbers into Two-Dimensional Zinc Hydroxide Nitrate Galleries. J. Braz. Chem. Soc. 2011, 22, 1183. https://doi.org/10.1590/S0103-50532011000600026
dc.relation.referencesen[10] Cosoveanu, V.; Danciu, V.; Cimpan, G.; Martre, A.-M.; Mousset, G.; Gocan, S. Determination of 4,4′-Diaminostilbene-2,2′-disulfonic Acid by Thin-Layer Chromatography and Densitometry. J. Chromatogr. A 1996, 727, 324-329. https://doi.org/10.1016/0021-9673(95)01097-1
dc.relation.referencesen[11] Silverstein, R.M.; Webster, F.X.; Kiemle, D. Identificação Espectrométrica de Compostos Orgânicos; 7 edn., LTC., S.A., Rio de Janeiro, 2005.
dc.relation.referencesen[12] Ye, X.; Bai, H.; Ho, W.S.W. Synthesis and Characterization of New Sulfonated Polyimides as Proton-Exchange Membranes for Fuel Cells. J. Membrane Sci. 2006, 279, 570-577. https://doi.org/10.1016/j.memsci.2005.12.049
dc.relation.referencesen[13] Melo, D.M.D.A.; da Silva, H.E.B.; Zinner, L.B.; De Oliveira, O.A. Kinetic Study of the Coordination Compounds [M(DMA)3(H2O)6](CF3SO3)3, where M=Ce3+, Tb3+ and Lu3+. J. Alloy.Compd. 1998, 275-277, 801-805. https://doi.org/10.1016/S0925-8388(98)00445-9
dc.relation.referencesen[14] Santos, B.S.; de Mello Donega, C.; de Sá, G.F. Photophysical Properties of Eu3+, Gd3+ and Tb3+ Complexes with 2-Hydroxy-2,4,6-cycloheptatrien-1-one. J. Lumin. 1997, 72-74, 535-537. https://doi.org/10.1016/S0022-2313(96)00379-1
dc.relation.referencesen[15] Waldeck, D.H. Photoisomerization Dynamics of Stilbenes. Chem. Rev. 1991, 91, 415-436. https://doi.org/10.1021/cr00003a007
dc.relation.referencesen[16] Strashnikova, N.; Papper, V.; Parkhomyuk, P.; Likhtenshtein, G.I.; Ratner, V.; Marks, R. Local Medium Effects in the Photochemical Behavior of Substituted Stilbenes Immobilized on Quartz Surfaces. J. Photochem. Photobiol. A 1999, 122, 133-142. https://doi.org/10.1016/S1010-6030(99)00009-X
dc.relation.urihttps://doi.org/10.1016/S0925-8388(01)01027-1
dc.relation.urihttps://doi.org/10.1016/0009-2614(93)E1250-K
dc.relation.urihttps://doi.org/10.1016/S1010-6030(00)00400-7
dc.relation.urihttps://doi.org/10.1016/j.ijpharm.2003.11.029
dc.relation.urihttps://doi.org/10.3390/cosmetics5010001
dc.relation.urihttps://doi.org/10.1016/j.jcis.2005.06.057
dc.relation.urihttps://doi.org/10.1088/0031-9155/36/3/001
dc.relation.urihttps://doi.org/10.1016/j.jcis.2010.03.007
dc.relation.urihttps://doi.org/10.1590/S0103-50532011000600026
dc.relation.urihttps://doi.org/10.1016/0021-9673(95)01097-1
dc.relation.urihttps://doi.org/10.1016/j.memsci.2005.12.049
dc.relation.urihttps://doi.org/10.1016/S0925-8388(98)00445-9
dc.relation.urihttps://doi.org/10.1016/S0022-2313(96)00379-1
dc.relation.urihttps://doi.org/10.1021/cr00003a007
dc.relation.urihttps://doi.org/10.1016/S1010-6030(99)00009-X
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Oliveira R.S., Cursino A.C.T., Gonçalves e Silva Hussein F. R., 2022
dc.subjectкомплекс
dc.subject4
dc.subject4’-діаміно-2
dc.subject2’-стилбендісульфонова кислота
dc.subjectлантаніди
dc.subjectлюмінесценція
dc.subjectcomplex
dc.subject4
dc.subject4’-diamino-2
dc.subject2’-stilbenedisulfonic acid
dc.subjectlanthanides
dc.subjectluminescence
dc.titleSynthesis, Characterization and Photophysical Study of 4,4’-Diamino-2,2’-stilbenedisulfonate with Lanthanide Ions Complexes
dc.title.alternativeСинтез, характеристика та фотофізичне дослідження комплексів 4,4’-діаміно-2,2’-стилбендісульфонату з йонами лантаніду
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n2_Oliveira_R_S-Synthesis_Characterization_177-184.pdf
Size:
861.17 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n2_Oliveira_R_S-Synthesis_Characterization_177-184__COVER.png
Size:
472.73 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: