Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection
dc.citation.epage | 624 | |
dc.citation.issue | 3 | |
dc.citation.spage | 617 | |
dc.contributor.affiliation | ACECR institute of Higher Education (Isfahan Branch) | |
dc.contributor.affiliation | Esfahan Oil Refining Company | |
dc.contributor.author | Zobeidi, Zohreh | |
dc.contributor.author | Sadeghi, Roohollah | |
dc.contributor.author | Rostami, Mohamad-Taghi | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:51:59Z | |
dc.date.available | 2024-02-12T08:51:59Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У дослідженні модельовано теплопередачу в нанорідині оксид алюмінію-вода в природному конвекційному потоці та конфігурації Релея-Бенара з урахуванням бро¬унівських рухів і фрактальної структури нанорідин. Моделювання базувалися на двовимірному методі Ейлера-Ейлера. Проведено численнімоделювання для дослідження впливуаспектного відношення, теплового потоку та параметрів, пов’язаних зі структурою нанокластерів, включаючи розмір, фрактальну розмірність та об’ємну частку, на коефіцієнт природної конвекційної теплопередачі. Порівняння результатів моделювання з експериментальними даними коефіцієнта теплопередачі свідчить про те, що вони добреузгоджуються. Результати моделювання показали, що збільшення аспектного відношення, теплового потоку та фрактальної розмірності підвищує коефіцієнт теплопередачі. З іншого боку, зменшення нанокластерів і розміру наночастинок знижує цей коефіцієнт. Крім того, результати моделювання показали, що у потоках високої теплопередачі коефіцієнт теплопередачі спочатку збільшується через збільшення об’ємної частки твердих наночастинок, а потім зменшується. Проте коефіцієнт тепловіддачі неухильно зменшувався зі збільшенням об’ємної частки твердих наночастинок у потоках низької теплопередачі. Результати свідчать про те, що використання механізму броунівського руху наночастинок разом із їхньою фрактальною структурою може бути успішно застосоване в моделюванні природної конвекційної теплопередачі нанорідин. | |
dc.description.abstract | The study simulated heat transfer in alumina-water nanofluid in a natural convection flow and Rayleigh-Benard configuration considering the Brownian motions and fractal structure of the nanofluids. The simulations were based on a two-dimensional, Eulerian-Eulerian method. Many simulations have been performed to examine the effect of aspect ratio, heat flux, and para-meters related to the structure of the nanoclusters including size, fractal dimension, and volume fraction on the natural convective heat transfer coefficient. The comparison between the simulation results and the experimental data of heat transfer coefficient indicates a good agreement. The simulation results indicated that the enhancement of aspect ratio, heat flux, and fractal dimension increases the heat transfer coefficient. On the other hand, the reduction of nanoclusters and nanoparticle size decreased this coefficient. Moreover, the simulation results showed that in high heat transfer fluxes, the heat transfer coefficient first increases by increasing the nanoparticles solid volume fraction and then decreases. However, heat transfer coefficient decreased steadily with the increase in the nanoparticles solid volume fraction in low heat transfer fluxes. The results suggested that using the nanoparticles Brownian motion mechanism along with their fractal structure can be well-applied in natural-convection heat transfer modelling of nanofluids. | |
dc.format.extent | 617-624 | |
dc.format.pages | 8 | |
dc.identifier.citation | Zobeidi Z. Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection / Zohreh Zobeidi, Roohollah Sadeghi, Mohamad-Taghi Rostami // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 617–624. | |
dc.identifier.citationen | Zobeidi Z. Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection / Zohreh Zobeidi, Roohollah Sadeghi, Mohamad-Taghi Rostami // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 617–624. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.617 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61267 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Kouloulias, K.; Sergis, A.; Hardalupas, Y.Sedimentation in Nanofluids During a Natural Convection Experiment.Int. J. Heat Mass Transf.2016, 101, 1193-1203. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113 | |
dc.relation.references | [2] Ghadimi, A.; Saidur, R.; Metselaar, H.A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Transf.2011, 54, 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 | |
dc.relation.references | [3] Hadad, Z.; Oztop, H.F.; Abu-Nada, E.;Mataoui, A.A Review on Natural Convective Heat Transfer of Nanofluids. Renew. Sust.Energ. Rev. 2012, 16, 5363-5378. https://doi.org/10.1016/j.rser.2012.04.003 | |
dc.relation.references | [4] Yuan, M.; Mohebbi, R.; Rashidi, M.M.;Zhigang, Y.Simulation of Nanofluid Natural Convection in a U-Shaped Cavity Equipped by a Heating Obstacle: Effect of Cavity's Aspect Ratio. J Taiwan Inst Chem Eng2018, 93, 263-276. https://doi.org/10.1016/j.jtice.2018.07.026 | |
dc.relation.references | [5] Meng, X.; Li,Y.Numerical Study of Natural Convection in a Horizontal Cylinder Filled with Water-Based Alumina Nanoflu-id.Nanoscale. Res. Let.2015, 10, 142. https://doi.org/10.1186/s11671-015-0847-x | |
dc.relation.references | [6] Ilyas, S.U.; Pendyala, R.; Narahari, M. Experimental Investiga-tion of Natural Convection Heat Transfer Characteristics in MWCNT-thermal Oil Nanofluid. J Therm Anal Calorim2019, 135, 1197-1209. https://doi.org/10.1007/s10973-018-7546-7 | |
dc.relation.references | [7] Sarkar, J.A Critical Review on Convective Heat Transfer Correlations of Nanofluids.Renew. Sust. Energ. Rev. 2011, 15, 3271-3277. https://doi.org/10.1016/j.rser.2011.04.025 | |
dc.relation.references | [8] Sheikhzadeh, G.A.;Ebrahim Qomi, M.; Hajialigol, N.; Fattahi, A.Numerical Study of Mixed Convection Flows in a Lid-Driven Enclosure Filled with Nanofluid Using Variable Properties.Results Phys.2012, 2, 5-13. https://doi.org/10.1016/j.rinp.2012.01.001 | |
dc.relation.references | [9] Ehteram, H.R.; Abbasianarani, A.A.; Sheikhzadeh, G.A.;Aghaei, A.; Malihi,A.R.The Effect of Various Conductivity and Viscosity Models Considering Brownian Motion on Nanofluids Mixed Convection Flow and Heat Transfer. Chall. Nano Micro Scale Sci. Tech.2016, 4, 19-28. https://doi.org/10.7508/tpnms.2016.01.003 | |
dc.relation.references | [10] Ghasemi, B.; Aminossadati S.M.Brownian Motion of Nano-particles in a Triangular Enclosure with Natural Convection.Int. J. Therm. Sci. 2010, 49, 931-940. https://doi.org/10.1016/j.ijthermalsci.2009.12.017 | |
dc.relation.references | [11] Aminfar, H.; Haghgoo, M.R.Brownian Motion and Thermo-phoresis Effects on Natural Convection of Alumina–Water Nanofluid.J. Mech. Eng. Sci. 2012, 227, 100. https://doi.org/10.1177/0954406212445683 | |
dc.relation.references | [12] Haddad, Z.; Abu-Nada, E.; Oztop, H F.; Mataoui, A.Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhance-ment?Int. J. Therm. Sci. 2012, 57, 152-162. https://doi.org/10.1016/j.ijthermalsci.2012.01.016 | |
dc.relation.references | [13] Hong, J.; Kim, D.Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids.Thermochim. Acta2011, 542, 28-32. https://doi.org/10.1016/j.tca.2011.12.019 | |
dc.relation.references | [14] Shalkevich, N.; Shalkevich, A.; Bürgi, T.Thermal Conductivi-ty of Concentrated Colloids in Different States.J. Phys. Chem. 2010, 114, 9568-9572. https://doi.org/10.1021/jp910722j | |
dc.relation.references | [15] Hong, K.S.; Hong, T.K.; Yang, H.S.Thermal Conductivity of Fe nanofluids Depending on the Cluster Size of Nanoparticles.App. Phys. Lett. 2006, 88, 031901. https://doi.org/10.1063/1.2166199 | |
dc.relation.references | [16] Wu, C.; Cho, T.J.; Xu, J.;Lee, D.; Yang, B.; Zachariah, M.R.Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids.Phys. Rev. 2010, 81, 011406. https://doi.org/10.1103/PhysRevE.81.011406 | |
dc.relation.references | [17] Sadeghi, R.; Haghshenasfard, M.; Etemad, S.Gh.;Keshavarzi, E.Theoretical Investigation of Nanoparticles Aggregation Effect on Water-Alumina Laminar Convective Heat Transfer.Int. Commun. Heat Mass Transf.2016, 72, 57-63. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.006 | |
dc.relation.references | [18] Artyukhov, A.; Sklabinskyi, V.Theoretical Analysis of Gra-nules Movement Hydrodynamics in the Vortex Granulators of Ammonium Nitrate and Carbamide Production.Chem. Chem. Tech-nol. 2015, 9, 175-180.https://doi.org/10.23939/chcht09.02.175 | |
dc.relation.references | [19] Nagursky, O.; Gumnitsky, Ya.; Vaschuk, V.Unsteady Heat Transfer during Encapsulation of Dispersed Materials in Quasi-liquefied State.Chem. Chem. Technol. 2015, 9, 497-501. https://doi.org/10.23939/chcht09.04.497 | |
dc.relation.references | [20] Kindzera, D.; Hosovskyi, R.; Atamanyuk, V.; Symak, D.Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass.Chem. Chem. Technol. 2021, 15, 118-124. https://doi.org/10.23939/chcht15.01.118 | |
dc.relation.references | [21] ANSYS CFX Solver Theory Guide r15; ANSYS Inc., 2015. | |
dc.relation.references | [22] Schiller, L.; Naumann, A. A Drag Coefficient Corre-lation. VDI Zeitung1935, 77, 318-320. | |
dc.relation.references | [23] Li, A.; Ahmadi, G.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol. Sci. Technol. 1992, 16, 209-226. https://doi.org/10.1080/02786829208959550 | |
dc.relation.references | [24] Evans, W.; Prasher, R.; Fish, J.;Meakin, P.; Phelan, P.; Keb-linski, P.Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanof-luids.Int. J. Heat Mass Transf.2008, 51, 1431-1438. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017 | |
dc.relation.references | [25] Nan, C.-W.; Birringer, R.; Clarke, D.R.;Gleiter, H.Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance.J. App. Phys. 1997, 81, 6692-6699. https://doi.org/10.1063/1.365209 | |
dc.relation.referencesen | [1] Kouloulias, K.; Sergis, A.; Hardalupas, Y.Sedimentation in Nanofluids During a Natural Convection Experiment.Int. J. Heat Mass Transf.2016, 101, 1193-1203. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113 | |
dc.relation.referencesen | [2] Ghadimi, A.; Saidur, R.; Metselaar, H.A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Transf.2011, 54, 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 | |
dc.relation.referencesen | [3] Hadad, Z.; Oztop, H.F.; Abu-Nada, E.;Mataoui, A.A Review on Natural Convective Heat Transfer of Nanofluids. Renew. Sust.Energ. Rev. 2012, 16, 5363-5378. https://doi.org/10.1016/j.rser.2012.04.003 | |
dc.relation.referencesen | [4] Yuan, M.; Mohebbi, R.; Rashidi, M.M.;Zhigang, Y.Simulation of Nanofluid Natural Convection in a U-Shaped Cavity Equipped by a Heating Obstacle: Effect of Cavity's Aspect Ratio. J Taiwan Inst Chem Eng2018, 93, 263-276. https://doi.org/10.1016/j.jtice.2018.07.026 | |
dc.relation.referencesen | [5] Meng, X.; Li,Y.Numerical Study of Natural Convection in a Horizontal Cylinder Filled with Water-Based Alumina Nanoflu-id.Nanoscale. Res. Let.2015, 10, 142. https://doi.org/10.1186/s11671-015-0847-x | |
dc.relation.referencesen | [6] Ilyas, S.U.; Pendyala, R.; Narahari, M. Experimental Investiga-tion of Natural Convection Heat Transfer Characteristics in MWCNT-thermal Oil Nanofluid. J Therm Anal Calorim2019, 135, 1197-1209. https://doi.org/10.1007/s10973-018-7546-7 | |
dc.relation.referencesen | [7] Sarkar, J.A Critical Review on Convective Heat Transfer Correlations of Nanofluids.Renew. Sust. Energ. Rev. 2011, 15, 3271-3277. https://doi.org/10.1016/j.rser.2011.04.025 | |
dc.relation.referencesen | [8] Sheikhzadeh, G.A.;Ebrahim Qomi, M.; Hajialigol, N.; Fattahi, A.Numerical Study of Mixed Convection Flows in a Lid-Driven Enclosure Filled with Nanofluid Using Variable Properties.Results Phys.2012, 2, 5-13. https://doi.org/10.1016/j.rinp.2012.01.001 | |
dc.relation.referencesen | [9] Ehteram, H.R.; Abbasianarani, A.A.; Sheikhzadeh, G.A.;Aghaei, A.; Malihi,A.R.The Effect of Various Conductivity and Viscosity Models Considering Brownian Motion on Nanofluids Mixed Convection Flow and Heat Transfer. Chall. Nano Micro Scale Sci. Tech.2016, 4, 19-28. https://doi.org/10.7508/tpnms.2016.01.003 | |
dc.relation.referencesen | [10] Ghasemi, B.; Aminossadati S.M.Brownian Motion of Nano-particles in a Triangular Enclosure with Natural Convection.Int. J. Therm. Sci. 2010, 49, 931-940. https://doi.org/10.1016/j.ijthermalsci.2009.12.017 | |
dc.relation.referencesen | [11] Aminfar, H.; Haghgoo, M.R.Brownian Motion and Thermo-phoresis Effects on Natural Convection of Alumina–Water Nanofluid.J. Mech. Eng. Sci. 2012, 227, 100. https://doi.org/10.1177/0954406212445683 | |
dc.relation.referencesen | [12] Haddad, Z.; Abu-Nada, E.; Oztop, H F.; Mataoui, A.Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhance-ment?Int. J. Therm. Sci. 2012, 57, 152-162. https://doi.org/10.1016/j.ijthermalsci.2012.01.016 | |
dc.relation.referencesen | [13] Hong, J.; Kim, D.Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids.Thermochim. Acta2011, 542, 28-32. https://doi.org/10.1016/j.tca.2011.12.019 | |
dc.relation.referencesen | [14] Shalkevich, N.; Shalkevich, A.; Bürgi, T.Thermal Conductivi-ty of Concentrated Colloids in Different States.J. Phys. Chem. 2010, 114, 9568-9572. https://doi.org/10.1021/jp910722j | |
dc.relation.referencesen | [15] Hong, K.S.; Hong, T.K.; Yang, H.S.Thermal Conductivity of Fe nanofluids Depending on the Cluster Size of Nanoparticles.App. Phys. Lett. 2006, 88, 031901. https://doi.org/10.1063/1.2166199 | |
dc.relation.referencesen | [16] Wu, C.; Cho, T.J.; Xu, J.;Lee, D.; Yang, B.; Zachariah, M.R.Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids.Phys. Rev. 2010, 81, 011406. https://doi.org/10.1103/PhysRevE.81.011406 | |
dc.relation.referencesen | [17] Sadeghi, R.; Haghshenasfard, M.; Etemad, S.Gh.;Keshavarzi, E.Theoretical Investigation of Nanoparticles Aggregation Effect on Water-Alumina Laminar Convective Heat Transfer.Int. Commun. Heat Mass Transf.2016, 72, 57-63. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.006 | |
dc.relation.referencesen | [18] Artyukhov, A.; Sklabinskyi, V.Theoretical Analysis of Gra-nules Movement Hydrodynamics in the Vortex Granulators of Ammonium Nitrate and Carbamide Production.Chem. Chem. Tech-nol. 2015, 9, 175-180.https://doi.org/10.23939/chcht09.02.175 | |
dc.relation.referencesen | [19] Nagursky, O.; Gumnitsky, Ya.; Vaschuk, V.Unsteady Heat Transfer during Encapsulation of Dispersed Materials in Quasi-liquefied State.Chem. Chem. Technol. 2015, 9, 497-501. https://doi.org/10.23939/chcht09.04.497 | |
dc.relation.referencesen | [20] Kindzera, D.; Hosovskyi, R.; Atamanyuk, V.; Symak, D.Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass.Chem. Chem. Technol. 2021, 15, 118-124. https://doi.org/10.23939/chcht15.01.118 | |
dc.relation.referencesen | [21] ANSYS CFX Solver Theory Guide r15; ANSYS Inc., 2015. | |
dc.relation.referencesen | [22] Schiller, L.; Naumann, A. A Drag Coefficient Corre-lation. VDI Zeitung1935, 77, 318-320. | |
dc.relation.referencesen | [23] Li, A.; Ahmadi, G.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol. Sci. Technol. 1992, 16, 209-226. https://doi.org/10.1080/02786829208959550 | |
dc.relation.referencesen | [24] Evans, W.; Prasher, R.; Fish, J.;Meakin, P.; Phelan, P.; Keb-linski, P.Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanof-luids.Int. J. Heat Mass Transf.2008, 51, 1431-1438. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017 | |
dc.relation.referencesen | [25] Nan, C.-W.; Birringer, R.; Clarke, D.R.;Gleiter, H.Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance.J. App. Phys. 1997, 81, 6692-6699. https://doi.org/10.1063/1.365209 | |
dc.relation.uri | https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113 | |
dc.relation.uri | https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2012.04.003 | |
dc.relation.uri | https://doi.org/10.1016/j.jtice.2018.07.026 | |
dc.relation.uri | https://doi.org/10.1186/s11671-015-0847-x | |
dc.relation.uri | https://doi.org/10.1007/s10973-018-7546-7 | |
dc.relation.uri | https://doi.org/10.1016/j.rser.2011.04.025 | |
dc.relation.uri | https://doi.org/10.1016/j.rinp.2012.01.001 | |
dc.relation.uri | https://doi.org/10.7508/tpnms.2016.01.003 | |
dc.relation.uri | https://doi.org/10.1016/j.ijthermalsci.2009.12.017 | |
dc.relation.uri | https://doi.org/10.1177/0954406212445683 | |
dc.relation.uri | https://doi.org/10.1016/j.ijthermalsci.2012.01.016 | |
dc.relation.uri | https://doi.org/10.1016/j.tca.2011.12.019 | |
dc.relation.uri | https://doi.org/10.1021/jp910722j | |
dc.relation.uri | https://doi.org/10.1063/1.2166199 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevE.81.011406 | |
dc.relation.uri | https://doi.org/10.1016/j.icheatmasstransfer.2016.01.006 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.02.175 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.04.497 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.01.118 | |
dc.relation.uri | https://doi.org/10.1080/02786829208959550 | |
dc.relation.uri | https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017 | |
dc.relation.uri | https://doi.org/10.1063/1.365209 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Zobeidi Z., Sadeghi R., Rostami M.-T., 2023 | |
dc.subject | нанорідина | |
dc.subject | оксид алюмінію-вода | |
dc.subject | нанокластери | |
dc.subject | фрактальна розмірність | |
dc.subject | коефіцієнт природної конвекційної теплопередачі | |
dc.subject | nanofluid | |
dc.subject | alumina-water | |
dc.subject | nanoclusters | |
dc.subject | fractal dimension | |
dc.subject | natural convective heat transfer coefficient | |
dc.title | Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection | |
dc.title.alternative | Вплив броунівського руху та фрактальної структури наночастинок на природну конвекцію | |
dc.type | Article |
Files
License bundle
1 - 1 of 1