Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection

dc.citation.epage624
dc.citation.issue3
dc.citation.spage617
dc.contributor.affiliationACECR institute of Higher Education (Isfahan Branch)
dc.contributor.affiliationEsfahan Oil Refining Company
dc.contributor.authorZobeidi, Zohreh
dc.contributor.authorSadeghi, Roohollah
dc.contributor.authorRostami, Mohamad-Taghi
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:51:59Z
dc.date.available2024-02-12T08:51:59Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ дослідженні модельовано теплопередачу в нанорідині оксид алюмінію-вода в природному конвекційному потоці та конфігурації Релея-Бенара з урахуванням бро¬унівських рухів і фрактальної структури нанорідин. Моделювання базувалися на двовимірному методі Ейлера-Ейлера. Проведено численнімоделювання для дослідження впливуаспектного відношення, теплового потоку та параметрів, пов’язаних зі структурою нанокластерів, включаючи розмір, фрактальну розмірність та об’ємну частку, на коефіцієнт природної конвекційної теплопередачі. Порівняння результатів моделювання з експериментальними даними коефіцієнта теплопередачі свідчить про те, що вони добреузгоджуються. Результати моделювання показали, що збільшення аспектного відношення, теплового потоку та фрактальної розмірності підвищує коефіцієнт теплопередачі. З іншого боку, зменшення нанокластерів і розміру наночастинок знижує цей коефіцієнт. Крім того, результати моделювання показали, що у потоках високої теплопередачі коефіцієнт теплопередачі спочатку збільшується через збільшення об’ємної частки твердих наночастинок, а потім зменшується. Проте коефіцієнт тепловіддачі неухильно зменшувався зі збільшенням об’ємної частки твердих наночастинок у потоках низької теплопередачі. Результати свідчать про те, що використання механізму броунівського руху наночастинок разом із їхньою фрактальною структурою може бути успішно застосоване в моделюванні природної конвекційної теплопередачі нанорідин.
dc.description.abstractThe study simulated heat transfer in alumina-water nanofluid in a natural convection flow and Rayleigh-Benard configuration considering the Brownian motions and fractal structure of the nanofluids. The simulations were based on a two-dimensional, Eulerian-Eulerian method. Many simulations have been performed to examine the effect of aspect ratio, heat flux, and para-meters related to the structure of the nanoclusters including size, fractal dimension, and volume fraction on the natural convective heat transfer coefficient. The comparison between the simulation results and the experimental data of heat transfer coefficient indicates a good agreement. The simulation results indicated that the enhancement of aspect ratio, heat flux, and fractal dimension increases the heat transfer coefficient. On the other hand, the reduction of nanoclusters and nanoparticle size decreased this coefficient. Moreover, the simulation results showed that in high heat transfer fluxes, the heat transfer coefficient first increases by increasing the nanoparticles solid volume fraction and then decreases. However, heat transfer coefficient decreased steadily with the increase in the nanoparticles solid volume fraction in low heat transfer fluxes. The results suggested that using the nanoparticles Brownian motion mechanism along with their fractal structure can be well-applied in natural-convection heat transfer modelling of nanofluids.
dc.format.extent617-624
dc.format.pages8
dc.identifier.citationZobeidi Z. Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection / Zohreh Zobeidi, Roohollah Sadeghi, Mohamad-Taghi Rostami // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 617–624.
dc.identifier.citationenZobeidi Z. Effects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection / Zohreh Zobeidi, Roohollah Sadeghi, Mohamad-Taghi Rostami // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 617–624.
dc.identifier.doidoi.org/10.23939/chcht17.03.617
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61267
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Kouloulias, K.; Sergis, A.; Hardalupas, Y.Sedimentation in Nanofluids During a Natural Convection Experiment.Int. J. Heat Mass Transf.2016, 101, 1193-1203. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113
dc.relation.references[2] Ghadimi, A.; Saidur, R.; Metselaar, H.A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Transf.2011, 54, 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
dc.relation.references[3] Hadad, Z.; Oztop, H.F.; Abu-Nada, E.;Mataoui, A.A Review on Natural Convective Heat Transfer of Nanofluids. Renew. Sust.Energ. Rev. 2012, 16, 5363-5378. https://doi.org/10.1016/j.rser.2012.04.003
dc.relation.references[4] Yuan, M.; Mohebbi, R.; Rashidi, M.M.;Zhigang, Y.Simulation of Nanofluid Natural Convection in a U-Shaped Cavity Equipped by a Heating Obstacle: Effect of Cavity's Aspect Ratio. J Taiwan Inst Chem Eng2018, 93, 263-276. https://doi.org/10.1016/j.jtice.2018.07.026
dc.relation.references[5] Meng, X.; Li,Y.Numerical Study of Natural Convection in a Horizontal Cylinder Filled with Water-Based Alumina Nanoflu-id.Nanoscale. Res. Let.2015, 10, 142. https://doi.org/10.1186/s11671-015-0847-x
dc.relation.references[6] Ilyas, S.U.; Pendyala, R.; Narahari, M. Experimental Investiga-tion of Natural Convection Heat Transfer Characteristics in MWCNT-thermal Oil Nanofluid. J Therm Anal Calorim2019, 135, 1197-1209. https://doi.org/10.1007/s10973-018-7546-7
dc.relation.references[7] Sarkar, J.A Critical Review on Convective Heat Transfer Correlations of Nanofluids.Renew. Sust. Energ. Rev. 2011, 15, 3271-3277. https://doi.org/10.1016/j.rser.2011.04.025
dc.relation.references[8] Sheikhzadeh, G.A.;Ebrahim Qomi, M.; Hajialigol, N.; Fattahi, A.Numerical Study of Mixed Convection Flows in a Lid-Driven Enclosure Filled with Nanofluid Using Variable Properties.Results Phys.2012, 2, 5-13. https://doi.org/10.1016/j.rinp.2012.01.001
dc.relation.references[9] Ehteram, H.R.; Abbasianarani, A.A.; Sheikhzadeh, G.A.;Aghaei, A.; Malihi,A.R.The Effect of Various Conductivity and Viscosity Models Considering Brownian Motion on Nanofluids Mixed Convection Flow and Heat Transfer. Chall. Nano Micro Scale Sci. Tech.2016, 4, 19-28. https://doi.org/10.7508/tpnms.2016.01.003
dc.relation.references[10] Ghasemi, B.; Aminossadati S.M.Brownian Motion of Nano-particles in a Triangular Enclosure with Natural Convection.Int. J. Therm. Sci. 2010, 49, 931-940. https://doi.org/10.1016/j.ijthermalsci.2009.12.017
dc.relation.references[11] Aminfar, H.; Haghgoo, M.R.Brownian Motion and Thermo-phoresis Effects on Natural Convection of Alumina–Water Nanofluid.J. Mech. Eng. Sci. 2012, 227, 100. https://doi.org/10.1177/0954406212445683
dc.relation.references[12] Haddad, Z.; Abu-Nada, E.; Oztop, H F.; Mataoui, A.Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhance-ment?Int. J. Therm. Sci. 2012, 57, 152-162. https://doi.org/10.1016/j.ijthermalsci.2012.01.016
dc.relation.references[13] Hong, J.; Kim, D.Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids.Thermochim. Acta2011, 542, 28-32. https://doi.org/10.1016/j.tca.2011.12.019
dc.relation.references[14] Shalkevich, N.; Shalkevich, A.; Bürgi, T.Thermal Conductivi-ty of Concentrated Colloids in Different States.J. Phys. Chem. 2010, 114, 9568-9572. https://doi.org/10.1021/jp910722j
dc.relation.references[15] Hong, K.S.; Hong, T.K.; Yang, H.S.Thermal Conductivity of Fe nanofluids Depending on the Cluster Size of Nanoparticles.App. Phys. Lett. 2006, 88, 031901. https://doi.org/10.1063/1.2166199
dc.relation.references[16] Wu, C.; Cho, T.J.; Xu, J.;Lee, D.; Yang, B.; Zachariah, M.R.Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids.Phys. Rev. 2010, 81, 011406. https://doi.org/10.1103/PhysRevE.81.011406
dc.relation.references[17] Sadeghi, R.; Haghshenasfard, M.; Etemad, S.Gh.;Keshavarzi, E.Theoretical Investigation of Nanoparticles Aggregation Effect on Water-Alumina Laminar Convective Heat Transfer.Int. Commun. Heat Mass Transf.2016, 72, 57-63. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.006
dc.relation.references[18] Artyukhov, A.; Sklabinskyi, V.Theoretical Analysis of Gra-nules Movement Hydrodynamics in the Vortex Granulators of Ammonium Nitrate and Carbamide Production.Chem. Chem. Tech-nol. 2015, 9, 175-180.https://doi.org/10.23939/chcht09.02.175
dc.relation.references[19] Nagursky, O.; Gumnitsky, Ya.; Vaschuk, V.Unsteady Heat Transfer during Encapsulation of Dispersed Materials in Quasi-liquefied State.Chem. Chem. Technol. 2015, 9, 497-501. https://doi.org/10.23939/chcht09.04.497
dc.relation.references[20] Kindzera, D.; Hosovskyi, R.; Atamanyuk, V.; Symak, D.Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass.Chem. Chem. Technol. 2021, 15, 118-124. https://doi.org/10.23939/chcht15.01.118
dc.relation.references[21] ANSYS CFX Solver Theory Guide r15; ANSYS Inc., 2015.
dc.relation.references[22] Schiller, L.; Naumann, A. A Drag Coefficient Corre-lation. VDI Zeitung1935, 77, 318-320.
dc.relation.references[23] Li, A.; Ahmadi, G.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol. Sci. Technol. 1992, 16, 209-226. https://doi.org/10.1080/02786829208959550
dc.relation.references[24] Evans, W.; Prasher, R.; Fish, J.;Meakin, P.; Phelan, P.; Keb-linski, P.Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanof-luids.Int. J. Heat Mass Transf.2008, 51, 1431-1438. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017
dc.relation.references[25] Nan, C.-W.; Birringer, R.; Clarke, D.R.;Gleiter, H.Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance.J. App. Phys. 1997, 81, 6692-6699. https://doi.org/10.1063/1.365209
dc.relation.referencesen[1] Kouloulias, K.; Sergis, A.; Hardalupas, Y.Sedimentation in Nanofluids During a Natural Convection Experiment.Int. J. Heat Mass Transf.2016, 101, 1193-1203. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113
dc.relation.referencesen[2] Ghadimi, A.; Saidur, R.; Metselaar, H.A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Transf.2011, 54, 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
dc.relation.referencesen[3] Hadad, Z.; Oztop, H.F.; Abu-Nada, E.;Mataoui, A.A Review on Natural Convective Heat Transfer of Nanofluids. Renew. Sust.Energ. Rev. 2012, 16, 5363-5378. https://doi.org/10.1016/j.rser.2012.04.003
dc.relation.referencesen[4] Yuan, M.; Mohebbi, R.; Rashidi, M.M.;Zhigang, Y.Simulation of Nanofluid Natural Convection in a U-Shaped Cavity Equipped by a Heating Obstacle: Effect of Cavity's Aspect Ratio. J Taiwan Inst Chem Eng2018, 93, 263-276. https://doi.org/10.1016/j.jtice.2018.07.026
dc.relation.referencesen[5] Meng, X.; Li,Y.Numerical Study of Natural Convection in a Horizontal Cylinder Filled with Water-Based Alumina Nanoflu-id.Nanoscale. Res. Let.2015, 10, 142. https://doi.org/10.1186/s11671-015-0847-x
dc.relation.referencesen[6] Ilyas, S.U.; Pendyala, R.; Narahari, M. Experimental Investiga-tion of Natural Convection Heat Transfer Characteristics in MWCNT-thermal Oil Nanofluid. J Therm Anal Calorim2019, 135, 1197-1209. https://doi.org/10.1007/s10973-018-7546-7
dc.relation.referencesen[7] Sarkar, J.A Critical Review on Convective Heat Transfer Correlations of Nanofluids.Renew. Sust. Energ. Rev. 2011, 15, 3271-3277. https://doi.org/10.1016/j.rser.2011.04.025
dc.relation.referencesen[8] Sheikhzadeh, G.A.;Ebrahim Qomi, M.; Hajialigol, N.; Fattahi, A.Numerical Study of Mixed Convection Flows in a Lid-Driven Enclosure Filled with Nanofluid Using Variable Properties.Results Phys.2012, 2, 5-13. https://doi.org/10.1016/j.rinp.2012.01.001
dc.relation.referencesen[9] Ehteram, H.R.; Abbasianarani, A.A.; Sheikhzadeh, G.A.;Aghaei, A.; Malihi,A.R.The Effect of Various Conductivity and Viscosity Models Considering Brownian Motion on Nanofluids Mixed Convection Flow and Heat Transfer. Chall. Nano Micro Scale Sci. Tech.2016, 4, 19-28. https://doi.org/10.7508/tpnms.2016.01.003
dc.relation.referencesen[10] Ghasemi, B.; Aminossadati S.M.Brownian Motion of Nano-particles in a Triangular Enclosure with Natural Convection.Int. J. Therm. Sci. 2010, 49, 931-940. https://doi.org/10.1016/j.ijthermalsci.2009.12.017
dc.relation.referencesen[11] Aminfar, H.; Haghgoo, M.R.Brownian Motion and Thermo-phoresis Effects on Natural Convection of Alumina–Water Nanofluid.J. Mech. Eng. Sci. 2012, 227, 100. https://doi.org/10.1177/0954406212445683
dc.relation.referencesen[12] Haddad, Z.; Abu-Nada, E.; Oztop, H F.; Mataoui, A.Natural Convection in Nanofluids: Are the Thermophoresis and Brownian Motion Effects Significant in Nanofluid Heat Transfer Enhance-ment?Int. J. Therm. Sci. 2012, 57, 152-162. https://doi.org/10.1016/j.ijthermalsci.2012.01.016
dc.relation.referencesen[13] Hong, J.; Kim, D.Effects of Aggregation on the Thermal Conductivity of Alumina/Water Nanofluids.Thermochim. Acta2011, 542, 28-32. https://doi.org/10.1016/j.tca.2011.12.019
dc.relation.referencesen[14] Shalkevich, N.; Shalkevich, A.; Bürgi, T.Thermal Conductivi-ty of Concentrated Colloids in Different States.J. Phys. Chem. 2010, 114, 9568-9572. https://doi.org/10.1021/jp910722j
dc.relation.referencesen[15] Hong, K.S.; Hong, T.K.; Yang, H.S.Thermal Conductivity of Fe nanofluids Depending on the Cluster Size of Nanoparticles.App. Phys. Lett. 2006, 88, 031901. https://doi.org/10.1063/1.2166199
dc.relation.referencesen[16] Wu, C.; Cho, T.J.; Xu, J.;Lee, D.; Yang, B.; Zachariah, M.R.Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids.Phys. Rev. 2010, 81, 011406. https://doi.org/10.1103/PhysRevE.81.011406
dc.relation.referencesen[17] Sadeghi, R.; Haghshenasfard, M.; Etemad, S.Gh.;Keshavarzi, E.Theoretical Investigation of Nanoparticles Aggregation Effect on Water-Alumina Laminar Convective Heat Transfer.Int. Commun. Heat Mass Transf.2016, 72, 57-63. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.006
dc.relation.referencesen[18] Artyukhov, A.; Sklabinskyi, V.Theoretical Analysis of Gra-nules Movement Hydrodynamics in the Vortex Granulators of Ammonium Nitrate and Carbamide Production.Chem. Chem. Tech-nol. 2015, 9, 175-180.https://doi.org/10.23939/chcht09.02.175
dc.relation.referencesen[19] Nagursky, O.; Gumnitsky, Ya.; Vaschuk, V.Unsteady Heat Transfer during Encapsulation of Dispersed Materials in Quasi-liquefied State.Chem. Chem. Technol. 2015, 9, 497-501. https://doi.org/10.23939/chcht09.04.497
dc.relation.referencesen[20] Kindzera, D.; Hosovskyi, R.; Atamanyuk, V.; Symak, D.Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass.Chem. Chem. Technol. 2021, 15, 118-124. https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesen[21] ANSYS CFX Solver Theory Guide r15; ANSYS Inc., 2015.
dc.relation.referencesen[22] Schiller, L.; Naumann, A. A Drag Coefficient Corre-lation. VDI Zeitung1935, 77, 318-320.
dc.relation.referencesen[23] Li, A.; Ahmadi, G.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow.Aerosol. Sci. Technol. 1992, 16, 209-226. https://doi.org/10.1080/02786829208959550
dc.relation.referencesen[24] Evans, W.; Prasher, R.; Fish, J.;Meakin, P.; Phelan, P.; Keb-linski, P.Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanof-luids.Int. J. Heat Mass Transf.2008, 51, 1431-1438. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017
dc.relation.referencesen[25] Nan, C.-W.; Birringer, R.; Clarke, D.R.;Gleiter, H.Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance.J. App. Phys. 1997, 81, 6692-6699. https://doi.org/10.1063/1.365209
dc.relation.urihttps://doi.org/10.1016/j.ijheatmasstransfer.2016.05.113
dc.relation.urihttps://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
dc.relation.urihttps://doi.org/10.1016/j.rser.2012.04.003
dc.relation.urihttps://doi.org/10.1016/j.jtice.2018.07.026
dc.relation.urihttps://doi.org/10.1186/s11671-015-0847-x
dc.relation.urihttps://doi.org/10.1007/s10973-018-7546-7
dc.relation.urihttps://doi.org/10.1016/j.rser.2011.04.025
dc.relation.urihttps://doi.org/10.1016/j.rinp.2012.01.001
dc.relation.urihttps://doi.org/10.7508/tpnms.2016.01.003
dc.relation.urihttps://doi.org/10.1016/j.ijthermalsci.2009.12.017
dc.relation.urihttps://doi.org/10.1177/0954406212445683
dc.relation.urihttps://doi.org/10.1016/j.ijthermalsci.2012.01.016
dc.relation.urihttps://doi.org/10.1016/j.tca.2011.12.019
dc.relation.urihttps://doi.org/10.1021/jp910722j
dc.relation.urihttps://doi.org/10.1063/1.2166199
dc.relation.urihttps://doi.org/10.1103/PhysRevE.81.011406
dc.relation.urihttps://doi.org/10.1016/j.icheatmasstransfer.2016.01.006
dc.relation.urihttps://doi.org/10.23939/chcht09.02.175
dc.relation.urihttps://doi.org/10.23939/chcht09.04.497
dc.relation.urihttps://doi.org/10.23939/chcht15.01.118
dc.relation.urihttps://doi.org/10.1080/02786829208959550
dc.relation.urihttps://doi.org/10.1016/j.ijheatmasstransfer.2007.10.017
dc.relation.urihttps://doi.org/10.1063/1.365209
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Zobeidi Z., Sadeghi R., Rostami M.-T., 2023
dc.subjectнанорідина
dc.subjectоксид алюмінію-вода
dc.subjectнанокластери
dc.subjectфрактальна розмірність
dc.subjectкоефіцієнт природної конвекційної теплопередачі
dc.subjectnanofluid
dc.subjectalumina-water
dc.subjectnanoclusters
dc.subjectfractal dimension
dc.subjectnatural convective heat transfer coefficient
dc.titleEffects of Brownian Motions and Fractal Structure of Nanoparticles on Natural Convection
dc.title.alternativeВплив броунівського руху та фрактальної структури наночастинок на природну конвекцію
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Zobeidi_Z-Effects_of_Brownian_Motions_617-624.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Zobeidi_Z-Effects_of_Brownian_Motions_617-624__COVER.png
Size:
571.59 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: