Studying the Effect of Butanol on the Anode Behavior of Copper in Phosphoric Acid Solutions

dc.citation.epage111
dc.citation.issue1
dc.citation.spage103
dc.contributor.affiliationNational Technical University “Kharkiv Polytechnic Institute”
dc.contributor.affiliationNational University of Civil Defence of Ukraine
dc.contributor.affiliationSimon Kuznets Kharkiv National University of Economics
dc.contributor.affiliationO. M. Beketov National University of Urban Economy in Kharkiv
dc.contributor.authorSil'chenko, Darja
dc.contributor.authorReznichenko, Ganna
dc.contributor.authorMaksimenko, Olena
dc.contributor.authorPancheva, Hanna
dc.contributor.authorMykhailova, Evgeniia
dc.contributor.authorPylypenko, Oleksii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:27Z
dc.date.available2024-01-22T10:41:27Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractПоліфенілфосфонат, що містить 4,4'-дигідроксибензофенон, синтезований як антипірен. Виявлено домішки, які можуть погіршити його властивості та термостійкість. Запропоновано очищення на основі екстракції води та гексану, внаслідок якого домішки, особливо P–Cl групи, успішно видалені без пошкодження полімеру.
dc.description.abstractA polyphenylphosphonate containing 4,4'-dihydroxybenzophenone was synthesized as a flame retardant. However, impurities were detected and may compromise its properties and thermal stability. Thus, a purification route based on water and hexane extraction with reflux was proposed. Results showed success in removing impurities, especially P–Cl groups, without damaging the polymer.
dc.format.extent103-111
dc.format.pages9
dc.identifier.citationStudying the Effect of Butanol on the Anode Behavior of Copper in Phosphoric Acid Solutions / Darja Sil'chenko, Ganna Reznichenko, Olena Maksimenko, Hanna Pancheva, Evgeniia Mykhailova, Oleksii Pylypenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 103–111.
dc.identifier.citationenStudying the Effect of Butanol on the Anode Behavior of Copper in Phosphoric Acid Solutions / Darja Sil'chenko, Ganna Reznichenko, Olena Maksimenko, Hanna Pancheva, Evgeniia Mykhailova, Oleksii Pylypenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 103–111.
dc.identifier.doidoi.org/10.23939/chcht16.01.103
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60946
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Chattopadhyay, P.; Shekunov, B.; Gibson, K. US 7745566B2, Jun. 29, 2010.
dc.relation.references[2] Rethwisch, D.; Callister, W. Ciência e Engenharia de Materiais: Uma Introdução; LTC: Rio de Janeiro, 2012.
dc.relation.references[3] Döring, M.; Pfaendner, R.: Plástico Ind., 2016, 4, 32.
dc.relation.references[4] Yemisci, F.; Yesil, S.; Aytac, A. Improvement of the Flame Retardancy of Plasticized Poly(Lactic Acid) by Means of Phosphorus-Based Flame Retardant Fillers. Fire Mater. 2017, 41, 964-972. https://doi.org/10.1002/fam.2440
dc.relation.references[5] Ren, H.; Sun, J.; Wu, B.; Zhou, Q. Synthesis and Properties of a Phosphorus-Containing Flame Retardant Epoxy Resin Based on Bis-phenoxy (3-hydroxy) Phenyl Phosphine Oxide. Polym. Degrad. Stabil. 2007, 92, 956-961. https://doi.org/10.1016/j.polymdegradstab.2007.03.006
dc.relation.references[6] Faghihi, K.; Zamani, K. Synthesis and Properties of Novel Flame-Retardant Poly(amide-imide)s Containing Phosphine Oxide Moieties in Main Chain by Microwave Irradiation. J. Appl. Polym. Sci. 2006, 101, 4263-4269. https://doi.org/10.1002/app.23580
dc.relation.references[7] Lu, S-Y.; Hamerton, I. Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers. Prog. Polym. Sci. 2002, 27, 1661-1712. https://doi.org/10.1016/S0079-6700(02)00018-7
dc.relation.references[8] Zhao, W.; Li, B.; Xu, M.; Zhang, L.; Liu, F.; Guan, L. Synthesis of a Novel Flame Retardant Containing Phosphorus and Sulfur and its Application in Polycarbonate. Polym. Eng. Sci. 2012, 52, 2327-2335. https://doi.org/10.1002/pen.23192
dc.relation.references[9] Swoboda, B.; Buonomo, S.; Leroy, E.; Lopez-Cuesta, J.-M. Fire Retardant Poly(ethylene terephthalate)/polycarbonate/triphenyl Phosphite Blends. Polym. Degrad. Stabil. 2008, 93, 910-917. https://doi.org/10.1016/j.polymdegradstab.2008.02.003
dc.relation.references[10] Pawlowski, K.H.; Schartel, B. Flame Retardancy Mechanisms of Triphenyl Phosphate, Resorcinol Bis(Diphenyl Phosphate) and Bisphenol A Bis(Diphenyl Phosphate) in Polycarbonate/Acrylonitrile–Butadiene–Styrene Blends. Polym. Int. 2007, 56, 1404-1414. https://doi.org/10.1002/pi.2290
dc.relation.references[11] Karrasch, A.; Wawrzyn, E.; Schartel, B.; Jäger, C. Solid-State NMR on Thermal and Fire Residues of Bisphenol A Polycarbonate/Silicone Acrylate Rubber/Bisphenol A Bis(Diphenyl-Phosphate)/(PC/SiR/BDP) and PC/SiR/BDP/zinc Borate (PC/SiR/BDP/ZnB) – Part I: PC Charring and the Impact of BDP and ZnB. Polym. Degrad. Stabil. 2010, 95, 2525-2533. https://doi.org/10.1016/j.polymdegradstab.2010.07.034
dc.relation.references[12] Wie, L.-L.; Wang, D.-Y.; Chen, H.-B.; Chen, L.; Wang, X.-L.; Wang, Y.-Z. Effect of a Phosphorus-Containing Flame Retardant on the Thermal Properties and Ease of Ignition of Poly(Lactic acid). Polym. Degrad. Stabil. 2011, 96, 1557-1561. https://doi.org/10.1016/j.polymdegradstab.2011.05.018
dc.relation.references[13] Li, Q.; Jiang, P.; Wie, P. Synthesis, Characteristic, and Application of New Flame Retardant Containing Phosphorus, Nitrogen, and Silicon. Polym. Eng. Sci. 2006, 46, 344-350. https://doi.org/10.1002/pen.20472
dc.relation.references[14] Kricheldorf, H.R.; Koziel, H.; Witek, E. New Polymer Syntheses, 25. Synthesis of Flame-Retardant Poly(Phenyl Phosphonate)s from Silylated Biphenyldiols and Diphenols. Die Makromol. Chemie, Rapid Commun. 1988, 9, 217-222. https://doi.org/10.1002/marc.1988.030090404
dc.relation.references[15] Dominguini, L. Síntese e Caracterização de um Polifenilfosfonato Contendo 4,4’-Dihidroxibenzofenona com Potencial Aplicação como Agente Retardante de Chamas em Materiais Poliméricos; Universidade Federal de Santa Catarina, 2015.
dc.relation.references[16] Martins, J.; Menegaro, D.; Miguel, T. et al.: 22° Congresso Brasileiro de Engenharia e Ciência dos Materiais/CBECiMat. Natal, 2016, 8027-8035.
dc.relation.references[17] Bala, M.; Ismail, N.A.; Mel, M.; Jami, M.S.; Salleh, H.M.; Amid, A. Bromelain Production: Current Trends and Perspective. Arch. des Sci. 2012, 65, 369-399.
dc.relation.references[18] Wilkie, C.; Morgan, A. Fire Retardancy of Polymeric Materials; CRC Press: New York, 2009.
dc.relation.references[19] Zagklis, D.P.; Paraskeva, C.A. Purification of Grape Marc Phenolic Compounds through Solvent Extraction, Membrane Filtration and Resin Adsorption/Desorption. Sep. Purif. Technol. 2015, 156, 328-335. https://doi.org/10.1016/j.seppur.2015.10.019
dc.relation.references[20] Zeng, Y.-H.; Luo, X.-J.; Chen, H.-S.; Chen, S.-J.; Wu, J.-P.; Mai, B.-X. Method for the Purification of Polybrominated Diphenyl Ethers in Sediment for Compound-Specific Isotope Analysis. Talanta 2013, 111, 93-97. https://doi.org/10.1016/j.talanta.2013.02.036
dc.relation.references[21] Iliescu, S.; Plesu, N.; Popa, A.; Macarie, L.; Ilia, G. Green Synthesis of Polymers Containing Phosphorus in the Main Chain. Comptes. Rendus. Chim. 2011, 14, 647-651. https://doi.org/10.1016/j.crci.2010.07.002
dc.relation.references[22] Hage, D.; Carr, J. Química Analítica e Análise Quantitativa; Pearson Prentice Hall: São Paulo, 2012.
dc.relation.references[23] Nguyen, T.-M.; Chang, S. Condon, B.; Thomas, T.P.; Azadi, P. Thermal Decomposition Reactions of Cotton Fabric Treated with Piperazine-Phosphonates Derivatives as a Flame Retardant. J. Anal. Appl. Pyrolysis 2014, 110, 122-129. https://doi.org/10.1016/j.jaap.2014.08.006
dc.relation.references[24] Feng, J.; Ge, Z.; Chai, C.; Wang, S.; Yu, D.; Wu, G., Luo, Y. Flame Retardant Modification of Waterborne Polyurethane Fabric Coating Agent with High Hydrostatic Pressure Resistance. Prog. Org. Coatings 2016, 97, 91-98. https://doi.org/10.1016/j.porgcoat.2016.03.020
dc.relation.references[25] Huo, S.; Wang, J.; Yang, S.; Wang, J.; Zhang, B.; Zhang, B.; Chen, X.; Tang, Y. Synthesis of a Novel Phosphorus-Nitrogen Type Flame Retardant COmposed of Maleimide, Triazine-Trione, and Phosphaphenanthrene and its Flame Retardant Effect on Epoxy Resin. Polym. Degrad. Stabil. 2016, 131, 106-113. https://doi.org/10.1016/j.polymdegradstab.2016.07.013
dc.relation.references[26] Saucǎ, S.; Giamberini, M.; Reina, J.A. Flame Retardant Phosphorous-Containing Polymers Obtained by Chemically Modifying poly(Vinyl alcohol). Polym. Degrad. Stabil. 2013, 98, 453-463. https://doi.org/10.1016/j.polymdegradstab.2012.07.045
dc.relation.references[27] Ding, H.; Huang, K.; Li, S.; Xu, L.; Xia, J.; Li, M.; et al.: Synthesis of a Novel Phosphorus and Nitrogen-Containing Bio-Based Polyol and its Application in Flame Retardant Polyurethane Foam. J. Anal. Appl. Pyrolysis 2017, 128, 102-113. https://doi.org/10.1016/j.jaap.2017.10.020
dc.relation.references[28] Li, N.; Jiang, G.; Zhou, G. Synthesis and Characterization of Cyclic Bisphenol A (Phenylene Phosphonate) Oligomer and its Flame Retardancy Application. Polym. Degrad. Stabil. 2015, 122, 161-168. https://doi.org/10.1016/j.polymdegradstab.2015.11.003
dc.relation.references[29] Wang, D.-Y.; Song, Y.-P.; Lin, L.; Wang, X.-L.; Wang, Y.-Z. A Novel Phosphorus-Containing Poly(Lactic Acid) toward its Flame Retardation. Polymer 2011, 52, 233-238. https://doi.org/10.1016/j.polymer.2010.11.023
dc.relation.references[30] Dominguini, L.; Martinello, K.; Peterson, M.; Riella, H.G.; Fiori, M.A. Synthesis of Polyphosphate Polymer Employing the Bisphenol (BHBF) and the Dichloride of Phenylphosphonic (PPDC): Evaluation of the Thermal Characteristics. Curr. Trends Anal. Bioanal. Chem. 2019, 3, 114-124. https://doi.org/10.36959/525/446
dc.relation.referencesen[1] Chattopadhyay, P.; Shekunov, B.; Gibson, K. US 7745566B2, Jun. 29, 2010.
dc.relation.referencesen[2] Rethwisch, D.; Callister, W. Ciência e Engenharia de Materiais: Uma Introdução; LTC: Rio de Janeiro, 2012.
dc.relation.referencesen[3] Döring, M.; Pfaendner, R., Plástico Ind., 2016, 4, 32.
dc.relation.referencesen[4] Yemisci, F.; Yesil, S.; Aytac, A. Improvement of the Flame Retardancy of Plasticized Poly(Lactic Acid) by Means of Phosphorus-Based Flame Retardant Fillers. Fire Mater. 2017, 41, 964-972. https://doi.org/10.1002/fam.2440
dc.relation.referencesen[5] Ren, H.; Sun, J.; Wu, B.; Zhou, Q. Synthesis and Properties of a Phosphorus-Containing Flame Retardant Epoxy Resin Based on Bis-phenoxy (3-hydroxy) Phenyl Phosphine Oxide. Polym. Degrad. Stabil. 2007, 92, 956-961. https://doi.org/10.1016/j.polymdegradstab.2007.03.006
dc.relation.referencesen[6] Faghihi, K.; Zamani, K. Synthesis and Properties of Novel Flame-Retardant Poly(amide-imide)s Containing Phosphine Oxide Moieties in Main Chain by Microwave Irradiation. J. Appl. Polym. Sci. 2006, 101, 4263-4269. https://doi.org/10.1002/app.23580
dc.relation.referencesen[7] Lu, S-Y.; Hamerton, I. Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers. Prog. Polym. Sci. 2002, 27, 1661-1712. https://doi.org/10.1016/S0079-6700(02)00018-7
dc.relation.referencesen[8] Zhao, W.; Li, B.; Xu, M.; Zhang, L.; Liu, F.; Guan, L. Synthesis of a Novel Flame Retardant Containing Phosphorus and Sulfur and its Application in Polycarbonate. Polym. Eng. Sci. 2012, 52, 2327-2335. https://doi.org/10.1002/pen.23192
dc.relation.referencesen[9] Swoboda, B.; Buonomo, S.; Leroy, E.; Lopez-Cuesta, J.-M. Fire Retardant Poly(ethylene terephthalate)/polycarbonate/triphenyl Phosphite Blends. Polym. Degrad. Stabil. 2008, 93, 910-917. https://doi.org/10.1016/j.polymdegradstab.2008.02.003
dc.relation.referencesen[10] Pawlowski, K.H.; Schartel, B. Flame Retardancy Mechanisms of Triphenyl Phosphate, Resorcinol Bis(Diphenyl Phosphate) and Bisphenol A Bis(Diphenyl Phosphate) in Polycarbonate/Acrylonitrile–Butadiene–Styrene Blends. Polym. Int. 2007, 56, 1404-1414. https://doi.org/10.1002/pi.2290
dc.relation.referencesen[11] Karrasch, A.; Wawrzyn, E.; Schartel, B.; Jäger, C. Solid-State NMR on Thermal and Fire Residues of Bisphenol A Polycarbonate/Silicone Acrylate Rubber/Bisphenol A Bis(Diphenyl-Phosphate)/(PC/SiR/BDP) and PC/SiR/BDP/zinc Borate (PC/SiR/BDP/ZnB) – Part I: PC Charring and the Impact of BDP and ZnB. Polym. Degrad. Stabil. 2010, 95, 2525-2533. https://doi.org/10.1016/j.polymdegradstab.2010.07.034
dc.relation.referencesen[12] Wie, L.-L.; Wang, D.-Y.; Chen, H.-B.; Chen, L.; Wang, X.-L.; Wang, Y.-Z. Effect of a Phosphorus-Containing Flame Retardant on the Thermal Properties and Ease of Ignition of Poly(Lactic acid). Polym. Degrad. Stabil. 2011, 96, 1557-1561. https://doi.org/10.1016/j.polymdegradstab.2011.05.018
dc.relation.referencesen[13] Li, Q.; Jiang, P.; Wie, P. Synthesis, Characteristic, and Application of New Flame Retardant Containing Phosphorus, Nitrogen, and Silicon. Polym. Eng. Sci. 2006, 46, 344-350. https://doi.org/10.1002/pen.20472
dc.relation.referencesen[14] Kricheldorf, H.R.; Koziel, H.; Witek, E. New Polymer Syntheses, 25. Synthesis of Flame-Retardant Poly(Phenyl Phosphonate)s from Silylated Biphenyldiols and Diphenols. Die Makromol. Chemie, Rapid Commun. 1988, 9, 217-222. https://doi.org/10.1002/marc.1988.030090404
dc.relation.referencesen[15] Dominguini, L. Síntese e Caracterização de um Polifenilfosfonato Contendo 4,4’-Dihidroxibenzofenona com Potencial Aplicação como Agente Retardante de Chamas em Materiais Poliméricos; Universidade Federal de Santa Catarina, 2015.
dc.relation.referencesen[16] Martins, J.; Menegaro, D.; Miguel, T. et al., 22° Congresso Brasileiro de Engenharia e Ciência dos Materiais/CBECiMat. Natal, 2016, 8027-8035.
dc.relation.referencesen[17] Bala, M.; Ismail, N.A.; Mel, M.; Jami, M.S.; Salleh, H.M.; Amid, A. Bromelain Production: Current Trends and Perspective. Arch. des Sci. 2012, 65, 369-399.
dc.relation.referencesen[18] Wilkie, C.; Morgan, A. Fire Retardancy of Polymeric Materials; CRC Press: New York, 2009.
dc.relation.referencesen[19] Zagklis, D.P.; Paraskeva, C.A. Purification of Grape Marc Phenolic Compounds through Solvent Extraction, Membrane Filtration and Resin Adsorption/Desorption. Sep. Purif. Technol. 2015, 156, 328-335. https://doi.org/10.1016/j.seppur.2015.10.019
dc.relation.referencesen[20] Zeng, Y.-H.; Luo, X.-J.; Chen, H.-S.; Chen, S.-J.; Wu, J.-P.; Mai, B.-X. Method for the Purification of Polybrominated Diphenyl Ethers in Sediment for Compound-Specific Isotope Analysis. Talanta 2013, 111, 93-97. https://doi.org/10.1016/j.talanta.2013.02.036
dc.relation.referencesen[21] Iliescu, S.; Plesu, N.; Popa, A.; Macarie, L.; Ilia, G. Green Synthesis of Polymers Containing Phosphorus in the Main Chain. Comptes. Rendus. Chim. 2011, 14, 647-651. https://doi.org/10.1016/j.crci.2010.07.002
dc.relation.referencesen[22] Hage, D.; Carr, J. Química Analítica e Análise Quantitativa; Pearson Prentice Hall: São Paulo, 2012.
dc.relation.referencesen[23] Nguyen, T.-M.; Chang, S. Condon, B.; Thomas, T.P.; Azadi, P. Thermal Decomposition Reactions of Cotton Fabric Treated with Piperazine-Phosphonates Derivatives as a Flame Retardant. J. Anal. Appl. Pyrolysis 2014, 110, 122-129. https://doi.org/10.1016/j.jaap.2014.08.006
dc.relation.referencesen[24] Feng, J.; Ge, Z.; Chai, C.; Wang, S.; Yu, D.; Wu, G., Luo, Y. Flame Retardant Modification of Waterborne Polyurethane Fabric Coating Agent with High Hydrostatic Pressure Resistance. Prog. Org. Coatings 2016, 97, 91-98. https://doi.org/10.1016/j.porgcoat.2016.03.020
dc.relation.referencesen[25] Huo, S.; Wang, J.; Yang, S.; Wang, J.; Zhang, B.; Zhang, B.; Chen, X.; Tang, Y. Synthesis of a Novel Phosphorus-Nitrogen Type Flame Retardant COmposed of Maleimide, Triazine-Trione, and Phosphaphenanthrene and its Flame Retardant Effect on Epoxy Resin. Polym. Degrad. Stabil. 2016, 131, 106-113. https://doi.org/10.1016/j.polymdegradstab.2016.07.013
dc.relation.referencesen[26] Saucǎ, S.; Giamberini, M.; Reina, J.A. Flame Retardant Phosphorous-Containing Polymers Obtained by Chemically Modifying poly(Vinyl alcohol). Polym. Degrad. Stabil. 2013, 98, 453-463. https://doi.org/10.1016/j.polymdegradstab.2012.07.045
dc.relation.referencesen[27] Ding, H.; Huang, K.; Li, S.; Xu, L.; Xia, J.; Li, M.; et al., Synthesis of a Novel Phosphorus and Nitrogen-Containing Bio-Based Polyol and its Application in Flame Retardant Polyurethane Foam. J. Anal. Appl. Pyrolysis 2017, 128, 102-113. https://doi.org/10.1016/j.jaap.2017.10.020
dc.relation.referencesen[28] Li, N.; Jiang, G.; Zhou, G. Synthesis and Characterization of Cyclic Bisphenol A (Phenylene Phosphonate) Oligomer and its Flame Retardancy Application. Polym. Degrad. Stabil. 2015, 122, 161-168. https://doi.org/10.1016/j.polymdegradstab.2015.11.003
dc.relation.referencesen[29] Wang, D.-Y.; Song, Y.-P.; Lin, L.; Wang, X.-L.; Wang, Y.-Z. A Novel Phosphorus-Containing Poly(Lactic Acid) toward its Flame Retardation. Polymer 2011, 52, 233-238. https://doi.org/10.1016/j.polymer.2010.11.023
dc.relation.referencesen[30] Dominguini, L.; Martinello, K.; Peterson, M.; Riella, H.G.; Fiori, M.A. Synthesis of Polyphosphate Polymer Employing the Bisphenol (BHBF) and the Dichloride of Phenylphosphonic (PPDC): Evaluation of the Thermal Characteristics. Curr. Trends Anal. Bioanal. Chem. 2019, 3, 114-124. https://doi.org/10.36959/525/446
dc.relation.urihttps://doi.org/10.1002/fam.2440
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2007.03.006
dc.relation.urihttps://doi.org/10.1002/app.23580
dc.relation.urihttps://doi.org/10.1016/S0079-6700(02)00018-7
dc.relation.urihttps://doi.org/10.1002/pen.23192
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2008.02.003
dc.relation.urihttps://doi.org/10.1002/pi.2290
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2010.07.034
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2011.05.018
dc.relation.urihttps://doi.org/10.1002/pen.20472
dc.relation.urihttps://doi.org/10.1002/marc.1988.030090404
dc.relation.urihttps://doi.org/10.1016/j.seppur.2015.10.019
dc.relation.urihttps://doi.org/10.1016/j.talanta.2013.02.036
dc.relation.urihttps://doi.org/10.1016/j.crci.2010.07.002
dc.relation.urihttps://doi.org/10.1016/j.jaap.2014.08.006
dc.relation.urihttps://doi.org/10.1016/j.porgcoat.2016.03.020
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2016.07.013
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2012.07.045
dc.relation.urihttps://doi.org/10.1016/j.jaap.2017.10.020
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2015.11.003
dc.relation.urihttps://doi.org/10.1016/j.polymer.2010.11.023
dc.relation.urihttps://doi.org/10.36959/525/446
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Sil'chenko D., Reznichenko G., Maksimenko O., Pancheva H., Mykhailova, E., Pylypenko O., 2022
dc.subjectелектрохімічне полірування
dc.subjectпасивація
dc.subjectбутиловий спирт
dc.subjectповерхнево-активна речовина
dc.subjectполяризаційна залежність
dc.subjectelectrochemical polishing
dc.subjectpassivation
dc.subjectbutyl alcohol
dc.subjectsurface-active substance
dc.subjectpolarization dependence
dc.titleStudying the Effect of Butanol on the Anode Behavior of Copper in Phosphoric Acid Solutions
dc.title.alternativeДослідження впливу бутанолу на анодну поведінку міді у розчинах фосфатної кислоти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n1_Silchenko_D-Studying_the_Effect_103-111.pdf
Size:
684.43 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n1_Silchenko_D-Studying_the_Effect_103-111__COVER.png
Size:
575.74 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: