Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites
dc.citation.epage | 65 | |
dc.citation.issue | 1 | |
dc.citation.spage | 59 | |
dc.contributor.affiliation | Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine | |
dc.contributor.author | Slisenko, Olga | |
dc.contributor.author | Bei, Iryna | |
dc.contributor.author | Budzinska, Vira | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T10:41:36Z | |
dc.date.available | 2024-01-22T10:41:36Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Показано, що органічно-неорганічні гідрофільні композити на основі поліакрилової кислоти (PAA) та полі-N-(2-аміноетил)-3-амінопропілтріметоксисилану (PAPTMS) виявляють покращену здатність до набухання при використанні PAPTMS. Встановлено, що при вмісті PAPTMS 20 % мас. тип дифузії змінюється на Super Case II. Визначено, що термостабільність та індекс термостійкості композитних гідрогелів у порівнянні з РАА є вищими. | |
dc.description.abstract | Organic-inorganic hydrophilic composites based on sodium polyacrylate (PAANa) and poly-N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (PAPTMS) showed the improved swelling capacity at incorporation of PAPTMS. Changing of non-Fickian to Super case II swelling behaviour is observed at 20 wt % PAPTMS content. Enhancing of thermal stability and heat-resistance index of composite hydrogels compared to PAA is shown. | |
dc.format.extent | 59-65 | |
dc.format.pages | 7 | |
dc.identifier.citation | Slisenko O. Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites / Olga Slisenko, Iryna Bei, Vira Budzinska // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 59–65. | |
dc.identifier.citationen | Slisenko O. Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites / Olga Slisenko, Iryna Bei, Vira Budzinska // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 59–65. | |
dc.identifier.doi | doi.org/10.23939/chcht16.01.059 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60961 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (16), 2022 | |
dc.relation.references | [1] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297-304. https://doi.org/10.23939/chcht04.04.297 | |
dc.relation.references | [2] Karg, M.; Hellweg, T. Smart Inorganic/Organic Hybrid Microgels: Synthesis and Characterisation. J. Mater. Chem. 2009, 19, 8714-8727. https://doi.org/10.1039/b820292n | |
dc.relation.references | [3] Skorohoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film Hydrogels on the Basis of Polyvinylpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chem. Chem. Technol. 2017, 11, 171-174. https://doi.org/10.23939/chcht11.02.171 | |
dc.relation.references | [4] Zadeh, M.A.; Grande, A.M.; van der Zwaag, S.; Garcia, S.J. Effect of Curing on the Mechanical and Healing Behaviour of a hybrid Dual Network: A Time Resolved Evaluation. RSC Adv. 2016, 6, 91806-91814. https://doi.org/10.1039/C6RA17799A | |
dc.relation.references | [5] Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Tanaka, Y.; Gong, J.P.; Kitamura, N.; Yasuda, K. Robust Bonding and One-Step Facile Synthesis of Tough Hydrogels with Desirable Shape by Virtue of the Double Network Structure. Polym. Chem. 2011, 2, 575-580. https://doi.org/10.1039/C0PY00272K | |
dc.relation.references | [6] Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155-1158. https://doi.org/10.1002/adma.200304907 | |
dc.relation.references | [7] Nakajima, T.; Fukuda, Y.; Kurokawa, T.; Sakai, T.; Chung, U.-I.; Gong, J.P. Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network. ACS Macro. Lett. 2013, 2, 518-521. https://doi.org/10.1021/mz4002047 | |
dc.relation.references | [8] Chen, Q.; Zhu, L.; Chen, H.; Yan, H.; Huang, L.; Yang, J.; Zheng, J. A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties. Adv. Funct. Mater. 2015, 25, 1598-1607. https://doi.org/10.1002/adfm.201404357 | |
dc.relation.references | [9] Xue, S.; Wu, Y.; Guo, M.; Liu, D.; Zhang, T.; Lei, W. Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Res. Lett. 2018, 13, 393-402. https://doi.org/10.1186/s11671-018-2800-2 | |
dc.relation.references | [10] Zhong, M.; Liu, Y.-T.; Xie, X.-M. Self-Healable, Super Tough Graphene Oxide–poly(acrylic acid) Nanocomposite Hydrogels Facilitated by Dual Cross-Linking Effects through Dynamic Ionic Interactions. J. Mater. Chem. B 2015, 3, 4001-4008. https://doi.org/10.1039/C5TB00075K | |
dc.relation.references | [11] Bhatia, M.; Rajulapati, S.B.; Sonawane, S.; Girdhar, A. Synthesis and Implication of Novel Poly(acrylic acid)/Nanosorbent Embedded Hydrogel Composite for Lead Ion Removal. Sci. Rep. 2017, 7, 16413. https://doi.org/10.1038/s41598-017-15642-9 | |
dc.relation.references | [12] Zhang, Y.; Gao, P.; Lin, Z.; Chen, Y. Preparation and Swelling Properties of a Starch-g-poly(acrylic acid)/Organo-Mordenite Hydrogel Composite. Front. Chem. Sci. Eng. 2016, 10, 147-161. https://doi.org/10.1007/s11705-015-1546-y | |
dc.relation.references | [13] Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Mechanical, Thermal and Swelling Properties of Poly(acrylic acid)–Graphene Oxide Composite Hydrogels. Soft Matter 2012, 8, 1831-1836. https://doi.org/10.1039/C1SM06970E | |
dc.relation.references | [14] Rubio, J.; Mazo, M.A.; Martín-Ilana, A.; Tamayo, A. FT-IR Study of the Hydrolysis and Condensation of 3-(2-Amino-ethylamino)propyl-trimethoxy Silane Estudio FT-IR de la Hidrólisis y Condensación del 3-(2-Amino-etilamino)propil-trimetoxi silano. Bol. Soc. Esp. Cerám. 2018, 57, 160-168. https://doi.org/10.1016/j.bsecv.2017.11.003 | |
dc.relation.references | [15] Chen, Y.; Chen, Q.; Song, L.; Li, H.-P.; Hou, F.-Z. Preparation and Characterization of Encapsulation of Europium Complex into Meso-Structured Silica Monoliths Using PEG as the Template. Micropor. Mesopor. Mat. 2009, 122, 7-12. https://doi.org/10.1016/j.micromeso.2008.12.021 | |
dc.relation.references | [16] Zhang, X.; Bhuvana, S.; Loo, L.S. Characterization of Layered Silicate Dispersion in Polymer Nanocomposites Using Fourier Transform Infrared Spectroscopy. J. Appl. Polym.Sci. 2012, 125, E175-E180. https://doi.org/10.1002/app.36266 | |
dc.relation.references | [17] Carraher, C.E. Jr. Thermal Characterizations of Inorganic and Organometallic Polymers. J. Macromol. Sci., Chem. A. 1982, 17, 1293-1356. https://doi.org/10.1080/00222338208074401 | |
dc.relation.references | [18] Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and Properties of Cyanate-Based Wave-Transparent Laminated Composites Reinforced by Dopamine/POSS Functionalized Kevlar Cloth. Compos. Sci. Technol. 2019, 169, 120-126. https://doi.org/10.1016/j.compscitech.2018.11.018 | |
dc.relation.references | [19] Alam, M.A.; Takafuji, M.; Ihara, H. Thermosensitive Hybrid Hydrogels with Silica Nanoparticle-Cross-Linked Polymer Networks. J. Colloid Interface Sci. 2013, 405, 109-117. https://doi.org/10.1016/j.jcis.2013.04.054 | |
dc.relation.references | [20] Siegel, G.M. Stuttering and Behavior Modification: Commentary. J Fluency Disord. 1993, 18, 109-114. https://doi.org/10.1016/0094-730X(83)90007-4 | |
dc.relation.references | [21] Díez-Peña, E.; Quijada-Garrido, I.; Barrales-Rienda, J.M. Hydrogen-Bonding Effects on the Dynamic Swelling of P(N-iPAAm-co-MAA) Copolymers. A Case of Autocatalytic Swelling Kinetics. Macromolecules 2002, 35, 8882-8888. https://doi.org/10.1021/ma020895v | |
dc.relation.references | [22] Li, S.; Liu, X.; Zou, T.; Xiao, W. Removal of Cationic Dye from Aqueous Solution by a Macroporous Hydrophobically Modified Poly(acrylic Acid-acrylamide) Hydrogel with Enhanced Swelling and Adsorption Properties. Clean-Soil Air Water 2010, 38, 378-386. https://doi.org/10.1002/clen.200900220 | |
dc.relation.references | [23] Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J. Synthesis, Characterization, and Swelling Behaviors of Salt-Sensitive Maize Bran–Poly(acrylic acid) Superabsorbent Hydrogel. J. Agric. Food Chem. 2014, 62, 8867-8874. https://doi.org/10.1021/jf5021279 | |
dc.relation.references | [24] Kaşgöz, H.; Durmus, A. Dye Removal by a Novel Hydrogel-Clay Nanocomposite with Enhanced Swelling Properties. Polym. Advan. Technol. 2008, 19, 838-845. https://doi.org/10.1002/pat.1045 | |
dc.relation.references | [25] Munday, D.L.; Cox, P. Compressed Xanthan and Karaya Gum Matrices: Hydration, Erosion and Drug Release Mechanisms. Int. J. Pharm. 2000, 203, 179-192. https://doi.org/10.1016/S0378-5173(00)00444-0 | |
dc.relation.referencesen | [1] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297-304. https://doi.org/10.23939/chcht04.04.297 | |
dc.relation.referencesen | [2] Karg, M.; Hellweg, T. Smart Inorganic/Organic Hybrid Microgels: Synthesis and Characterisation. J. Mater. Chem. 2009, 19, 8714-8727. https://doi.org/10.1039/b820292n | |
dc.relation.referencesen | [3] Skorohoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film Hydrogels on the Basis of Polyvinylpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chem. Chem. Technol. 2017, 11, 171-174. https://doi.org/10.23939/chcht11.02.171 | |
dc.relation.referencesen | [4] Zadeh, M.A.; Grande, A.M.; van der Zwaag, S.; Garcia, S.J. Effect of Curing on the Mechanical and Healing Behaviour of a hybrid Dual Network: A Time Resolved Evaluation. RSC Adv. 2016, 6, 91806-91814. https://doi.org/10.1039/P.6RA17799A | |
dc.relation.referencesen | [5] Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Tanaka, Y.; Gong, J.P.; Kitamura, N.; Yasuda, K. Robust Bonding and One-Step Facile Synthesis of Tough Hydrogels with Desirable Shape by Virtue of the Double Network Structure. Polym. Chem. 2011, 2, 575-580. https://doi.org/10.1039/P.0PY00272K | |
dc.relation.referencesen | [6] Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155-1158. https://doi.org/10.1002/adma.200304907 | |
dc.relation.referencesen | [7] Nakajima, T.; Fukuda, Y.; Kurokawa, T.; Sakai, T.; Chung, U.-I.; Gong, J.P. Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First Network. ACS Macro. Lett. 2013, 2, 518-521. https://doi.org/10.1021/mz4002047 | |
dc.relation.referencesen | [8] Chen, Q.; Zhu, L.; Chen, H.; Yan, H.; Huang, L.; Yang, J.; Zheng, J. A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties. Adv. Funct. Mater. 2015, 25, 1598-1607. https://doi.org/10.1002/adfm.201404357 | |
dc.relation.referencesen | [9] Xue, S.; Wu, Y.; Guo, M.; Liu, D.; Zhang, T.; Lei, W. Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Res. Lett. 2018, 13, 393-402. https://doi.org/10.1186/s11671-018-2800-2 | |
dc.relation.referencesen | [10] Zhong, M.; Liu, Y.-T.; Xie, X.-M. Self-Healable, Super Tough Graphene Oxide–poly(acrylic acid) Nanocomposite Hydrogels Facilitated by Dual Cross-Linking Effects through Dynamic Ionic Interactions. J. Mater. Chem. B 2015, 3, 4001-4008. https://doi.org/10.1039/P.5TB00075K | |
dc.relation.referencesen | [11] Bhatia, M.; Rajulapati, S.B.; Sonawane, S.; Girdhar, A. Synthesis and Implication of Novel Poly(acrylic acid)/Nanosorbent Embedded Hydrogel Composite for Lead Ion Removal. Sci. Rep. 2017, 7, 16413. https://doi.org/10.1038/s41598-017-15642-9 | |
dc.relation.referencesen | [12] Zhang, Y.; Gao, P.; Lin, Z.; Chen, Y. Preparation and Swelling Properties of a Starch-g-poly(acrylic acid)/Organo-Mordenite Hydrogel Composite. Front. Chem. Sci. Eng. 2016, 10, 147-161. https://doi.org/10.1007/s11705-015-1546-y | |
dc.relation.referencesen | [13] Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Mechanical, Thermal and Swelling Properties of Poly(acrylic acid)–Graphene Oxide Composite Hydrogels. Soft Matter 2012, 8, 1831-1836. https://doi.org/10.1039/P.1SM06970E | |
dc.relation.referencesen | [14] Rubio, J.; Mazo, M.A.; Martín-Ilana, A.; Tamayo, A. FT-IR Study of the Hydrolysis and Condensation of 3-(2-Amino-ethylamino)propyl-trimethoxy Silane Estudio FT-IR de la Hidrólisis y Condensación del 3-(2-Amino-etilamino)propil-trimetoxi silano. Bol. Soc. Esp. Cerám. 2018, 57, 160-168. https://doi.org/10.1016/j.bsecv.2017.11.003 | |
dc.relation.referencesen | [15] Chen, Y.; Chen, Q.; Song, L.; Li, H.-P.; Hou, F.-Z. Preparation and Characterization of Encapsulation of Europium Complex into Meso-Structured Silica Monoliths Using PEG as the Template. Micropor. Mesopor. Mat. 2009, 122, 7-12. https://doi.org/10.1016/j.micromeso.2008.12.021 | |
dc.relation.referencesen | [16] Zhang, X.; Bhuvana, S.; Loo, L.S. Characterization of Layered Silicate Dispersion in Polymer Nanocomposites Using Fourier Transform Infrared Spectroscopy. J. Appl. Polym.Sci. 2012, 125, E175-E180. https://doi.org/10.1002/app.36266 | |
dc.relation.referencesen | [17] Carraher, C.E. Jr. Thermal Characterizations of Inorganic and Organometallic Polymers. J. Macromol. Sci., Chem. A. 1982, 17, 1293-1356. https://doi.org/10.1080/00222338208074401 | |
dc.relation.referencesen | [18] Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and Properties of Cyanate-Based Wave-Transparent Laminated Composites Reinforced by Dopamine/POSS Functionalized Kevlar Cloth. Compos. Sci. Technol. 2019, 169, 120-126. https://doi.org/10.1016/j.compscitech.2018.11.018 | |
dc.relation.referencesen | [19] Alam, M.A.; Takafuji, M.; Ihara, H. Thermosensitive Hybrid Hydrogels with Silica Nanoparticle-Cross-Linked Polymer Networks. J. Colloid Interface Sci. 2013, 405, 109-117. https://doi.org/10.1016/j.jcis.2013.04.054 | |
dc.relation.referencesen | [20] Siegel, G.M. Stuttering and Behavior Modification: Commentary. J Fluency Disord. 1993, 18, 109-114. https://doi.org/10.1016/0094-730X(83)90007-4 | |
dc.relation.referencesen | [21] Díez-Peña, E.; Quijada-Garrido, I.; Barrales-Rienda, J.M. Hydrogen-Bonding Effects on the Dynamic Swelling of P(N-iPAAm-co-MAA) Copolymers. A Case of Autocatalytic Swelling Kinetics. Macromolecules 2002, 35, 8882-8888. https://doi.org/10.1021/ma020895v | |
dc.relation.referencesen | [22] Li, S.; Liu, X.; Zou, T.; Xiao, W. Removal of Cationic Dye from Aqueous Solution by a Macroporous Hydrophobically Modified Poly(acrylic Acid-acrylamide) Hydrogel with Enhanced Swelling and Adsorption Properties. Clean-Soil Air Water 2010, 38, 378-386. https://doi.org/10.1002/clen.200900220 | |
dc.relation.referencesen | [23] Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J. Synthesis, Characterization, and Swelling Behaviors of Salt-Sensitive Maize Bran–Poly(acrylic acid) Superabsorbent Hydrogel. J. Agric. Food Chem. 2014, 62, 8867-8874. https://doi.org/10.1021/jf5021279 | |
dc.relation.referencesen | [24] Kaşgöz, H.; Durmus, A. Dye Removal by a Novel Hydrogel-Clay Nanocomposite with Enhanced Swelling Properties. Polym. Advan. Technol. 2008, 19, 838-845. https://doi.org/10.1002/pat.1045 | |
dc.relation.referencesen | [25] Munday, D.L.; Cox, P. Compressed Xanthan and Karaya Gum Matrices: Hydration, Erosion and Drug Release Mechanisms. Int. J. Pharm. 2000, 203, 179-192. https://doi.org/10.1016/S0378-5173(00)00444-0 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.04.297 | |
dc.relation.uri | https://doi.org/10.1039/b820292n | |
dc.relation.uri | https://doi.org/10.23939/chcht11.02.171 | |
dc.relation.uri | https://doi.org/10.1039/C6RA17799A | |
dc.relation.uri | https://doi.org/10.1039/C0PY00272K | |
dc.relation.uri | https://doi.org/10.1002/adma.200304907 | |
dc.relation.uri | https://doi.org/10.1021/mz4002047 | |
dc.relation.uri | https://doi.org/10.1002/adfm.201404357 | |
dc.relation.uri | https://doi.org/10.1186/s11671-018-2800-2 | |
dc.relation.uri | https://doi.org/10.1039/C5TB00075K | |
dc.relation.uri | https://doi.org/10.1038/s41598-017-15642-9 | |
dc.relation.uri | https://doi.org/10.1007/s11705-015-1546-y | |
dc.relation.uri | https://doi.org/10.1039/C1SM06970E | |
dc.relation.uri | https://doi.org/10.1016/j.bsecv.2017.11.003 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2008.12.021 | |
dc.relation.uri | https://doi.org/10.1002/app.36266 | |
dc.relation.uri | https://doi.org/10.1080/00222338208074401 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2018.11.018 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2013.04.054 | |
dc.relation.uri | https://doi.org/10.1016/0094-730X(83)90007-4 | |
dc.relation.uri | https://doi.org/10.1021/ma020895v | |
dc.relation.uri | https://doi.org/10.1002/clen.200900220 | |
dc.relation.uri | https://doi.org/10.1021/jf5021279 | |
dc.relation.uri | https://doi.org/10.1002/pat.1045 | |
dc.relation.uri | https://doi.org/10.1016/S0378-5173(00)00444-0 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Slisenko O., Bei I., Budzinska V., 2022 | |
dc.subject | поліакрилова кислота | |
dc.subject | гідрогель | |
dc.subject | органо-неорганічні композити | |
dc.subject | набухання | |
dc.subject | polyacrylic acid | |
dc.subject | hydrogel | |
dc.subject | organic-inorganic composites | |
dc.subject | swelling behaviour | |
dc.title | Effect of Diaminosilane Derivative on Thermal and Swelling Behaviour of Acrylic Acid Based Hydrophilic Composites | |
dc.title.alternative | Вплив похідної діаміносилану на термічні властивості і здатність до набухання гідрофільних композітів на основі акрилової кислоти | |
dc.type | Article |
Files
License bundle
1 - 1 of 1