Application of SD/MNP/PEI Nanocomposite for Heavy Metals Sorption

dc.citation.epage886
dc.citation.issue4
dc.citation.spage878
dc.contributor.affiliationChemistry and Petrochemistry Research Center, Standard Research Institute
dc.contributor.affiliationUrmia University
dc.contributor.authorGhasemi, Avat
dc.contributor.authorGhasemi, Zhila
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:12Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОтримано магнітний нанокомпозит на основі тирси, магнітних наночастинок і поліетиленіміну для вилучення іонів Pb(II), Cd(II) і Cu(II) з водного розчину. Адсорбція на нанокомпозиті показала максимальне вилучення 97% для Pb(II). Досліджено адсорбційну ємність у моделі псевдодругого порядку для Pb(II) і отримано значення 1,48 мг/г.
dc.description.abstractA magnetical nanocomposite based on sawdust, magnetic nanoparticles, and polyethylenimine was prepared to remove Pb(II), Cd(II) and Cu(II) ions from an aqueous solution. Adsorption on nanocomposite exhibited a maximum removal of 97% for Pb(II)‏. The adsorption capacity in the pseudo-second-order model for Pb(II) was studied and the value of 1.48 mg/g was obtained.
dc.format.extent878-886
dc.format.pages9
dc.identifier.citationGhasemi A. Application of SD/MNP/PEI Nanocomposite for Heavy Metals Sorption / Avat Ghasemi, Zhila Ghasemi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 878–886.
dc.identifier.citationenGhasemi A. Application of SD/MNP/PEI Nanocomposite for Heavy Metals Sorption / Avat Ghasemi, Zhila Ghasemi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 878–886.
dc.identifier.doidoi.org/10.23939/chcht17.04.878
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63698
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J. Comparative and Competitive Adsorption of Pb (II) and Cu (II) Using Tetraethylenepentamine Modified Chitosan/CoFe2O4 Particles. J. Hazard. Mater. 2017, 326, 211-220. https://doi.org/10.1016/j.jhazmat.2016.12.036
dc.relation.references[2] Qi, Y.; Wang, J.; Wang, X.; Cheng, J.J.; Wen, Z. Selective Adsorption of Pb(II) from Aqueous Solution Using Porous Biosilica Extracted from Marine Diatom Biomass: Properties and Mechanism. Appl. Surf. Sci. 2017, 396, 965-977. https://doi.org/10.1016/j.apsusc.2016.11.069
dc.relation.references[3] Shachneva, E.; Archibasova D. Adsorption of Cadmium Ions from Aqueous Solutions on Modified Sorbents. Chem. Chem. Technol. 2018, 12, 182-187. https://doi.org/10.23939/chcht12.02.182
dc.relation.references[4] Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Jannesar, R.; Montazerozohori, M.; Pourebrahim, F.; Zare, M.A. Simultaneous Removal of Cd (II), Ni (II), Pb (II) and Cu (II) Ions via their Complexation with HBANSA Based on a Combined Ultrasound-Assisted and Cloud Point Adsorption Method Using CSG-BiPO4/FePO4 as Novel Adsorbent: FAAS Detection and Optimization Process. J. Colloid Interface Sci. 2017, 500, 241-252. https://doi.org/10.1016/j.jcis.2017.03.070
dc.relation.references[5] Abdelhafez, A.A.; Li, J. Removal of Pb (II) from Aqueous Solution by Using Biochars Derived from Sugar Cane Bagasse and Orange Peel. J Taiwan Inst Chem Eng 2016, 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005
dc.relation.references[6] Shirzadi, H.; Nezamzadeh-Ejhieh, A. An Efficient Modified Zeolite for Simultaneous Removal of Pb (II) and Hg (II) from Aqueous Solution. J. Mol. Liq. 2017, 230, 221-229. https://doi.org/10.1016/j.molliq.2017.01.029
dc.relation.references[7] Xu, X.; Li, H.; Wang, Q.; Li, D.; Han, X.; Yu, H. A Facile Approach for Surface Alteration of Pseudomonas putida I3 by Supplying K2SO4 into Growth Medium: Enhanced Removal of Pb (II) from Aqueous Solution. Bioresour. Technol. 2017, 232, 79-86. https://doi.org/10.1016/j.biortech.2017.02.038
dc.relation.references[8] Ince, O.K.; Ince, M.; Yonten, V.; Goksu, A. A Food Waste Utilization Study for Removing Lead (II) from Drinks. Food Chem. 2017, 214, 637-643. https://doi.org/10.1016/j.foodchem.2016.07.117
dc.relation.references[9] Ghasemi, E.; Heydari, A.; Sillanpää, M. Superparamagnetic Fe3O4@ EDTA Nanoparticles as an Efficient Adsorbent for Simultaneous Removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from Water and Soil Environmental Samples. Microchem. J. 2017, 131, 51-56. https://doi.org/10.1016/j.microc.2016.11.011
dc.relation.references[10] Fu, R.; Liu, Y.; Lou, Z.; Wang, Z.; Baig, S.A.; Xu, X. Adsorptive Removal of Pb (II) by Magnetic Activated Carbon Incorporated with Amino Groups from Aqueous Solutions. J Taiwan Inst Chem Eng 2016, 62, 247-258. https://doi.org/10.1016/j.jtice.2016.02.012
dc.relation.references[11] Parlayıcı, Ş.; Pehlivan, E. Removal of Metals by Fe3O4 Loaded Activated Carbon Prepared from plum stone (Prunus nigra): Kinetics and Modelling Study. Powder Technol. 2017, 317, 23-30. https://doi.org/10.1016/j.powtec.2017.04.021
dc.relation.references[12] Balaji, T.; Sasidharan, M.; Matsunaga, H. Naked Eye Detection of Cadmium Using Inorganic–Organic Hybrid Mesoporous Material. Anal Bioanal Chem 2006, 384, 488–494. https://doi.org/10.1007/s00216-005-0187-2
dc.relation.references[13] Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. https://doi.org/10.1016/j.jclepro.2021.129879
dc.relation.references[14] Yoo, J.-C.; Lee, C.; Lee, J.-S.; Baek, K. Simultaneous Application of Chemical Oxidation and Extraction Processes is Effective at Remediating Soil Co-contaminated with Petroleum and Heavy Metals. J. Environ. Manage. 2017, 186, 314-319. https://doi.org/10.1016/j.jenvman.2016.03.016
dc.relation.references[15] Bassam, R. Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic. Materials Today: Proceedings, 2021.
dc.relation.references[16] Mobasherpour, I.; Javaherai, M.; Salahi, E.; Ebrahimi, M.; Ashrafi, Z.; Orooji, Y. Removal of Pb(II) from Aqueous Solution by Ceramsite Prepared from Isfahan Bentonite and γ-Alumina. Chem. Chem. Technol. 2021, 15, 263–273. https://doi.org/10.23939/chcht15.02.263
dc.relation.references[17] Khademolhosseini, M.R.; Mobasherpour, I.; Ghahremani, D. Lead Adsorption by Nano-Hydroxyapatite Granules in a Fixed-Bed Column. Chem. Chem. Technol. 2018, 12, 372-378. https://doi.org/10.23939/chcht12.03.372
dc.relation.references[18] Yang, L.; Hu, W.; Chang, Z.; Liu, T.; Fang, D.; Shao, P.; Shi, H.; Luo, X. Electrochemical Recovery and High Value-Added Reutilization of Heavy Metal Ions from Wastewater: Recent Advances and Future Trends. Environ Int 2021, 152, 106512. https://doi.org/10.1016/j.envint.2021.106512
dc.relation.references[19] Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H.; Chang, J.-S. Microalgal Biosorption of Heavy Metals: A Comprehensive Bibliometric Review. J. Hazard. Mater. 2021, 402, 123431. https://doi.org/10.1016/j.jhazmat.2020.123431
dc.relation.references[20] Syukor, A.A.; Sulaiman, S.; Siddique, M.N.I.; Zularisam, A.W.; Said, M.I.M. Integration of Phytogreen for Heavy Metal Removal from Wastewater. J. Clean. Prod. 2016, 112, 3124-3131. https://doi.org/10.1016/j.jclepro.2015.10.103
dc.relation.references[21] Cao, D.-Q.; Song, X.; Fang, X.-M.; Yang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Membrane Filtration-Based Recovery of Extracellular Polymer Substances from Excess Sludge and Analysis of their Heavy Metal Ion Adsorption Properties. Chem. Eng. J. 2018, 354, 866-874. https://doi.org/10.1016/j.cej.2018.08.121
dc.relation.references[22] Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Experiment and Modeling for Flux and Permeate Concentration of Heavy Metal Ion in Adsorptive Membrane Filtration Using a Metal-Organic Framework Incorporated Nanofibrous Membrane. Chem. Eng. J. 2018, 352, 737-744. https://doi.org/10.1016/j.cej.2018.07.077
dc.relation.references[23] Yurekli, Y.; Yildirim, M.; Aydin, L.; Savran, M. Filtration and Removal Performances of Membrane Adsorbers. J. Hazard. Mater. 2017, 332, 33-41. https://doi.org/10.1016/j.jhazmat.2017.02.061
dc.relation.references[24] Pan, S.; Shen, J.; Deng, Z.; Zhang, X.; Pan, B. Metastable Nano-Zirconium Phosphate Inside Gel-Type Ion Exchanger for Enhanced Removal of Heavy Metals. J. Hazard. Mater. 2022, 423, 127158. https://doi.org/10.1016/j.jhazmat.2021.127158
dc.relation.references[25] Jia, K.; Yi, Y.; Ma, W.; Cao, Y.; Li, G.; Liu, S.; Wang, T.; An, N. Ion Flotation of Heavy Metal Ions by Using Biodegradable Biosurfactant as Collector: Application and Removal Mechanism. Miner. Eng. 2022, 176, 107338. https://doi.org/10.1016/j.mineng.2021.107338
dc.relation.references[26] Liao, Z.-L.; Zhao, Z.-C.; Zhu, J.-C.; Chen, H.; Meng, D.-Z. Complexing Characteristics between Cu(Ⅱ) Ions and Dissolved Organic Matter in Combined Sewer Overflows: Implications for the Removal of Heavy Metals by Enhanced Coagulation. Chemosphere 2021, 265, 129023. https://doi.org/10.1016/j.chemosphere.2020.129023
dc.relation.references[27] Tao, H.-C.; Lei, T.; Shi, G.; Sun, X.-N.; Wei, X.-Y.; Zhang, L.-J.; Wu, W.-M. Removal of Heavy Metals from Fly Ash Leachate Using Combined Bioelectrochemical Systems and Electrolysis. J. Hazard. Mater. 2014, 264, 1-7. https://doi.org/10.1016/j.jhazmat.2013.10.057
dc.relation.references[28] Ghasemi, A.; Ghasemi, Z. Modifying the Surface of TEOS Xerogel by Metal Ion Zn(II). Russ J Appl Chem 2017, 90, 826–829. https://doi.org/10.1134/S1070427217050251
dc.relation.references[29] Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12, 337-340. https://doi.org/10.23939/chcht12.03.337
dc.relation.references[30] Rydchuk, P.; Tymoshuk, O.S.; Oleksiv, L.V.; Chaban, T.I.; Matiychuk, V.S. Voltammetric Determination of Pt(IV) using 5-Hydroxyimino-4-imino-1,3-thiazolidine-2-one. Methods Objects Chem. Anal. 2019, 14, 130-139. https://doi.org/10.17721/moca.2019.130-139
dc.relation.references[31] Shah, J.; Jan, M.J.; Jamil, S.; Haq, A. Magnetic Particles Precipitated onto Wheat Husk for Removal of Methyl Blue from Aqueous Solution. Toxicol Environ Chem 2014, 96, 218-226. https://doi.org/10.1080/02772248.2014.929690
dc.relation.references[32] Hassani, S.; Ghasemi, A.; Fazli, M.; Haghbeen, K.; Legge, R.L. Cation‐Assisted Adsorption of Chlorophenols by Nano‐Xerogels. CJCE 2015, 93, 2214-2221. https://doi.org/10.1002/cjce.22341
dc.relation.references[33] Benkartoussa, M.; Lehocine, M.B.; Arris, S.; Meniai, H.A. Adsorption Removal of Eriochrome Black T (EBT) and Rose Bengal (RB) from Aqueous Solutions Using Bio-Sorbents Combination. Chem. Chem. Technol. 2021, 15, 299-311. https://doi.org/10.23939/chcht15.02.299
dc.relation.references[34] Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M. Application of Potato (Solanum tuberosum) Plant Wastes for the Removal of Methylene Blue and Malachite Green Dye from Aqueous Solution. Arab. J. Chem. 2016, 9, S707-S716. https://doi.org/10.1016/j.arabjc.2011.07.021
dc.relation.references[35] Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5, 1722-1731. https://doi.org/10.1021/am302883m
dc.relation.references[36] Ghasemi, A.; Sohrabi, M.R.; Motiee, F. Preparation and Characterization of a New Sawdust/MNP/PEI Nanocomposite and its Applications for Removing Pb (II) Ions from Aqueous Solution. Water Sci. Technol. 2018, 78, 2469-2480. http://dx.doi.org/10.2166/wst.2018.521
dc.relation.references[37] Zhu, H.; Wu, J.; Fang, M.; Tan, L.; Chen, C.; Alharbi, N.S.; Hayate, T.; Tan, X. Synthesis of a Core–Shell Magnetic Fe3O4–NH2@PmPD Nanocomposite for Efficient Removal of Cr(vi) from Aqueous Media. RSC Adv. 2017, 7, 36231-36241. https://doi.org/10.1039/C7RA05314B
dc.relation.references[38] Mamera, M.; van Tol, J.J.; Aghoghovwia, M.P.; Kotze, E. Sensitivity and Calibration of the FT-IR Spectroscopy on Concentration of Heavy Metal Ions in River and Borehole Water Sources. Appl. Sci. 2020, 10, 7785. https://doi.org/10.3390/app10217785
dc.relation.references[39] Foner, S. Versatile and Sensitive Vibrating‐Sample Magnetometer. Rev. Sci. Instrum. 1959, 30, 548-557
dc.relation.references[40] Huang, C.-F.; Huang, A.-C.; Hsieh, Y.-F.; Chu, F.-J.; Wan, T.-J. The effects of Magnetic Nanoparticles Embedded with SA/PVA and pH on Chemical-Mechanical Polishing Wastewater and Magnetic Particle Regeneration and Recycle. Water Resour. Ind. 2017, 18, 9-16. https://doi.org/10.1016/j.wri.2017.06.001
dc.relation.references[41] Zhang, Y.; Xu, S.; Luo, Y.; Pan, S.; Dinga, H.; Li, G. Synthesis of Mesoporous Carbon Capsules Encapsulated with Magnetite Nanoparticles and their Application in Wastewater Treatment. J. Mater. Chem. 2011, 21, 3664-3671. https://doi.org/10.1039/C0JM03727C
dc.relation.references[42] Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Fe3O4@ SiO2@ CS-TETA Functionalized Graphene Oxide for the Adsorption of Methylene Blue (MB) and Cu (II). Appl. Surf. Sci. 2017, 420, 970-981. https://doi.org/10.1016/j.apsusc.2017.05.179
dc.relation.references[43] Ali, I.; Peng, C.; Lin, D.; Saroj, D.P.; Naz, I.; Khan, Z.M.; Sultan, M.; Ali, M. Encapsulated Green Magnetic Nanoparticles for the Removal of Toxic Pb2+ and Cd2+ from Water: Development, Characterization and Application. J. Environ. Manage. 2019, 234, 273-289. https://doi.org/10.1016/j.jenvman.2018.12.112
dc.relation.references[44] Macalalad, A.; Rose Ebete, Q.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1-8. http://dx.doi.org/10.23939/chcht15.01.001
dc.relation.references[45] Farghali, A.A.; Bahgat, M.; Allah, A.E.; Khedr, M.H. Adsorption of Pb(II) Ions from Aqueous Solutions Using Copper Oxide Nanostructures. Beni-Suef University Journal of Basic and Applied Sciences 2013, 2, 61-71. https://doi.org/10.1016/j.bjbas.2013.01.001
dc.relation.references[46] Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe; 1898.
dc.relation.references[47] Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501-1507. http://dx.doi.org/10.1016/0043-1354(84)90124-6
dc.relation.references[48] Gosset, T.; Trancart, J.-L.; Thévenot, D.R. Batch Metal Removal by Peat. Kinetics and Thermodynamics. Water Res. 1986, 20, 21-26. https://doi.org/10.1016/0043-1354(86)90209-5
dc.relation.references[49] Ho, Y.-S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.references[50] Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1-8. https://doi.org/10.1016/j.cej.2009.04.042
dc.relation.references[51] Weber Jr, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. Journal of the sanitary engineering division 1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
dc.relation.referencesen[1] Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J. Comparative and Competitive Adsorption of Pb (II) and Cu (II) Using Tetraethylenepentamine Modified Chitosan/CoFe2O4 Particles. J. Hazard. Mater. 2017, 326, 211-220. https://doi.org/10.1016/j.jhazmat.2016.12.036
dc.relation.referencesen[2] Qi, Y.; Wang, J.; Wang, X.; Cheng, J.J.; Wen, Z. Selective Adsorption of Pb(II) from Aqueous Solution Using Porous Biosilica Extracted from Marine Diatom Biomass: Properties and Mechanism. Appl. Surf. Sci. 2017, 396, 965-977. https://doi.org/10.1016/j.apsusc.2016.11.069
dc.relation.referencesen[3] Shachneva, E.; Archibasova D. Adsorption of Cadmium Ions from Aqueous Solutions on Modified Sorbents. Chem. Chem. Technol. 2018, 12, 182-187. https://doi.org/10.23939/chcht12.02.182
dc.relation.referencesen[4] Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Jannesar, R.; Montazerozohori, M.; Pourebrahim, F.; Zare, M.A. Simultaneous Removal of Cd (II), Ni (II), Pb (II) and Cu (II) Ions via their Complexation with HBANSA Based on a Combined Ultrasound-Assisted and Cloud Point Adsorption Method Using CSG-BiPO4/FePO4 as Novel Adsorbent: FAAS Detection and Optimization Process. J. Colloid Interface Sci. 2017, 500, 241-252. https://doi.org/10.1016/j.jcis.2017.03.070
dc.relation.referencesen[5] Abdelhafez, A.A.; Li, J. Removal of Pb (II) from Aqueous Solution by Using Biochars Derived from Sugar Cane Bagasse and Orange Peel. J Taiwan Inst Chem Eng 2016, 61, 367-375. https://doi.org/10.1016/j.jtice.2016.01.005
dc.relation.referencesen[6] Shirzadi, H.; Nezamzadeh-Ejhieh, A. An Efficient Modified Zeolite for Simultaneous Removal of Pb (II) and Hg (II) from Aqueous Solution. J. Mol. Liq. 2017, 230, 221-229. https://doi.org/10.1016/j.molliq.2017.01.029
dc.relation.referencesen[7] Xu, X.; Li, H.; Wang, Q.; Li, D.; Han, X.; Yu, H. A Facile Approach for Surface Alteration of Pseudomonas putida I3 by Supplying K2SO4 into Growth Medium: Enhanced Removal of Pb (II) from Aqueous Solution. Bioresour. Technol. 2017, 232, 79-86. https://doi.org/10.1016/j.biortech.2017.02.038
dc.relation.referencesen[8] Ince, O.K.; Ince, M.; Yonten, V.; Goksu, A. A Food Waste Utilization Study for Removing Lead (II) from Drinks. Food Chem. 2017, 214, 637-643. https://doi.org/10.1016/j.foodchem.2016.07.117
dc.relation.referencesen[9] Ghasemi, E.; Heydari, A.; Sillanpää, M. Superparamagnetic Fe3O4@ EDTA Nanoparticles as an Efficient Adsorbent for Simultaneous Removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from Water and Soil Environmental Samples. Microchem. J. 2017, 131, 51-56. https://doi.org/10.1016/j.microc.2016.11.011
dc.relation.referencesen[10] Fu, R.; Liu, Y.; Lou, Z.; Wang, Z.; Baig, S.A.; Xu, X. Adsorptive Removal of Pb (II) by Magnetic Activated Carbon Incorporated with Amino Groups from Aqueous Solutions. J Taiwan Inst Chem Eng 2016, 62, 247-258. https://doi.org/10.1016/j.jtice.2016.02.012
dc.relation.referencesen[11] Parlayıcı, Ş.; Pehlivan, E. Removal of Metals by Fe3O4 Loaded Activated Carbon Prepared from plum stone (Prunus nigra): Kinetics and Modelling Study. Powder Technol. 2017, 317, 23-30. https://doi.org/10.1016/j.powtec.2017.04.021
dc.relation.referencesen[12] Balaji, T.; Sasidharan, M.; Matsunaga, H. Naked Eye Detection of Cadmium Using Inorganic–Organic Hybrid Mesoporous Material. Anal Bioanal Chem 2006, 384, 488–494. https://doi.org/10.1007/s00216-005-0187-2
dc.relation.referencesen[13] Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. https://doi.org/10.1016/j.jclepro.2021.129879
dc.relation.referencesen[14] Yoo, J.-C.; Lee, C.; Lee, J.-S.; Baek, K. Simultaneous Application of Chemical Oxidation and Extraction Processes is Effective at Remediating Soil Co-contaminated with Petroleum and Heavy Metals. J. Environ. Manage. 2017, 186, 314-319. https://doi.org/10.1016/j.jenvman.2016.03.016
dc.relation.referencesen[15] Bassam, R. Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic. Materials Today: Proceedings, 2021.
dc.relation.referencesen[16] Mobasherpour, I.; Javaherai, M.; Salahi, E.; Ebrahimi, M.; Ashrafi, Z.; Orooji, Y. Removal of Pb(II) from Aqueous Solution by Ceramsite Prepared from Isfahan Bentonite and g-Alumina. Chem. Chem. Technol. 2021, 15, 263–273. https://doi.org/10.23939/chcht15.02.263
dc.relation.referencesen[17] Khademolhosseini, M.R.; Mobasherpour, I.; Ghahremani, D. Lead Adsorption by Nano-Hydroxyapatite Granules in a Fixed-Bed Column. Chem. Chem. Technol. 2018, 12, 372-378. https://doi.org/10.23939/chcht12.03.372
dc.relation.referencesen[18] Yang, L.; Hu, W.; Chang, Z.; Liu, T.; Fang, D.; Shao, P.; Shi, H.; Luo, X. Electrochemical Recovery and High Value-Added Reutilization of Heavy Metal Ions from Wastewater: Recent Advances and Future Trends. Environ Int 2021, 152, 106512. https://doi.org/10.1016/j.envint.2021.106512
dc.relation.referencesen[19] Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H.; Chang, J.-S. Microalgal Biosorption of Heavy Metals: A Comprehensive Bibliometric Review. J. Hazard. Mater. 2021, 402, 123431. https://doi.org/10.1016/j.jhazmat.2020.123431
dc.relation.referencesen[20] Syukor, A.A.; Sulaiman, S.; Siddique, M.N.I.; Zularisam, A.W.; Said, M.I.M. Integration of Phytogreen for Heavy Metal Removal from Wastewater. J. Clean. Prod. 2016, 112, 3124-3131. https://doi.org/10.1016/j.jclepro.2015.10.103
dc.relation.referencesen[21] Cao, D.-Q.; Song, X.; Fang, X.-M.; Yang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Membrane Filtration-Based Recovery of Extracellular Polymer Substances from Excess Sludge and Analysis of their Heavy Metal Ion Adsorption Properties. Chem. Eng. J. 2018, 354, 866-874. https://doi.org/10.1016/j.cej.2018.08.121
dc.relation.referencesen[22] Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Experiment and Modeling for Flux and Permeate Concentration of Heavy Metal Ion in Adsorptive Membrane Filtration Using a Metal-Organic Framework Incorporated Nanofibrous Membrane. Chem. Eng. J. 2018, 352, 737-744. https://doi.org/10.1016/j.cej.2018.07.077
dc.relation.referencesen[23] Yurekli, Y.; Yildirim, M.; Aydin, L.; Savran, M. Filtration and Removal Performances of Membrane Adsorbers. J. Hazard. Mater. 2017, 332, 33-41. https://doi.org/10.1016/j.jhazmat.2017.02.061
dc.relation.referencesen[24] Pan, S.; Shen, J.; Deng, Z.; Zhang, X.; Pan, B. Metastable Nano-Zirconium Phosphate Inside Gel-Type Ion Exchanger for Enhanced Removal of Heavy Metals. J. Hazard. Mater. 2022, 423, 127158. https://doi.org/10.1016/j.jhazmat.2021.127158
dc.relation.referencesen[25] Jia, K.; Yi, Y.; Ma, W.; Cao, Y.; Li, G.; Liu, S.; Wang, T.; An, N. Ion Flotation of Heavy Metal Ions by Using Biodegradable Biosurfactant as Collector: Application and Removal Mechanism. Miner. Eng. 2022, 176, 107338. https://doi.org/10.1016/j.mineng.2021.107338
dc.relation.referencesen[26] Liao, Z.-L.; Zhao, Z.-C.; Zhu, J.-C.; Chen, H.; Meng, D.-Z. Complexing Characteristics between Cu(Ⅱ) Ions and Dissolved Organic Matter in Combined Sewer Overflows: Implications for the Removal of Heavy Metals by Enhanced Coagulation. Chemosphere 2021, 265, 129023. https://doi.org/10.1016/j.chemosphere.2020.129023
dc.relation.referencesen[27] Tao, H.-C.; Lei, T.; Shi, G.; Sun, X.-N.; Wei, X.-Y.; Zhang, L.-J.; Wu, W.-M. Removal of Heavy Metals from Fly Ash Leachate Using Combined Bioelectrochemical Systems and Electrolysis. J. Hazard. Mater. 2014, 264, 1-7. https://doi.org/10.1016/j.jhazmat.2013.10.057
dc.relation.referencesen[28] Ghasemi, A.; Ghasemi, Z. Modifying the Surface of TEOS Xerogel by Metal Ion Zn(II). Russ J Appl Chem 2017, 90, 826–829. https://doi.org/10.1134/S1070427217050251
dc.relation.referencesen[29] Khokhlov, A.; Strelko, V.; Khokhlova, L. Physico-Chemical Features of Bioactive Carbon Sorbents for Oil. Chem. Chem. Technol. 2018, 12, 337-340. https://doi.org/10.23939/chcht12.03.337
dc.relation.referencesen[30] Rydchuk, P.; Tymoshuk, O.S.; Oleksiv, L.V.; Chaban, T.I.; Matiychuk, V.S. Voltammetric Determination of Pt(IV) using 5-Hydroxyimino-4-imino-1,3-thiazolidine-2-one. Methods Objects Chem. Anal. 2019, 14, 130-139. https://doi.org/10.17721/moca.2019.130-139
dc.relation.referencesen[31] Shah, J.; Jan, M.J.; Jamil, S.; Haq, A. Magnetic Particles Precipitated onto Wheat Husk for Removal of Methyl Blue from Aqueous Solution. Toxicol Environ Chem 2014, 96, 218-226. https://doi.org/10.1080/02772248.2014.929690
dc.relation.referencesen[32] Hassani, S.; Ghasemi, A.; Fazli, M.; Haghbeen, K.; Legge, R.L. Cation‐Assisted Adsorption of Chlorophenols by Nano‐Xerogels. CJCE 2015, 93, 2214-2221. https://doi.org/10.1002/cjce.22341
dc.relation.referencesen[33] Benkartoussa, M.; Lehocine, M.B.; Arris, S.; Meniai, H.A. Adsorption Removal of Eriochrome Black T (EBT) and Rose Bengal (RB) from Aqueous Solutions Using Bio-Sorbents Combination. Chem. Chem. Technol. 2021, 15, 299-311. https://doi.org/10.23939/chcht15.02.299
dc.relation.referencesen[34] Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M. Application of Potato (Solanum tuberosum) Plant Wastes for the Removal of Methylene Blue and Malachite Green Dye from Aqueous Solution. Arab. J. Chem. 2016, 9, S707-S716. https://doi.org/10.1016/j.arabjc.2011.07.021
dc.relation.referencesen[35] Cai, H.; An, X.; Cui, J.; Li, J.; Wen, S.; Li, K.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Appl. Mater. Interfaces 2013, 5, 1722-1731. https://doi.org/10.1021/am302883m
dc.relation.referencesen[36] Ghasemi, A.; Sohrabi, M.R.; Motiee, F. Preparation and Characterization of a New Sawdust/MNP/PEI Nanocomposite and its Applications for Removing Pb (II) Ions from Aqueous Solution. Water Sci. Technol. 2018, 78, 2469-2480. http://dx.doi.org/10.2166/wst.2018.521
dc.relation.referencesen[37] Zhu, H.; Wu, J.; Fang, M.; Tan, L.; Chen, C.; Alharbi, N.S.; Hayate, T.; Tan, X. Synthesis of a Core–Shell Magnetic Fe3O4–NH2@PmPD Nanocomposite for Efficient Removal of Cr(vi) from Aqueous Media. RSC Adv. 2017, 7, 36231-36241. https://doi.org/10.1039/P.7RA05314B
dc.relation.referencesen[38] Mamera, M.; van Tol, J.J.; Aghoghovwia, M.P.; Kotze, E. Sensitivity and Calibration of the FT-IR Spectroscopy on Concentration of Heavy Metal Ions in River and Borehole Water Sources. Appl. Sci. 2020, 10, 7785. https://doi.org/10.3390/app10217785
dc.relation.referencesen[39] Foner, S. Versatile and Sensitive Vibrating‐Sample Magnetometer. Rev. Sci. Instrum. 1959, 30, 548-557
dc.relation.referencesen[40] Huang, C.-F.; Huang, A.-C.; Hsieh, Y.-F.; Chu, F.-J.; Wan, T.-J. The effects of Magnetic Nanoparticles Embedded with SA/PVA and pH on Chemical-Mechanical Polishing Wastewater and Magnetic Particle Regeneration and Recycle. Water Resour. Ind. 2017, 18, 9-16. https://doi.org/10.1016/j.wri.2017.06.001
dc.relation.referencesen[41] Zhang, Y.; Xu, S.; Luo, Y.; Pan, S.; Dinga, H.; Li, G. Synthesis of Mesoporous Carbon Capsules Encapsulated with Magnetite Nanoparticles and their Application in Wastewater Treatment. J. Mater. Chem. 2011, 21, 3664-3671. https://doi.org/10.1039/P.0JM03727C
dc.relation.referencesen[42] Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Fe3O4@ SiO2@ CS-TETA Functionalized Graphene Oxide for the Adsorption of Methylene Blue (MB) and Cu (II). Appl. Surf. Sci. 2017, 420, 970-981. https://doi.org/10.1016/j.apsusc.2017.05.179
dc.relation.referencesen[43] Ali, I.; Peng, C.; Lin, D.; Saroj, D.P.; Naz, I.; Khan, Z.M.; Sultan, M.; Ali, M. Encapsulated Green Magnetic Nanoparticles for the Removal of Toxic Pb2+ and Cd2+ from Water: Development, Characterization and Application. J. Environ. Manage. 2019, 234, 273-289. https://doi.org/10.1016/j.jenvman.2018.12.112
dc.relation.referencesen[44] Macalalad, A.; Rose Ebete, Q.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1-8. http://dx.doi.org/10.23939/chcht15.01.001
dc.relation.referencesen[45] Farghali, A.A.; Bahgat, M.; Allah, A.E.; Khedr, M.H. Adsorption of Pb(II) Ions from Aqueous Solutions Using Copper Oxide Nanostructures. Beni-Suef University Journal of Basic and Applied Sciences 2013, 2, 61-71. https://doi.org/10.1016/j.bjbas.2013.01.001
dc.relation.referencesen[46] Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe; 1898.
dc.relation.referencesen[47] Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501-1507. http://dx.doi.org/10.1016/0043-1354(84)90124-6
dc.relation.referencesen[48] Gosset, T.; Trancart, J.-L.; Thévenot, D.R. Batch Metal Removal by Peat. Kinetics and Thermodynamics. Water Res. 1986, 20, 21-26. https://doi.org/10.1016/0043-1354(86)90209-5
dc.relation.referencesen[49] Ho, Y.-S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.referencesen[50] Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1-8. https://doi.org/10.1016/j.cej.2009.04.042
dc.relation.referencesen[51] Weber Jr, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. Journal of the sanitary engineering division 1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2016.12.036
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2016.11.069
dc.relation.urihttps://doi.org/10.23939/chcht12.02.182
dc.relation.urihttps://doi.org/10.1016/j.jcis.2017.03.070
dc.relation.urihttps://doi.org/10.1016/j.jtice.2016.01.005
dc.relation.urihttps://doi.org/10.1016/j.molliq.2017.01.029
dc.relation.urihttps://doi.org/10.1016/j.biortech.2017.02.038
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2016.07.117
dc.relation.urihttps://doi.org/10.1016/j.microc.2016.11.011
dc.relation.urihttps://doi.org/10.1016/j.jtice.2016.02.012
dc.relation.urihttps://doi.org/10.1016/j.powtec.2017.04.021
dc.relation.urihttps://doi.org/10.1007/s00216-005-0187-2
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2021.129879
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2016.03.016
dc.relation.urihttps://doi.org/10.23939/chcht15.02.263
dc.relation.urihttps://doi.org/10.23939/chcht12.03.372
dc.relation.urihttps://doi.org/10.1016/j.envint.2021.106512
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2020.123431
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2015.10.103
dc.relation.urihttps://doi.org/10.1016/j.cej.2018.08.121
dc.relation.urihttps://doi.org/10.1016/j.cej.2018.07.077
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2017.02.061
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.127158
dc.relation.urihttps://doi.org/10.1016/j.mineng.2021.107338
dc.relation.urihttps://doi.org/10.1016/j.chemosphere.2020.129023
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.10.057
dc.relation.urihttps://doi.org/10.1134/S1070427217050251
dc.relation.urihttps://doi.org/10.23939/chcht12.03.337
dc.relation.urihttps://doi.org/10.17721/moca.2019.130-139
dc.relation.urihttps://doi.org/10.1080/02772248.2014.929690
dc.relation.urihttps://doi.org/10.1002/cjce.22341
dc.relation.urihttps://doi.org/10.23939/chcht15.02.299
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2011.07.021
dc.relation.urihttps://doi.org/10.1021/am302883m
dc.relation.urihttp://dx.doi.org/10.2166/wst.2018.521
dc.relation.urihttps://doi.org/10.1039/C7RA05314B
dc.relation.urihttps://doi.org/10.3390/app10217785
dc.relation.urihttps://doi.org/10.1016/j.wri.2017.06.001
dc.relation.urihttps://doi.org/10.1039/C0JM03727C
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2017.05.179
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2018.12.112
dc.relation.urihttp://dx.doi.org/10.23939/chcht15.01.001
dc.relation.urihttps://doi.org/10.1016/j.bjbas.2013.01.001
dc.relation.urihttp://dx.doi.org/10.1016/0043-1354(84)90124-6
dc.relation.urihttps://doi.org/10.1016/0043-1354(86)90209-5
dc.relation.urihttps://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.urihttps://doi.org/10.1016/j.cej.2009.04.042
dc.relation.urihttps://doi.org/10.1061/JSEDAI.0000430
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Ghasemi A., Ghasemi Z., 2023
dc.subjectтирса
dc.subjectполіетиленімін
dc.subjectнанокомпозит
dc.subjectважкі метали
dc.subjectPb(II)
dc.subjectsawdust
dc.subjectpolyethylenimine
dc.subjectnanocomposite
dc.subjectheavy metals
dc.subjectPb(II)
dc.titleApplication of SD/MNP/PEI Nanocomposite for Heavy Metals Sorption
dc.title.alternativeЗастосування нанокомпозиту SD/MNP/PEI для сорбції важких металів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Ghasemi_A-Application_of_SD_MNP_PEI_878-886.pdf
Size:
649.56 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Ghasemi_A-Application_of_SD_MNP_PEI_878-886__COVER.png
Size:
550.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: