Criteria for choosing test objects type for terrestrial laser scanners calibration

dc.citation.epage38
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage31
dc.citation.volume95
dc.contributor.affiliationКиївський національний університет будівництва та архітектури
dc.contributor.affiliationKyiv National University of Construction and Architecture
dc.contributor.authorСосса, Богдан
dc.contributor.authorSossa, Bohdan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-07T08:41:45Z
dc.date.available2023-06-07T08:41:45Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractКалібрування наземних лазерних сканерів дозволяє підвищити точність отриманих даних з ціллю дотримання нормативних вимог для проведення інженерно-геодезичних робіт. При калібруванні використовують два типи тестових об’єктів: точкові та площинні. Метою цієї роботи є оцінка, узагальнення та класифікація критеріїв вибору типу та підтипу тестових об’єктів для проведення калібрування (ТОК) наземних лазерних сканерів. Влаштування калібрувального полігону виконується з урахуванням мінімізації можливих похибок, можливості захоплення максимального поля зору і діапазону відстаней тощо. Тому розглянуто критерії вибору, систематизовано їх, та на основі проведеного аналізу розроблено рекомендації по вибору типу ТОК для практичного використання. Визначено основні критерії, що впливають на метричну якість даних калібрування. Критерій наявності площинних елементів або можливості встановлення точкових прийнято як другорядний, що розглядається після оцінки всіх інших критеріїв і визначення необхідних умов. Основними критеріями визначено незалежність від геометричної рівності поверхонь; незалежність від кута падіння лазерного променю; влаштування перекриття сканів; можливість калібрування як кутомірного, так і віддалемірного блоку сканера; можливість прив’язки до зовнішньої системи координат. Розглянуто усі зазначені критерії та проаналізовано їх вплив на результати калібрування. Для більш коректної оцінки критеріїв рекомендовано використовувати t-критерій Стьюдента для визначення складових систематичної похибки, що найбільше впливають на дані калібрування. Визначено перспективний напрям досліджень – точне обчислення координат центроїду сферичного площинного ТОК, що дозволить в повній мірі скористатися перевагами як точкового, так і площинного об’єкта калібрування. Наукова новизна проведеного дослідження полягає у систематизації критеріїв вибору тестових об’єктів калібрування наземних лазерних сканерів та попередній оцінці їх впливу на результати калібрування. Отримані результати дозволяють попередньо врахувати вихідні дані та наявні умови при оцінці критеріїв вибору типу ТОК для калібрування з метою оптимізації процесу калібрування і наступним покращенням метричної якості отриманих даних
dc.description.abstractCalibration of terrestrial laser scanners allows increasing the accuracy of the obtained data in order to comply with regulatory requirements for engineering geodesy works. Two types of test objects (TCO) are used for calibration: pointbased and plane-based. The aim of this work is to evaluate, summarize and classify the criteria for selecting the type and subtype of test objects for terrestrial laser scanners calibration. The arrangement of the calibration polygon is performed by taking into account the minimization of possible errors, the ability to capture the maximum field of view and range of distances, and so on. Therefore, the selection criteria are considered, systematized, and recommendations for choosing the type of TCO for practical use are developed being based on its analysis. The main criteria influencing the metric quality of calibration data are determined. The criterion of the presence of planar elements or the possibility of installing point elements is set as secondary, which is considered after evaluating all other criteria and determining the necessary conditions. The main criteria are independence from the geometric quality of surfaces; independence on the laser beam angle of incidence; arrangement of overlapping scans; the ability to calibrate both the angular and rangefinder scanner unit; the ability to link to an external coordinate system. All these criteria are considered and their impact on the calibration results are analyzed. For a more accurate assessment of the criteria, it is recommended to use Student's t-test to determine the components of systematic error that most affect the calibration data. A promising area of research has been identified - the exact spherical planar TCO centroid’s coordinates determination, which will allow one to take full advantage of both point-based and planar-based calibration objects. The scientific novelty of the study is to systematize the criteria for selecting test objects for calibration of terrestrial laser scanners and preliminary assessment of their impact on the calibration results. The obtained results allow taking into account the initial data and the existing conditions when evaluating the criteria for selecting the type of TCO for calibration in order to optimize the calibration process and further obtained data metric quality improvement.
dc.format.extent31-38
dc.format.pages8
dc.identifier.citationSossa B. Criteria for choosing test objects type for terrestrial laser scanners calibration / Bohdan Sossa // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 31–38.
dc.identifier.citationenSossa B. Criteria for choosing test objects type for terrestrial laser scanners calibration / Bohdan Sossa // Geodesy, Cartography and Aerial photography. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 95. — P. 31–38.
dc.identifier.doidoi.org/10.23939/istcgcap2022.95.031
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59190
dc.language.isoen
dc.publisherВидавництво Львівської політехніки,
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання (95), 2022
dc.relation.ispartofGeodesy, Cartography and Aerial photography (95), 2022
dc.relation.referencesAbbas, M. A., Setan, H., Majid, Z., K. Chong, A., Chong
dc.relation.referencesLuh, L., M. Idris, K., & Mohd Ariff, M. F. (2014).
dc.relation.referencesInvestigation of Systematic Errors for the Hybrid
dc.relation.referencesand Panoramic Scanners. Jurnal Teknologi, 71(4).
dc.relation.referenceshttps://doi.org/10.11113/jt.v71.3827.
dc.relation.referencesAlba, M., Roncoroni, F., & Scaioni, M. (2008).
dc.relation.referencesInvestigations about the accuracy oftarget measurement
dc.relation.referencesfor deformation monitoring. The International Archives
dc.relation.referencesof the Photogrammetry, Remote Sensing and Spatial
dc.relation.referencesInformation Sciences, 37, 1053–1060.
dc.relation.referencesBae, K. H., & Lichti, D. D. (2007). On-site selfcalibration using planar features for terrestrial laser
dc.relation.referencesscanners. Int. Arch. Photogramm. Remote Sens. Spat.
dc.relation.referencesInf. Sci, 36, 14–19. https://foto.aalto.fi/ls2007/final_papers/Bae_2007.pdf.
dc.relation.referencesChan, T., & Lichti, D. (2012). Cylinder-based selfcalibration of a panoramic terrestrial laser scanner.
dc.relation.referencesInt. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 39(B5), 169–174. https://www.researchgate.net/profile/Ting-Chan-6/publication/282158208_Cylinderbased_self-calibration_of_a_panoramic_terrestrial_laser_scanner/links/5605ceef08ae5e8e3f332ab7/Cylinder-based-self-calibration-of-a-panoramicterrestrial-laser-scanner.pdf.
dc.relation.referencesChow, J. C. K., Lichti, D. D., Glennie, C., & Hartzell, P.
dc.relation.references(2013). Improvement to and Comparison of
dc.relation.referencesStatic Terrestrial LiDAR Self-Calibration
dc.relation.referencesMethods. SENSORS. No. 6, 7224–7249. URL:
dc.relation.referenceshttp://www.mdpi.com/1424-8220/13/6/7224.
dc.relation.referencesChow, J., Lichti, D., & Glennie, C. (2011). Point-based
dc.relation.referencesversus plane-based self-calibration of static
dc.relation.referencesterrestrial laser scanners. Int. Arch. Photogramm.
dc.relation.referencesRemote Sens. Spat. Inf. Sci, 38(5/12), 121–126.
dc.relation.referenceshttps://scholar.google.ca/citations?view_op=view_citation&hl=en&user=ZQvSJPYAAAAJ&citation_for_view=ZQvSJPYAAAAJ:qjMakFHDy7sC.
dc.relation.referencesFörstner W., B. Wrobel, J. C. McGlone, E. M. Mikhail, J.
dc.relation.referencesBethel, R. Mullen. (2004). Mathematical concepts in
dc.relation.referencesphotogrammetry. In: Manual of Photogrammetry, 5th
dc.relation.referencesed. Bethesda, MD, USA: American Society of
dc.relation.referencesPhotogrammetry and Remote Sensing, 1151 p.
dc.relation.referencesLichti, D. D., Stewart, M. P., Tsakiri, M., & Snow, A. J.
dc.relation.references(2000). Benchmark tests on a three-dimensional laser
dc.relation.referencesscanning system. Geomatics Research Australasia, 1–24.
dc.relation.referencesLichti, D. D. (2010). Terrestrial laser scanner selfcalibration: Correlation sources and their mitigation.
dc.relation.referencesISPRS Journal of Photogrammetry and Remote
dc.relation.referencesSensing, 65(1), 93–102. https://doi.org/10.1016/j.isprsjprs.2009.09.002.
dc.relation.referencesLichti, D. D., & Licht, M. G. (2006). Experiences with
dc.relation.referencesterrestrial laser scanner modelling and accuracy
dc.relation.referencesassessment. Int. Arch. Photogramm. Remote Sens.
dc.relation.referencesSpat. Inf. Sci, 36(5), 155–160. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.4332&rep=rep1&type=pdf.
dc.relation.referencesLichti, D. D. (2007). Error modelling, calibration and
dc.relation.referencesanalysis of an AM–CW terrestrial laser scanner
dc.relation.referencessystem. ISPRS journal of photogrammetry and
dc.relation.referencesremote sensing, 61(5), 307–324. https://doi.org/10.1016/j.isprsjprs.2006.10.004.
dc.relation.referencesMiri, М., & Varshosaz, M. (2011). Evaluating parameters
dc.relation.referencesaffecting the georeferencing accuracy of terrestrial
dc.relation.referenceslaser scanners. International Archives of the
dc.relation.referencesPhotogrammetry, Remote Sensing and Spatial
dc.relation.referencesInformation Sciences. Trento (Italy). Vol. XXXVIII5/W16, 387–390. https://doi.org/10.5194/isprsarchives-XXXVIII-5-W16-387-2011.
dc.relation.referencesRietdorf, A., Gielsdorf, F., & Gruendig, L. (2004,
dc.relation.referencesNovember). A concept for the calibration of
dc.relation.referencesterrestrial laser scanners. In INGEO 2004 and FIG
dc.relation.referencesRegional Central and Eastern Conference on
dc.relation.referencesEngineering Surveying, Bratislava, Slovakia (pp. 11–13).
dc.relation.referenceshttps://m.fig.net/resources/proceedings/fig_proceedings/athens/papers/pdf/ts_26_2_gielsdorf_etal_ppt.pdf.
dc.relation.referencesReshetyuk, Y. (2009). Self-calibration and direct
dc.relation.referencesgeoreferencing in terrestrial laser scanning: Doctoral
dc.relation.referencesthesis in Infrastructure, Geodesy. Royal Institute of
dc.relation.referencesTechnology (KTH), Department of Transport and
dc.relation.referencesEconomics, Division of Geodesy. Stockholm, 174 p.
dc.relation.referenceshttps://www.diva-portal.org/smash/record.jsf?pid=diva2%3A139761&dswid=9099.
dc.relation.referencesSchultz, R. (2011). Analysis of methods and models of
dc.relation.referencesterrestrial laser scanner calibration. Kyiv. Modern
dc.relation.referencesachievements of geodetic science and production. 2, 128–133. (in Ukrainian) https://vlp.com.ua/node/7735.
dc.relation.referencesSchultz, R. (2012). Theory and Practice of Using
dc.relation.referencesTerrestrial Laser Scanning in Problems of
dc.relation.referencesEngineering Geodesy: Dissertation for the degree of
dc.relation.referencesDoctor of Sciences: 05.24.01. Kyiv National
dc.relation.referencesUniversity of Construction and Architecture. Kyiv, 372 p. (in Ukrainian).
dc.relation.referencesSchultz, R., & Sossa, B. (2015). System Calibration
dc.relation.referencesof Terrestrial Laser Scanners: Models and Methods.
dc.relation.referencesKyiv. Visnyg of Geodesy and Mapping, 2, 25–30.
dc.relation.references(in Ukrainian).
dc.relation.referencesSchulz, T. (2007). Calibration of a Terrestrial Laser
dc.relation.referencesScanner for Engineering Geodesy: Dissertation for the
dc.relation.referencesdegree of Doctor of Sciences. ETH Zurich. Zurich, 172
dc.relation.referencesp. https://doi.org/10.3929/ethz-a-005368245.
dc.relation.referencesSossa, B. (2015). Comparative estimation of the accuracy of
dc.relation.referencespoint-based targets coordinates, obtained with terrestrial
dc.relation.referenceslaser scanning. Chernihiv. Visnyk of Chernihiv State
dc.relation.referencesTechnological University, 2(78), 165–171.(in Ukrainian).
dc.relation.referencesSossa, B. (2018). Determination of optimal type and size
dc.relation.referencesof plane-based targets using in terrestrial laser
dc.relation.referencesscanners calibration. Engineering geodesy. Scientific
dc.relation.referencesand technical collection, 65, 227–238. (in Ukrainian)
dc.relation.referenceshttps://repositary.knuba.edu.ua/handle/987654321/2155.
dc.relation.referencesenAbbas, M. A., Setan, H., Majid, Z., K. Chong, A., Chong
dc.relation.referencesenLuh, L., M. Idris, K., & Mohd Ariff, M. F. (2014).
dc.relation.referencesenInvestigation of Systematic Errors for the Hybrid
dc.relation.referencesenand Panoramic Scanners. Jurnal Teknologi, 71(4).
dc.relation.referencesenhttps://doi.org/10.11113/jt.v71.3827.
dc.relation.referencesenAlba, M., Roncoroni, F., & Scaioni, M. (2008).
dc.relation.referencesenInvestigations about the accuracy oftarget measurement
dc.relation.referencesenfor deformation monitoring. The International Archives
dc.relation.referencesenof the Photogrammetry, Remote Sensing and Spatial
dc.relation.referencesenInformation Sciences, 37, 1053–1060.
dc.relation.referencesenBae, K. H., & Lichti, D. D. (2007). On-site selfcalibration using planar features for terrestrial laser
dc.relation.referencesenscanners. Int. Arch. Photogramm. Remote Sens. Spat.
dc.relation.referencesenInf. Sci, 36, 14–19. https://foto.aalto.fi/ls2007/final_papers/Bae_2007.pdf.
dc.relation.referencesenChan, T., & Lichti, D. (2012). Cylinder-based selfcalibration of a panoramic terrestrial laser scanner.
dc.relation.referencesenInt. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 39(B5), 169–174. https://www.researchgate.net/profile/Ting-Chan-6/publication/282158208_Cylinderbased_self-calibration_of_a_panoramic_terrestrial_laser_scanner/links/5605ceef08ae5e8e3f332ab7/Cylinder-based-self-calibration-of-a-panoramicterrestrial-laser-scanner.pdf.
dc.relation.referencesenChow, J. C. K., Lichti, D. D., Glennie, C., & Hartzell, P.
dc.relation.referencesen(2013). Improvement to and Comparison of
dc.relation.referencesenStatic Terrestrial LiDAR Self-Calibration
dc.relation.referencesenMethods. SENSORS. No. 6, 7224–7249. URL:
dc.relation.referencesenhttp://www.mdpi.com/1424-8220/13/6/7224.
dc.relation.referencesenChow, J., Lichti, D., & Glennie, C. (2011). Point-based
dc.relation.referencesenversus plane-based self-calibration of static
dc.relation.referencesenterrestrial laser scanners. Int. Arch. Photogramm.
dc.relation.referencesenRemote Sens. Spat. Inf. Sci, 38(5/12), 121–126.
dc.relation.referencesenhttps://scholar.google.ca/citations?view_op=view_citation&hl=en&user=ZQvSJPYAAAAJ&citation_for_view=ZQvSJPYAAAAJ:qjMakFHDy7sC.
dc.relation.referencesenFörstner W., B. Wrobel, J. C. McGlone, E. M. Mikhail, J.
dc.relation.referencesenBethel, R. Mullen. (2004). Mathematical concepts in
dc.relation.referencesenphotogrammetry. In: Manual of Photogrammetry, 5th
dc.relation.referencesened. Bethesda, MD, USA: American Society of
dc.relation.referencesenPhotogrammetry and Remote Sensing, 1151 p.
dc.relation.referencesenLichti, D. D., Stewart, M. P., Tsakiri, M., & Snow, A. J.
dc.relation.referencesen(2000). Benchmark tests on a three-dimensional laser
dc.relation.referencesenscanning system. Geomatics Research Australasia, 1–24.
dc.relation.referencesenLichti, D. D. (2010). Terrestrial laser scanner selfcalibration: Correlation sources and their mitigation.
dc.relation.referencesenISPRS Journal of Photogrammetry and Remote
dc.relation.referencesenSensing, 65(1), 93–102. https://doi.org/10.1016/j.isprsjprs.2009.09.002.
dc.relation.referencesenLichti, D. D., & Licht, M. G. (2006). Experiences with
dc.relation.referencesenterrestrial laser scanner modelling and accuracy
dc.relation.referencesenassessment. Int. Arch. Photogramm. Remote Sens.
dc.relation.referencesenSpat. Inf. Sci, 36(5), 155–160. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.4332&rep=rep1&type=pdf.
dc.relation.referencesenLichti, D. D. (2007). Error modelling, calibration and
dc.relation.referencesenanalysis of an AM–CW terrestrial laser scanner
dc.relation.referencesensystem. ISPRS journal of photogrammetry and
dc.relation.referencesenremote sensing, 61(5), 307–324. https://doi.org/10.1016/j.isprsjprs.2006.10.004.
dc.relation.referencesenMiri, M., & Varshosaz, M. (2011). Evaluating parameters
dc.relation.referencesenaffecting the georeferencing accuracy of terrestrial
dc.relation.referencesenlaser scanners. International Archives of the
dc.relation.referencesenPhotogrammetry, Remote Sensing and Spatial
dc.relation.referencesenInformation Sciences. Trento (Italy). Vol. XXXVIII5/W16, 387–390. https://doi.org/10.5194/isprsarchives-XXXVIII-5-W16-387-2011.
dc.relation.referencesenRietdorf, A., Gielsdorf, F., & Gruendig, L. (2004,
dc.relation.referencesenNovember). A concept for the calibration of
dc.relation.referencesenterrestrial laser scanners. In INGEO 2004 and FIG
dc.relation.referencesenRegional Central and Eastern Conference on
dc.relation.referencesenEngineering Surveying, Bratislava, Slovakia (pp. 11–13).
dc.relation.referencesenhttps://m.fig.net/resources/proceedings/fig_proceedings/athens/papers/pdf/ts_26_2_gielsdorf_etal_ppt.pdf.
dc.relation.referencesenReshetyuk, Y. (2009). Self-calibration and direct
dc.relation.referencesengeoreferencing in terrestrial laser scanning: Doctoral
dc.relation.referencesenthesis in Infrastructure, Geodesy. Royal Institute of
dc.relation.referencesenTechnology (KTH), Department of Transport and
dc.relation.referencesenEconomics, Division of Geodesy. Stockholm, 174 p.
dc.relation.referencesenhttps://www.diva-portal.org/smash/record.jsf?pid=diva2%3A139761&dswid=9099.
dc.relation.referencesenSchultz, R. (2011). Analysis of methods and models of
dc.relation.referencesenterrestrial laser scanner calibration. Kyiv. Modern
dc.relation.referencesenachievements of geodetic science and production. 2, 128–133. (in Ukrainian) https://vlp.com.ua/node/7735.
dc.relation.referencesenSchultz, R. (2012). Theory and Practice of Using
dc.relation.referencesenTerrestrial Laser Scanning in Problems of
dc.relation.referencesenEngineering Geodesy: Dissertation for the degree of
dc.relation.referencesenDoctor of Sciences: 05.24.01. Kyiv National
dc.relation.referencesenUniversity of Construction and Architecture. Kyiv, 372 p. (in Ukrainian).
dc.relation.referencesenSchultz, R., & Sossa, B. (2015). System Calibration
dc.relation.referencesenof Terrestrial Laser Scanners: Models and Methods.
dc.relation.referencesenKyiv. Visnyg of Geodesy and Mapping, 2, 25–30.
dc.relation.referencesen(in Ukrainian).
dc.relation.referencesenSchulz, T. (2007). Calibration of a Terrestrial Laser
dc.relation.referencesenScanner for Engineering Geodesy: Dissertation for the
dc.relation.referencesendegree of Doctor of Sciences. ETH Zurich. Zurich, 172
dc.relation.referencesenp. https://doi.org/10.3929/ethz-a-005368245.
dc.relation.referencesenSossa, B. (2015). Comparative estimation of the accuracy of
dc.relation.referencesenpoint-based targets coordinates, obtained with terrestrial
dc.relation.referencesenlaser scanning. Chernihiv. Visnyk of Chernihiv State
dc.relation.referencesenTechnological University, 2(78), 165–171.(in Ukrainian).
dc.relation.referencesenSossa, B. (2018). Determination of optimal type and size
dc.relation.referencesenof plane-based targets using in terrestrial laser
dc.relation.referencesenscanners calibration. Engineering geodesy. Scientific
dc.relation.referencesenand technical collection, 65, 227–238. (in Ukrainian)
dc.relation.referencesenhttps://repositary.knuba.edu.ua/handle/987654321/2155.
dc.relation.urihttps://doi.org/10.11113/jt.v71.3827
dc.relation.urihttps://foto.aalto.fi/ls2007/final_papers/Bae_2007.pdf
dc.relation.urihttps://www.researchgate.net/profile/Ting-Chan-6/publication/282158208_Cylinderbased_self-calibration_of_a_panoramic_terrestrial_laser_scanner/links/5605ceef08ae5e8e3f332ab7/Cylinder-based-self-calibration-of-a-panoramicterrestrial-laser-scanner.pdf
dc.relation.urihttp://www.mdpi.com/1424-8220/13/6/7224
dc.relation.urihttps://scholar.google.ca/citations?view_op=view_citation&hl=en&user=ZQvSJPYAAAAJ&citation_for_view=ZQvSJPYAAAAJ:qjMakFHDy7sC
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2009.09.002
dc.relation.urihttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.4332&rep=rep1&type=pdf
dc.relation.urihttps://doi.org/10.1016/j.isprsjprs.2006.10.004
dc.relation.urihttps://doi.org/10.5194/isprsarchives-XXXVIII-5-W16-387-2011
dc.relation.urihttps://m.fig.net/resources/proceedings/fig_proceedings/athens/papers/pdf/ts_26_2_gielsdorf_etal_ppt.pdf
dc.relation.urihttps://www.diva-portal.org/smash/record.jsf?pid=diva2%3A139761&dswid=9099
dc.relation.urihttps://vlp.com.ua/node/7735
dc.relation.urihttps://doi.org/10.3929/ethz-a-005368245
dc.relation.urihttps://repositary.knuba.edu.ua/handle/987654321/2155
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectназемне лазерне сканування
dc.subjectкалібрування
dc.subjectтестові об’єкти калібрування (ТОК)
dc.subjectточкові ТОК
dc.subjectплощинні ТОК
dc.subjectплоскі ТОК
dc.subjectсферичні ТОК
dc.subjectциліндричні ТОК
dc.subjectвибір ТОК для калібрування
dc.subjectterrestrial laser scanning
dc.subjectcalibration
dc.subjecttest calibration objects (TCO)
dc.subjectpoint-based TCO
dc.subjectplane-based TCO
dc.subjectplanar TCO
dc.subjectspherical TCO
dc.subjectcylindrical TCO
dc.subjectTCO type choosing
dc.subject.udc517.7
dc.titleCriteria for choosing test objects type for terrestrial laser scanners calibration
dc.title.alternativeКритерії вибору типу тестових об’єктів для проведення калібрування наземних лазерних сканерів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v95_Sossa_B-Criteria_for_choosing_test_31-38.pdf
Size:
600.62 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v95_Sossa_B-Criteria_for_choosing_test_31-38__COVER.png
Size:
502.73 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: