Emissions of sulfur dioxide and dust at coal power plants of Ukraine

dc.citation.epage153
dc.citation.issue3
dc.citation.spage145
dc.contributor.affiliationThermal Energy Technology Institute of National Academy of Sciences of Ukraine
dc.contributor.affiliationNational University of Food Technologies
dc.contributor.affiliationUN Environmental Expert
dc.contributor.authorVolchyn, Igor
dc.contributor.authorHaponych, Liudmyla
dc.contributor.authorBizek, Vladislav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T07:13:56Z
dc.date.available2023-05-04T07:13:56Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractWe developed an algorithm for the estimation of harmful emissions depending on the amount of supplied electricity and heat at coal-fired TPP. By this algorithm, we calculated the emissions of SO2 and dust at Ukrainian TPP in 2017 and 2018. The values of SO2 concentrations in dry flue gases at Ukrainian TPP in 2017 and 2018 depending on fuel brand, sulfur content, and method of slag removal in the boiler were in the range of 1520–5900 mg/Nm3, and the general gross emissions of SO2 were about 620 thousand t. The specific emissions of SO2 were at a level of 14–15 g/kWh of supplied electric energy as compared with 1.2 g/kWh – the level for coal-fired plants of EU countries. At Ukrainian TPP, about 100 thousand t of dust were thrown away. The dust concentrations in flue gases at Ukrainian TPP were equal to 300–1800 mg/Nm3. The values of specific dust emissions per 1 kWh of supplied electricity constituted 0.8–5.1 g against 0.2 g/kWh characteristic of present-day coal-fired TPP of EU countries. The level of gross emissions of SO2 and dust at the TPP of Ukraine did not exceed the maximum possible according to the National Emission Reduction Plan of Pollutants from Large Combustion Plants.
dc.format.extent145-153
dc.format.pages9
dc.identifier.citationVolchyn I. Emissions of sulfur dioxide and dust at coal power plants of Ukraine / Igor Volchyn, Liudmyla Haponych, Vladislav Bizek // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 145–153.
dc.identifier.citationenVolchyn I. Emissions of sulfur dioxide and dust at coal power plants of Ukraine / Igor Volchyn, Liudmyla Haponych, Vladislav Bizek // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 145–153.
dc.identifier.doidoi.org/10.23939/ep2021.03.145
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58991
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 3 (6), 2021
dc.relation.referencesDai, Н., Ma, D., Zhu, R., Sun, B., & He, J. (2019). Impact of
dc.relation.referencesControl Measureson Nitrogen Oxides, Sulfur Dioxide and
dc.relation.referencesParticulate Matter Emissions from Coal-Fired Power
dc.relation.referencesPlantsin Anhui Province, China. Atmosphere, 10(1), 35.
dc.relation.referencesdoi: https://doi.org/10.3390/atmos10010035.
dc.relation.referencesCoal Unit Characteristics. (2019). National Electric Energy
dc.relation.referencesData System (NEEDS v6 December 2019) frame (EPA, 2019) with additional information EPA, February 10, 2020. Retrieved from https://www.epa.gov/sites/production/files/2020-03/coalunitcharacteristics2019.xls
dc.relation.referencesClimate analytics. (2020). Coal phase-out – global and regional
dc.relation.referencesperspective. Retrieved from https://climateanalytics.org/briefings/coal-phase-out
dc.relation.referencesEur-lex.(2010). Directive 2010/75/EU of the European
dc.relation.referencesParliament and of the Council of 24 November 2010 on
dc.relation.referencesindustrial emissions (integrated pollution prevention and
dc.relation.referencescontrol). Retrieved from http://data.europa.eu/eli/dir/2010/75/oj.
dc.relation.referencesGouw, J. A., Parrish, D. D., Frost, G. J.,& Trainer, M. (2014).
dc.relation.referencesReduced emissions of CO2, NOx, and SO2 from U.S.
dc.relation.referencespower plants owing to switch from coal to natural gas with
dc.relation.referencescombine dcycle technology. Earth's Future, 2(2),75–82.
dc.relation.referencesdoi: https://doi.org/10.1002/2013EF000196.
dc.relation.referencesGraham, D.Р., Salway, G., & Stack, R.P. (2007). Gas Flow
dc.relation.referencesRate. Calculation for Emissions Reporting – A Guide
dc.relation.referencesto Current Best Practice for the Operators of Coal
dc.relation.referencesFired Boilers– PT/07/LC422/R. Retrieved from
dc.relation.referenceshttp://www.vgb.org/vgbmultimedia/rp338_flue_gas.pdf.
dc.relation.referencesGraham, D., Harnevie, H., van Beek, R., & Blank, F. (2012).
dc.relation.referencesValidated methods for flue gas flow rate calculation with
dc.relation.referencesreference to EN 12952-15. NyKoping, Ratcliffen-on-Soar,
dc.relation.referencesArnhem. Retrieved from https://www.vgb.org/vgbmultimedia/rp338_flue_gas-p-5560.pdf
dc.relation.referencesLecomte, Т., Ferreríadela Fuente, J. F., Neuwahl, F., Canova, M.,
dc.relation.referencesPinasseau, A., Jankov, I., Brinkmann, T., Roudier, S., &
dc.relation.referencesSancho, L. D. (2017). Best Available Techniques (BAT).
dc.relation.referencesReference Document for Large Combustion Plants,
dc.relation.referencesEUR 28836 EN. Seville: European Commission. doi:
dc.relation.referenceshttps://doi.org/10.2760/949.
dc.relation.referencesMalovanyy, M., Mozghovyi, V., Kutsman, O., & Baran, S.
dc.relation.references(2019). Increasing the efficiency of the use of thermal
dc.relation.referencespower plants waste in road construction and repair.
dc.relation.referencesEnvironmental Problems, 4(4), 179–184. doi: https://doi.org/10.23939/ep2019.04.179
dc.relation.referencesMinistry of Energy of Ukraine. (2020). Reports on the
dc.relation.referencesimplementation of NPSV for 2018–2020 . Retrieved from
dc.relation.referenceshttp://mpe.kmu.gov.ua/minugol/control/uk/publish/article?art_id=245522821&cat_id=245255478
dc.relation.referencesMitin I., Kindzera D., & Atamanyuk V. (2021). Application of
dc.relation.referencesslag from thermal power plant for the production of porous
dc.relation.referencesfiller. Environmental Problems, 6(2). doi: https://doi.org/10.23939/ep2021.02.110
dc.relation.referencesNational Emissions Reduction Plan for Large Combustion
dc.relation.referencesPlants:Adopted by the direction of Cabinet of Ministers
dc.relation.referencesof Ukraine 2017, №796-r (2017). Retrieved from
dc.relation.referenceshttps://zakon.rada.gov.ua/laws/show/796-2017-%D1%80#Text
dc.relation.referencesRen, Y., Wu, Q., Wen, M., Li, G., Xu, L., Ding, X., Li, Z.,
dc.relation.referencesTang, Y., Wang, Y., Li, Q., & Wang, S. (2020). Sulfur
dc.relation.referencestrioxide emissions from coal-fired power plants in China
dc.relation.referencesand implications on future control. Fuel, 261. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.fuel.2019.116438.
dc.relation.referencesTechnological standards permitted emissions prohibits the use
dc.relation.referencesof thermal installations, rated thermal capacity exceeding 50 MW: Nakaz Ministerstva ekologii ta pryrodnykh
dc.relation.referencesresursiv Ukrainy 2018, No. 541 (2018). Retrieved from
dc.relation.referenceshttps://zakon.rada.gov.ua/laws/show/z0290-18
dc.relation.referencesVolchyn, I. A., & Haponych, L.S. (2014). Estimate of the
dc.relation.referencessulfur dioxid econcentration at thermal power plants fired
dc.relation.referencesby Donetsk coal. Power technology and Engineering, 3(48), 218–221. doi: https://doi.org/10.1007/s10749-014-0511-0.
dc.relation.referencesVolchyn, I.A., & Haponych, L.S. (2016). Engineering method
dc.relation.referencesfor calculating the parameters of flue gas parameters of
dc.relation.referencescoal-fired thermal power plants based on solid fuel
dc.relation.referencescharacteristics. Ukrainian Journal of Food Science, 4(2), 327–338. doi: https://doi.org/10.24263/2310-1008-2016-4-2-14.
dc.relation.referencesVolchyn, I. A., & Haponych, L. S. (2019). Estimation of
dc.relation.referencespollutants emissions at ukrainian thermal power plants.
dc.relation.referencesThe Problems of General Energy, 4(59), 45–-53. doi:
dc.relation.referenceshttps://doi.org/10.15407/pge2019.04.045
dc.relation.referencesVolchyn, I., Dunayevska, N., Haponych, L. Chernyavskyi, M. V.,
dc.relation.referencesTopal, A.I., & Zasyadko, Ya.I. (2013). Prospects of the
dc.relation.referencesImplementation of Clean Coal Technologies in the Energy
dc.relation.referencesSector of Ukraine. Kyiv: GNOZIS.
dc.relation.referencesVykydy zabrudniuiuchykh rechovyn v atmosferne povitria vid
dc.relation.referencesenergetychnykh ustanovok. Metodyka vyznachennia, GKD 34.02.305–2002 (2002).
dc.relation.referencesWu, R., Liu, F., Tong, D., Zheng, Y., Lei, Y., Hong, Ch., Li, M.,
dc.relation.referencesLiu, J., Zheng, B., & Bo, Y. (2019). Air quality and health
dc.relation.referencesbenefits of China's emission control policieson coal-fired
dc.relation.referencespower plants during 2005–2020. Environmental Research
dc.relation.referencesLetters, 14(9), 094016.
dc.relation.referencesenDai, N., Ma, D., Zhu, R., Sun, B., & He, J. (2019). Impact of
dc.relation.referencesenControl Measureson Nitrogen Oxides, Sulfur Dioxide and
dc.relation.referencesenParticulate Matter Emissions from Coal-Fired Power
dc.relation.referencesenPlantsin Anhui Province, China. Atmosphere, 10(1), 35.
dc.relation.referencesendoi: https://doi.org/10.3390/atmos10010035.
dc.relation.referencesenCoal Unit Characteristics. (2019). National Electric Energy
dc.relation.referencesenData System (NEEDS v6 December 2019) frame (EPA, 2019) with additional information EPA, February 10, 2020. Retrieved from https://www.epa.gov/sites/production/files/2020-03/coalunitcharacteristics2019.xls
dc.relation.referencesenClimate analytics. (2020). Coal phase-out – global and regional
dc.relation.referencesenperspective. Retrieved from https://climateanalytics.org/briefings/coal-phase-out
dc.relation.referencesenEur-lex.(2010). Directive 2010/75/EU of the European
dc.relation.referencesenParliament and of the Council of 24 November 2010 on
dc.relation.referencesenindustrial emissions (integrated pollution prevention and
dc.relation.referencesencontrol). Retrieved from http://data.europa.eu/eli/dir/2010/75/oj.
dc.relation.referencesenGouw, J. A., Parrish, D. D., Frost, G. J.,& Trainer, M. (2014).
dc.relation.referencesenReduced emissions of CO2, NOx, and SO2 from U.S.
dc.relation.referencesenpower plants owing to switch from coal to natural gas with
dc.relation.referencesencombine dcycle technology. Earth's Future, 2(2),75–82.
dc.relation.referencesendoi: https://doi.org/10.1002/2013EF000196.
dc.relation.referencesenGraham, D.R., Salway, G., & Stack, R.P. (2007). Gas Flow
dc.relation.referencesenRate. Calculation for Emissions Reporting – A Guide
dc.relation.referencesento Current Best Practice for the Operators of Coal
dc.relation.referencesenFired Boilers– PT/07/LC422/R. Retrieved from
dc.relation.referencesenhttp://www.vgb.org/vgbmultimedia/rp338_flue_gas.pdf.
dc.relation.referencesenGraham, D., Harnevie, H., van Beek, R., & Blank, F. (2012).
dc.relation.referencesenValidated methods for flue gas flow rate calculation with
dc.relation.referencesenreference to EN 12952-15. NyKoping, Ratcliffen-on-Soar,
dc.relation.referencesenArnhem. Retrieved from https://www.vgb.org/vgbmultimedia/rp338_flue_gas-p-5560.pdf
dc.relation.referencesenLecomte, T., Ferreríadela Fuente, J. F., Neuwahl, F., Canova, M.,
dc.relation.referencesenPinasseau, A., Jankov, I., Brinkmann, T., Roudier, S., &
dc.relation.referencesenSancho, L. D. (2017). Best Available Techniques (BAT).
dc.relation.referencesenReference Document for Large Combustion Plants,
dc.relation.referencesenEUR 28836 EN. Seville: European Commission. doi:
dc.relation.referencesenhttps://doi.org/10.2760/949.
dc.relation.referencesenMalovanyy, M., Mozghovyi, V., Kutsman, O., & Baran, S.
dc.relation.referencesen(2019). Increasing the efficiency of the use of thermal
dc.relation.referencesenpower plants waste in road construction and repair.
dc.relation.referencesenEnvironmental Problems, 4(4), 179–184. doi: https://doi.org/10.23939/ep2019.04.179
dc.relation.referencesenMinistry of Energy of Ukraine. (2020). Reports on the
dc.relation.referencesenimplementation of NPSV for 2018–2020 . Retrieved from
dc.relation.referencesenhttp://mpe.kmu.gov.ua/minugol/control/uk/publish/article?art_id=245522821&cat_id=245255478
dc.relation.referencesenMitin I., Kindzera D., & Atamanyuk V. (2021). Application of
dc.relation.referencesenslag from thermal power plant for the production of porous
dc.relation.referencesenfiller. Environmental Problems, 6(2). doi: https://doi.org/10.23939/ep2021.02.110
dc.relation.referencesenNational Emissions Reduction Plan for Large Combustion
dc.relation.referencesenPlants:Adopted by the direction of Cabinet of Ministers
dc.relation.referencesenof Ukraine 2017, No 796-r (2017). Retrieved from
dc.relation.referencesenhttps://zakon.rada.gov.ua/laws/show/796-2017-%D1%80#Text
dc.relation.referencesenRen, Y., Wu, Q., Wen, M., Li, G., Xu, L., Ding, X., Li, Z.,
dc.relation.referencesenTang, Y., Wang, Y., Li, Q., & Wang, S. (2020). Sulfur
dc.relation.referencesentrioxide emissions from coal-fired power plants in China
dc.relation.referencesenand implications on future control. Fuel, 261. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.fuel.2019.116438.
dc.relation.referencesenTechnological standards permitted emissions prohibits the use
dc.relation.referencesenof thermal installations, rated thermal capacity exceeding 50 MW: Nakaz Ministerstva ekologii ta pryrodnykh
dc.relation.referencesenresursiv Ukrainy 2018, No. 541 (2018). Retrieved from
dc.relation.referencesenhttps://zakon.rada.gov.ua/laws/show/z0290-18
dc.relation.referencesenVolchyn, I. A., & Haponych, L.S. (2014). Estimate of the
dc.relation.referencesensulfur dioxid econcentration at thermal power plants fired
dc.relation.referencesenby Donetsk coal. Power technology and Engineering, 3(48), 218–221. doi: https://doi.org/10.1007/s10749-014-0511-0.
dc.relation.referencesenVolchyn, I.A., & Haponych, L.S. (2016). Engineering method
dc.relation.referencesenfor calculating the parameters of flue gas parameters of
dc.relation.referencesencoal-fired thermal power plants based on solid fuel
dc.relation.referencesencharacteristics. Ukrainian Journal of Food Science, 4(2), 327–338. doi: https://doi.org/10.24263/2310-1008-2016-4-2-14.
dc.relation.referencesenVolchyn, I. A., & Haponych, L. S. (2019). Estimation of
dc.relation.referencesenpollutants emissions at ukrainian thermal power plants.
dc.relation.referencesenThe Problems of General Energy, 4(59), 45–-53. doi:
dc.relation.referencesenhttps://doi.org/10.15407/pge2019.04.045
dc.relation.referencesenVolchyn, I., Dunayevska, N., Haponych, L. Chernyavskyi, M. V.,
dc.relation.referencesenTopal, A.I., & Zasyadko, Ya.I. (2013). Prospects of the
dc.relation.referencesenImplementation of Clean Coal Technologies in the Energy
dc.relation.referencesenSector of Ukraine. Kyiv: GNOZIS.
dc.relation.referencesenVykydy zabrudniuiuchykh rechovyn v atmosferne povitria vid
dc.relation.referencesenenergetychnykh ustanovok. Metodyka vyznachennia, GKD 34.02.305–2002 (2002).
dc.relation.referencesenWu, R., Liu, F., Tong, D., Zheng, Y., Lei, Y., Hong, Ch., Li, M.,
dc.relation.referencesenLiu, J., Zheng, B., & Bo, Y. (2019). Air quality and health
dc.relation.referencesenbenefits of China's emission control policieson coal-fired
dc.relation.referencesenpower plants during 2005–2020. Environmental Research
dc.relation.referencesenLetters, 14(9), 094016.
dc.relation.urihttps://doi.org/10.3390/atmos10010035
dc.relation.urihttps://www.epa.gov/sites/production/files/2020-03/coalunitcharacteristics2019.xls
dc.relation.urihttps://climateanalytics.org/briefings/coal-phase-out
dc.relation.urihttp://data.europa.eu/eli/dir/2010/75/oj
dc.relation.urihttps://doi.org/10.1002/2013EF000196
dc.relation.urihttp://www.vgb.org/vgbmultimedia/rp338_flue_gas.pdf
dc.relation.urihttps://www.vgb.org/vgbmultimedia/rp338_flue_gas-p-5560.pdf
dc.relation.urihttps://doi.org/10.2760/949
dc.relation.urihttps://doi.org/10.23939/ep2019.04.179
dc.relation.urihttp://mpe.kmu.gov.ua/minugol/control/uk/publish/article?art_id=245522821&cat_id=245255478
dc.relation.urihttps://doi.org/10.23939/ep2021.02.110
dc.relation.urihttps://zakon.rada.gov.ua/laws/show/796-2017-%D1%80#Text
dc.relation.urihttps://doi.org/10.1016/j.fuel.2019.116438
dc.relation.urihttps://zakon.rada.gov.ua/laws/show/z0290-18
dc.relation.urihttps://doi.org/10.1007/s10749-014-0511-0
dc.relation.urihttps://doi.org/10.24263/2310-1008-2016-4-2-14
dc.relation.urihttps://doi.org/10.15407/pge2019.04.045
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Volchyn I., Haponych L., Bizek V., 2021
dc.subjectthermal power plant
dc.subjectflue gas
dc.subjectharmful emissions
dc.subjectsulfur dioxide
dc.subjectdust
dc.subjectemission limit value
dc.titleEmissions of sulfur dioxide and dust at coal power plants of Ukraine
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v6n3_Volchyn_I-Emissions_of_sulfur_dioxide_145-153.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v6n3_Volchyn_I-Emissions_of_sulfur_dioxide_145-153__COVER.png
Size:
425.18 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: