Strengthening of Mullite Ceramics with Silver Reinforcements
| dc.citation.epage | 6 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Хімія та хімічна технологія | |
| dc.citation.spage | 1 | |
| dc.citation.volume | 18 | |
| dc.contributor.affiliation | Universidad Autónoma Metropolitana | |
| dc.contributor.affiliation | Laboratorio de Microscopía Electrónica de Ultra Alta Resolución | |
| dc.contributor.affiliation | Industrial Materials Research and Development Laboratory | |
| dc.contributor.affiliation | Universidad Autónoma del Estado de México | |
| dc.contributor.affiliation | Universidad Politécnica de Victoria | |
| dc.contributor.author | Arellano-Mora, Santiago | |
| dc.contributor.author | Osorio-Ramos, Jessica | |
| dc.contributor.author | Refugio-Garcia, Elizabeth | |
| dc.contributor.author | Térres-Rojas, Eduardo | |
| dc.contributor.author | Miranda-Hernández, José Guadalupe | |
| dc.contributor.author | Rocha-Rangel, Enrique | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-24T06:19:48Z | |
| dc.date.created | 2024-03-01 | |
| dc.date.issued | 2024-03-01 | |
| dc.description.abstract | Композити на основі муліту, армовані частинками срібла, отримано порошковими методами. Спікання композитів проводили після інтенсивного змішування порошків прекурсорів. Виявлено, що добавки срібла мають значний вплив на механічні властивості, оскільки міцність на злам збільшилася до 350 %. Мікроструктура композитів представлена зернами з морфологією пластівців. | |
| dc.description.abstract | Mullite-based composites reinforced with silver particles were obtained by powder techniques. Composites were sintered after an intense mixing of the precursor powders. It was found that additions of silver have a strong effect on the mechanical properties, since fracture toughness was increased up to 350 %. The microstructure of composites presents grains with flakes morphology. | |
| dc.format.extent | 1-6 | |
| dc.format.pages | 6 | |
| dc.identifier.citation | Strengthening of Mullite Ceramics with Silver Reinforcements / Santiago Arellano-Mora, Jessica Osorio-Ramos, Elizabeth Refugio-Garcia, Eduardo Térres-Rojas, José Guadalupe Miranda-Hernández, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 1–6. | |
| dc.identifier.citationen | Strengthening of Mullite Ceramics with Silver Reinforcements / Santiago Arellano-Mora, Jessica Osorio-Ramos, Elizabeth Refugio-Garcia, Eduardo Térres-Rojas, José Guadalupe Miranda-Hernández, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 1–6. | |
| dc.identifier.doi | doi.org/10.23939/chcht18.01.001 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111771 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія та хімічна технологія, 1 (18), 2024 | |
| dc.relation.ispartof | Chemistry & Chemical Technology, 1 (18), 2024 | |
| dc.relation.references | [1] Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x | |
| dc.relation.references | [2] Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol. % Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410–1414. https://doi.org/10.1016/j.matlet.2003.09.037 | |
| dc.relation.references | [3] Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106–111. https://doi.org/10.1016/j.powtec.2004.11.004 | |
| dc.relation.references | [4] Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo Mechanical Properties: A Machine Learning Approach. Trans. Indian Inst. Met. 2020, 73, 3059–3069. https://doi.org/10.1007/s12666-020-02108-2 | |
| dc.relation.references | [5] Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68–74. https://doi.org/10.4028/www.scientific.net/AMR.853.68 | |
| dc.relation.references | [6] Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al–Ti–B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319–1324. https://doi.org/10.1016/j.ceramint.2006.04.014 | |
| dc.relation.references | [7] Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Mechanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 45, 23693–23701. https://doi.org/10.1016/j.ceramint.2021.05.146 | |
| dc.relation.references | [8] Konopka, K.; Szafran, M.J. Fabrication of Al2O3–Al Composites by Infiltration Method and their Characteristic. Mater. Proc. Technol. 2006, 175, 266–270. https://doi.org/10.1016/j.jmatprotec.2005.04.046 | |
| dc.relation.references | [9] Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339–351. https://doi.org/10.2298/SOS1903339M | |
| dc.relation.references | [10] Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391–401. https://doi.org/10.3390/recycling4030039 | |
| dc.relation.references | [11] Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135–137. https://doi.org/10.3989/cyv.2004.v43.i2.485 | |
| dc.relation.references | [12] Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51–86. | |
| dc.relation.references | [13] Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83–93. https://www.redalyc.org/articulo.oa?id=323632128005 | |
| dc.relation.references | [14] Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273–278. https://doi.org/10.2298/SOS1503273Y | |
| dc.relation.references | [15] Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci. Sinter. 2019, 51, 175–187. https://doi.org/10.2298/SOS1902175T | |
| dc.relation.references | [16] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x | |
| dc.relation.references | [17] ASTM E384 – 16, Standard Test Method for Microindentation Hardness of Materials, 2016. | |
| dc.relation.references | [18] Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004. | |
| dc.relation.references | [19] Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215–224. https://doi.org/10.1016/j.jart.2016.05.002 | |
| dc.relation.references | [20] http://rruff.info/Mullite/R141103 [accessed sept 30, 2022]. | |
| dc.relation.references | [21] Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010 | |
| dc.relation.references | [22] Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041-2045. https://doi.org/10.1246/bcsj.60.2041 | |
| dc.relation.references | [23] Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271–274. https://doi.org/10.1111/j.1151-2916.1994.tb06989.x | |
| dc.relation.references | [24] Mullite Engineering Properties. http://accuratus.com/mullite.html, 2013 [accessed sept 30, 2022]. | |
| dc.relation.referencesen | [1] Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x | |
| dc.relation.referencesen | [2] Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol. % Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410–1414. https://doi.org/10.1016/j.matlet.2003.09.037 | |
| dc.relation.referencesen | [3] Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106–111. https://doi.org/10.1016/j.powtec.2004.11.004 | |
| dc.relation.referencesen | [4] Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo Mechanical Properties: A Machine Learning Approach. Trans. Indian Inst. Met. 2020, 73, 3059–3069. https://doi.org/10.1007/s12666-020-02108-2 | |
| dc.relation.referencesen | [5] Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68–74. https://doi.org/10.4028/www.scientific.net/AMR.853.68 | |
| dc.relation.referencesen | [6] Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al–Ti–B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319–1324. https://doi.org/10.1016/j.ceramint.2006.04.014 | |
| dc.relation.referencesen | [7] Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Mechanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 45, 23693–23701. https://doi.org/10.1016/j.ceramint.2021.05.146 | |
| dc.relation.referencesen | [8] Konopka, K.; Szafran, M.J. Fabrication of Al2O3–Al Composites by Infiltration Method and their Characteristic. Mater. Proc. Technol. 2006, 175, 266–270. https://doi.org/10.1016/j.jmatprotec.2005.04.046 | |
| dc.relation.referencesen | [9] Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339–351. https://doi.org/10.2298/SOS1903339M | |
| dc.relation.referencesen | [10] Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391–401. https://doi.org/10.3390/recycling4030039 | |
| dc.relation.referencesen | [11] Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135–137. https://doi.org/10.3989/cyv.2004.v43.i2.485 | |
| dc.relation.referencesen | [12] Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51–86. | |
| dc.relation.referencesen | [13] Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83–93. https://www.redalyc.org/articulo.oa?id=323632128005 | |
| dc.relation.referencesen | [14] Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273–278. https://doi.org/10.2298/SOS1503273Y | |
| dc.relation.referencesen | [15] Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci. Sinter. 2019, 51, 175–187. https://doi.org/10.2298/SOS1902175T | |
| dc.relation.referencesen | [16] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x | |
| dc.relation.referencesen | [17] ASTM E384 – 16, Standard Test Method for Microindentation Hardness of Materials, 2016. | |
| dc.relation.referencesen | [18] Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004. | |
| dc.relation.referencesen | [19] Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215–224. https://doi.org/10.1016/j.jart.2016.05.002 | |
| dc.relation.referencesen | [20] http://rruff.info/Mullite/R141103 [accessed sept 30, 2022]. | |
| dc.relation.referencesen | [21] Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010 | |
| dc.relation.referencesen | [22] Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041-2045. https://doi.org/10.1246/bcsj.60.2041 | |
| dc.relation.referencesen | [23] Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271–274. https://doi.org/10.1111/j.1151-2916.1994.tb06989.x | |
| dc.relation.referencesen | [24] Mullite Engineering Properties. http://accuratus.com/mullite.html, 2013 [accessed sept 30, 2022]. | |
| dc.relation.uri | http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x | |
| dc.relation.uri | https://doi.org/10.1016/j.matlet.2003.09.037 | |
| dc.relation.uri | https://doi.org/10.1016/j.powtec.2004.11.004 | |
| dc.relation.uri | https://doi.org/10.1007/s12666-020-02108-2 | |
| dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMR.853.68 | |
| dc.relation.uri | https://doi.org/10.1016/j.ceramint.2006.04.014 | |
| dc.relation.uri | https://doi.org/10.1016/j.ceramint.2021.05.146 | |
| dc.relation.uri | https://doi.org/10.1016/j.jmatprotec.2005.04.046 | |
| dc.relation.uri | https://doi.org/10.2298/SOS1903339M | |
| dc.relation.uri | https://doi.org/10.3390/recycling4030039 | |
| dc.relation.uri | https://doi.org/10.3989/cyv.2004.v43.i2.485 | |
| dc.relation.uri | https://www.redalyc.org/articulo.oa?id=323632128005 | |
| dc.relation.uri | https://doi.org/10.2298/SOS1503273Y | |
| dc.relation.uri | https://doi.org/10.2298/SOS1902175T | |
| dc.relation.uri | https://doi.org/10.1111/j.1151-2916.1976.tb10991.x | |
| dc.relation.uri | https://doi.org/10.1016/j.jart.2016.05.002 | |
| dc.relation.uri | http://rruff.info/Mullite/R141103 | |
| dc.relation.uri | https://doi.org/10.1016/j.micromeso.2008.06.010 | |
| dc.relation.uri | https://doi.org/10.1246/bcsj.60.2041 | |
| dc.relation.uri | https://doi.org/10.1111/j.1151-2916.1994.tb06989.x | |
| dc.relation.uri | http://accuratus.com/mullite.html | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Arellano-Mora S., Osorio-Ramos J., Refugio-Garcia E., Térres-Rojas E., Miranda-Hernández J.G., Rocha-Rangel E., 2024 | |
| dc.subject | муліт | |
| dc.subject | керамічні композити | |
| dc.subject | армування сріблом | |
| dc.subject | міцність на злам | |
| dc.subject | mullite | |
| dc.subject | ceramic composites | |
| dc.subject | silver reinforcements | |
| dc.subject | fracture toughness | |
| dc.title | Strengthening of Mullite Ceramics with Silver Reinforcements | |
| dc.title.alternative | Зміцнення мулітової кераміки армуванням сріблом | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1