Strengthening of Mullite Ceramics with Silver Reinforcements

dc.citation.epage6
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage1
dc.citation.volume18
dc.contributor.affiliationUniversidad Autónoma Metropolitana
dc.contributor.affiliationLaboratorio de Microscopía Electrónica de Ultra Alta Resolución
dc.contributor.affiliationIndustrial Materials Research and Development Laboratory
dc.contributor.affiliationUniversidad Autónoma del Estado de México
dc.contributor.affiliationUniversidad Politécnica de Victoria
dc.contributor.authorArellano-Mora, Santiago
dc.contributor.authorOsorio-Ramos, Jessica
dc.contributor.authorRefugio-Garcia, Elizabeth
dc.contributor.authorTérres-Rojas, Eduardo
dc.contributor.authorMiranda-Hernández, José Guadalupe
dc.contributor.authorRocha-Rangel, Enrique
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:48Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractКомпозити на основі муліту, армовані частинками срібла, отримано порошковими методами. Спікання композитів проводили після інтенсивного змішування порошків прекурсорів. Виявлено, що добавки срібла мають значний вплив на механічні властивості, оскільки міцність на злам збільшилася до 350 %. Мікроструктура композитів представлена зернами з морфологією пластівців.
dc.description.abstractMullite-based composites reinforced with silver particles were obtained by powder techniques. Composites were sintered after an intense mixing of the precursor powders. It was found that additions of silver have a strong effect on the mechanical properties, since fracture toughness was increased up to 350 %. The microstructure of composites presents grains with flakes morphology.
dc.format.extent1-6
dc.format.pages6
dc.identifier.citationStrengthening of Mullite Ceramics with Silver Reinforcements / Santiago Arellano-Mora, Jessica Osorio-Ramos, Elizabeth Refugio-Garcia, Eduardo Térres-Rojas, José Guadalupe Miranda-Hernández, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 1–6.
dc.identifier.citationenStrengthening of Mullite Ceramics with Silver Reinforcements / Santiago Arellano-Mora, Jessica Osorio-Ramos, Elizabeth Refugio-Garcia, Eduardo Térres-Rojas, José Guadalupe Miranda-Hernández, Enrique Rocha-Rangel // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 1–6.
dc.identifier.doidoi.org/10.23939/chcht18.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111771
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x
dc.relation.references[2] Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol. % Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410–1414. https://doi.org/10.1016/j.matlet.2003.09.037
dc.relation.references[3] Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106–111. https://doi.org/10.1016/j.powtec.2004.11.004
dc.relation.references[4] Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo Mechanical Properties: A Machine Learning Approach. Trans. Indian Inst. Met. 2020, 73, 3059–3069. https://doi.org/10.1007/s12666-020-02108-2
dc.relation.references[5] Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68–74. https://doi.org/10.4028/www.scientific.net/AMR.853.68
dc.relation.references[6] Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al–Ti–B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319–1324. https://doi.org/10.1016/j.ceramint.2006.04.014
dc.relation.references[7] Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Mechanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 45, 23693–23701. https://doi.org/10.1016/j.ceramint.2021.05.146
dc.relation.references[8] Konopka, K.; Szafran, M.J. Fabrication of Al2O3–Al Composites by Infiltration Method and their Characteristic. Mater. Proc. Technol. 2006, 175, 266–270. https://doi.org/10.1016/j.jmatprotec.2005.04.046
dc.relation.references[9] Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339–351. https://doi.org/10.2298/SOS1903339M
dc.relation.references[10] Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391–401. https://doi.org/10.3390/recycling4030039
dc.relation.references[11] Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135–137. https://doi.org/10.3989/cyv.2004.v43.i2.485
dc.relation.references[12] Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51–86.
dc.relation.references[13] Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83–93. https://www.redalyc.org/articulo.oa?id=323632128005
dc.relation.references[14] Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273–278. https://doi.org/10.2298/SOS1503273Y
dc.relation.references[15] Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci. Sinter. 2019, 51, 175–187. https://doi.org/10.2298/SOS1902175T
dc.relation.references[16] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.references[17] ASTM E384 – 16, Standard Test Method for Microindentation Hardness of Materials, 2016.
dc.relation.references[18] Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004.
dc.relation.references[19] Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215–224. https://doi.org/10.1016/j.jart.2016.05.002
dc.relation.references[20] http://rruff.info/Mullite/R141103 [accessed sept 30, 2022].
dc.relation.references[21] Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010
dc.relation.references[22] Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041-2045. https://doi.org/10.1246/bcsj.60.2041
dc.relation.references[23] Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271–274. https://doi.org/10.1111/j.1151-2916.1994.tb06989.x
dc.relation.references[24] Mullite Engineering Properties. http://accuratus.com/mullite.html, 2013 [accessed sept 30, 2022].
dc.relation.referencesen[1] Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313–323. http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x
dc.relation.referencesen[2] Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol. % Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410–1414. https://doi.org/10.1016/j.matlet.2003.09.037
dc.relation.referencesen[3] Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106–111. https://doi.org/10.1016/j.powtec.2004.11.004
dc.relation.referencesen[4] Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo Mechanical Properties: A Machine Learning Approach. Trans. Indian Inst. Met. 2020, 73, 3059–3069. https://doi.org/10.1007/s12666-020-02108-2
dc.relation.referencesen[5] Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68–74. https://doi.org/10.4028/www.scientific.net/AMR.853.68
dc.relation.referencesen[6] Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al–Ti–B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319–1324. https://doi.org/10.1016/j.ceramint.2006.04.014
dc.relation.referencesen[7] Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Mechanical Properties and Suitability Towards Armor Applications – Alumina Composites. Ceram. Int. 2021, 45, 23693–23701. https://doi.org/10.1016/j.ceramint.2021.05.146
dc.relation.referencesen[8] Konopka, K.; Szafran, M.J. Fabrication of Al2O3–Al Composites by Infiltration Method and their Characteristic. Mater. Proc. Technol. 2006, 175, 266–270. https://doi.org/10.1016/j.jmatprotec.2005.04.046
dc.relation.referencesen[9] Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339–351. https://doi.org/10.2298/SOS1903339M
dc.relation.referencesen[10] Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391–401. https://doi.org/10.3390/recycling4030039
dc.relation.referencesen[11] Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135–137. https://doi.org/10.3989/cyv.2004.v43.i2.485
dc.relation.referencesen[12] Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51–86.
dc.relation.referencesen[13] Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83–93. https://www.redalyc.org/articulo.oa?id=323632128005
dc.relation.referencesen[14] Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273–278. https://doi.org/10.2298/SOS1503273Y
dc.relation.referencesen[15] Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci. Sinter. 2019, 51, 175–187. https://doi.org/10.2298/SOS1902175T
dc.relation.referencesen[16] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.referencesen[17] ASTM E384 – 16, Standard Test Method for Microindentation Hardness of Materials, 2016.
dc.relation.referencesen[18] Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004.
dc.relation.referencesen[19] Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215–224. https://doi.org/10.1016/j.jart.2016.05.002
dc.relation.referencesen[20] http://rruff.info/Mullite/R141103 [accessed sept 30, 2022].
dc.relation.referencesen[21] Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75–90. https://doi.org/10.1016/j.micromeso.2008.06.010
dc.relation.referencesen[22] Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041-2045. https://doi.org/10.1246/bcsj.60.2041
dc.relation.referencesen[23] Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271–274. https://doi.org/10.1111/j.1151-2916.1994.tb06989.x
dc.relation.referencesen[24] Mullite Engineering Properties. http://accuratus.com/mullite.html, 2013 [accessed sept 30, 2022].
dc.relation.urihttp://dx.doi.org/10.1111/j.1744-7402.2008.02224.x
dc.relation.urihttps://doi.org/10.1016/j.matlet.2003.09.037
dc.relation.urihttps://doi.org/10.1016/j.powtec.2004.11.004
dc.relation.urihttps://doi.org/10.1007/s12666-020-02108-2
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.853.68
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2006.04.014
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2021.05.146
dc.relation.urihttps://doi.org/10.1016/j.jmatprotec.2005.04.046
dc.relation.urihttps://doi.org/10.2298/SOS1903339M
dc.relation.urihttps://doi.org/10.3390/recycling4030039
dc.relation.urihttps://doi.org/10.3989/cyv.2004.v43.i2.485
dc.relation.urihttps://www.redalyc.org/articulo.oa?id=323632128005
dc.relation.urihttps://doi.org/10.2298/SOS1503273Y
dc.relation.urihttps://doi.org/10.2298/SOS1902175T
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.1976.tb10991.x
dc.relation.urihttps://doi.org/10.1016/j.jart.2016.05.002
dc.relation.urihttp://rruff.info/Mullite/R141103
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2008.06.010
dc.relation.urihttps://doi.org/10.1246/bcsj.60.2041
dc.relation.urihttps://doi.org/10.1111/j.1151-2916.1994.tb06989.x
dc.relation.urihttp://accuratus.com/mullite.html
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Arellano-Mora S., Osorio-Ramos J., Refugio-Garcia E., Térres-Rojas E., Miranda-Hernández J.G., Rocha-Rangel E., 2024
dc.subjectмуліт
dc.subjectкерамічні композити
dc.subjectармування сріблом
dc.subjectміцність на злам
dc.subjectmullite
dc.subjectceramic composites
dc.subjectsilver reinforcements
dc.subjectfracture toughness
dc.titleStrengthening of Mullite Ceramics with Silver Reinforcements
dc.title.alternativeЗміцнення мулітової кераміки армуванням сріблом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Arellano-Mora_S-Strengthening_of_Mullite_1-6.pdf
Size:
4.21 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Arellano-Mora_S-Strengthening_of_Mullite_1-6__COVER.png
Size:
526.88 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: