Algorithmic implementation of an exact three-point difference scheme for a certain class of singular Sturm–Liouville problems

dc.citation.epage357
dc.citation.issue11
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage344
dc.citation.volume1
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationТрірський університет
dc.contributor.affiliationЖешувський технологічний університет
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics of the National Academy of Sciences of Ukraine
dc.contributor.affiliationTrier University
dc.contributor.affiliationRzeszow University of Technology
dc.contributor.authorХоменко, Н. В.
dc.contributor.authorКутнів, М. В.
dc.contributor.authorKhomenko, N. V.
dc.contributor.authorKutniv, M. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T07:44:24Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractУ цій статті розроблено нову нову алгоритмічну реалізацію точних триточкових різницевих схем для певного класу сингулярних задач Штурма-Ліувілля. Ми демонструємо, що обчислення коефіцієнтів точної схеми в будь-якому вузлі сіткихй вимагає розв'язання двох допоміжних задач Коші для лінійних звичайних диференціальних рівнянь другого порядку: однієї задачі на інтервалі[хj − 1,хй] (вперед) та одна задача на інтервалі[хй,хj + 1] (назад). Доведено теорему про стійкість коефіцієнтів для точної триточкової різницевої схеми.
dc.description.abstractIn this article, we present a new algorithmic implementation of exact three-point difference schemes for a certain class of singular Sturm–Liouville problems. We demonstrate that computing the coefficients of the exact scheme at any grid node xj requires solving two auxiliary Cauchy problems for the second-order linear ordinary differential equations: one problem on the interval [xj−1,xj] (forward) and one problem on the interval [xj,xj+1] (backward). We have also proven the coefficient stability theorem for the exact three-point difference scheme.
dc.format.extent344-357
dc.format.pages14
dc.identifier.citationKhomenko N. V. Algorithmic implementation of an exact three-point difference scheme for a certain class of singular Sturm–Liouville problems / N. V. Khomenko, M. V. Kutniv // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 344–357.
dc.identifier.citationenKhomenko N. V. Algorithmic implementation of an exact three-point difference scheme for a certain class of singular Sturm–Liouville problems / N. V. Khomenko, M. V. Kutniv // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 11. — P. 344–357.
dc.identifier.doi10.23939/mmc2024.01.344
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113794
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 11 (1), 2024
dc.relation.ispartofMathematical Modeling and Computing, 11 (1), 2024
dc.relation.references[1] Tikhonov A. N., Samarskii A. A. Homogeneous difference schemes. USSR Computational Mathematics and Mathematical Physics. 1 (1), 5–67 (1962).
dc.relation.references[2] Tikhonov A. N., Samarskii A. A. Homogeneous difference schemes of a high degree of accuracy on nonuniform nets. USSR Computational Mathematics and Mathematical Physics. 1 (3), 465–486 (1962).
dc.relation.references[3] Prikazchikov V. G. High-accuracy homogeneous difference schemes for the Sturm–Liouville problem. USSR Computational Mathematics and Mathematical Physics. 9 (2), 76–106 (1969).
dc.relation.references[4] Makarov V. L., Gavrilyuk I. P., Luzhnykh V. M. Exact and truncated difference schemes for a class of degenerate Sturm–Liouville problems. Differentsial’nye Uravneniya. 16 (7), 1265–1275 (1980).
dc.relation.references[5] Gavrilyuk I. P., Hermann M., Makarov V. L., Kutniv M. V. Exact and truncated difference schemes for boundary value ODEs. International Series of Numerical Mathematics. 159. Birkh¨auser Basel (2011).
dc.relation.references[6] Kunynets A. V., Kutniv M. V., Khomenko N. V. Algorithmic realization of an exact three-point difference scheme for the Sturm–Liouville problem. Journal of Mathematical Sciences. 270 (1), 39–58 (2023).
dc.relation.references[7] Kunynets A. V., Kutniv M. V., Khomenko N. V. Three-point difference schemes of high accuracy order for Sturm–Liouville problem. Mathematical Methods and Physicomechanical Fields. 63 (4), 54–62 (2020).
dc.relation.references[8] Samarskii A. A., Makarov V. L. On the realization of exact three-point difference schemes for second-order ordinary differential equations with piecewise smooth coefficients. Soviet Mathematics. Doklady. 41 (3), 463–467 (1990).
dc.relation.references[9] Samarskii A. A., Makarov V. L. Realization of exact three-point difference schemes for second-order ordinary differential equations with piecewise smooth coefficients. Differ. Equat. 26 (7), 922–930 (1991).
dc.relation.references[10] Samarskii A. A. Introduction to the Theory of Difference Schemes. Nauka, Moscow (1971).
dc.relation.references[11] Hartman Ph. Ordinary differential equations. John Wiley & Sons, New York (1964).
dc.relation.referencesen[1] Tikhonov A. N., Samarskii A. A. Homogeneous difference schemes. USSR Computational Mathematics and Mathematical Physics. 1 (1), 5–67 (1962).
dc.relation.referencesen[2] Tikhonov A. N., Samarskii A. A. Homogeneous difference schemes of a high degree of accuracy on nonuniform nets. USSR Computational Mathematics and Mathematical Physics. 1 (3), 465–486 (1962).
dc.relation.referencesen[3] Prikazchikov V. G. High-accuracy homogeneous difference schemes for the Sturm–Liouville problem. USSR Computational Mathematics and Mathematical Physics. 9 (2), 76–106 (1969).
dc.relation.referencesen[4] Makarov V. L., Gavrilyuk I. P., Luzhnykh V. M. Exact and truncated difference schemes for a class of degenerate Sturm–Liouville problems. Differentsial’nye Uravneniya. 16 (7), 1265–1275 (1980).
dc.relation.referencesen[5] Gavrilyuk I. P., Hermann M., Makarov V. L., Kutniv M. V. Exact and truncated difference schemes for boundary value ODEs. International Series of Numerical Mathematics. 159. Birkh¨auser Basel (2011).
dc.relation.referencesen[6] Kunynets A. V., Kutniv M. V., Khomenko N. V. Algorithmic realization of an exact three-point difference scheme for the Sturm–Liouville problem. Journal of Mathematical Sciences. 270 (1), 39–58 (2023).
dc.relation.referencesen[7] Kunynets A. V., Kutniv M. V., Khomenko N. V. Three-point difference schemes of high accuracy order for Sturm–Liouville problem. Mathematical Methods and Physicomechanical Fields. 63 (4), 54–62 (2020).
dc.relation.referencesen[8] Samarskii A. A., Makarov V. L. On the realization of exact three-point difference schemes for second-order ordinary differential equations with piecewise smooth coefficients. Soviet Mathematics. Doklady. 41 (3), 463–467 (1990).
dc.relation.referencesen[9] Samarskii A. A., Makarov V. L. Realization of exact three-point difference schemes for second-order ordinary differential equations with piecewise smooth coefficients. Differ. Equat. 26 (7), 922–930 (1991).
dc.relation.referencesen[10] Samarskii A. A. Introduction to the Theory of Difference Schemes. Nauka, Moscow (1971).
dc.relation.referencesen[11] Hartman Ph. Ordinary differential equations. John Wiley & Sons, New York (1964).
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectсингулярна задача Штурма–Ліувілля
dc.subjectточна триточкова різницева схема
dc.subjectкоефіцієнтна стійкість
dc.subjectsingular Sturm–Liouville problem
dc.subjectexact three-point difference scheme
dc.subjectcoefficient stability
dc.titleAlgorithmic implementation of an exact three-point difference scheme for a certain class of singular Sturm–Liouville problems
dc.title.alternativeАлгоритмічна реалізація точної триточкової різницевої схеми для деякого класу сингулярних задач Штурма–Ліувілля
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n11_Khomenko_N_V-Algorithmic_implementation_344-357.pdf
Size:
9.44 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n11_Khomenko_N_V-Algorithmic_implementation_344-357__COVER.png
Size:
407.74 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: