Stress-deformed state and strength of a locally heterogeneous electrically conductive layer

dc.citation.epage756
dc.citation.issue3
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage750
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут прикладних проблем механіки і метематики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics
dc.contributor.authorМаркович, Б. М.
dc.contributor.authorСеник, Ю. А.
dc.contributor.authorНоджак, Л. С.
dc.contributor.authorMarkovych, B. M.
dc.contributor.authorSenyk, Y. A.
dc.contributor.authorNodzhak, L. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:33:03Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractПредставлено ключову систему рівнянь моделі твердого тіла із врахуванням структурної неоднорідності матеріалу та шорсткості реальної поверхні, яку застосовано до вивчення взаємозв’язаних полів у необмеженому гетерогенному електропровідному шарі. Розглянуто вплив врахування залежностей від густини локальних модуля Юнга та коефіцієнта Пуассона на розмірні ефекти поверхневих напружень в шарі та межу його міцності.
dc.description.abstractThe key system of equations of the solid body model is presented, taking into account the structural heterogeneity of the material and the roughness of the real surface, which is applied to the study of interconnected fields in an unbounded heterogeneous conductive layer. The effect of taking into account the dependences on the density of local Young's modulus and Poisson's ratio on the size effects of surface stresses in the layer and its strength limit is considered.
dc.format.extent750-756
dc.format.pages7
dc.identifier.citationMarkovych B. M. Stress-deformed state and strength of a locally heterogeneous electrically conductive layer / B. M. Markovych, Y. A. Senyk, L. S. Nodzhak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 750–756.
dc.identifier.citationenMarkovych B. M. Stress-deformed state and strength of a locally heterogeneous electrically conductive layer / B. M. Markovych, Y. A. Senyk, L. S. Nodzhak // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 750–756.
dc.identifier.doidoi.org/10.23939/mmc2022.03.750
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63471
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 3 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 3 (9), 2022
dc.relation.references[1] Markovych B. M. Quantum-statistical description of equilibrium characteristicsand diffusion processes in spatially limited metal systems. Thesis for DSc (2020).
dc.relation.references[2] Nahirnyj T. S., Tchervinka K. A. Fundamentals of the mechanics of locally non-homogeneous deformable solids. Lviv, Rastr-7 (2018), (in Ukrainian).
dc.relation.references[3] Burak Y. I., Nahirnyj T. S. Matematicheskoe modelirovanie lokal’no-gradientnyh processov v inercionnyh termomehanicheskih sistemah. Prikladnaja mehanika. 28 (12), 3–23 (1992), (in Russian).
dc.relation.references[4] Nahirnyj T. S., Tchervinka K. A., Senyk Y. A. Modeling local non-homogeneity electroconductive nonferromagnetic thermoelastic solid. Mathematical Modeling and Computing. 1 (2), 214–223 (2014).
dc.relation.references[5] Nahirnyj T., Tchervinka K. Mathematical modeling of structural and near-surface non-homogeneities in thermoelastic thin films. Int. J. Eng. Sci. 91, 49–62 (2015).
dc.relation.references[6] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018).
dc.relation.references[7] Nahirnyj T. S, Tchervinka K. A., Senyk Y. A. Strength of electroconductive non-ferromagnetic layer. Size effect. Physico-mathematical modeling and information technologies. 4, 124–130 (2019).
dc.relation.references[8] Nahirnyj T. S, Tchervinka K. A., Boiko Z. V. To the choice of boundary conditions in the problems of the locally gradient approach in thermomechanics. Mathematical methods and physical and mechanical fields. 54 (3), 199–206 (2011).
dc.relation.references[9] Nahirnyj T., Tchervinka K. Natural boundary conditions and nearsurface non-homogeneity in nonferromagnetic electro conductive half-space and layer. Physico-mathematical modeling and information technologies. 25, 100–112 (2017).
dc.relation.references[10] Wu Q., Miao W.-S., Zhang Y.-D., Gao H.-J., Hui D. Mechanical properties of nanomaterials: A review. Nanotechnology Reviews. 9 (1), 259–273 (2020).
dc.relation.references[11] Nahirnyj T., Tchervinka K. Basics of mechanics of local non-homogeneous elastic bodies. Bases of nanomechanics II. Lviv, Rastr-7 (2014), (in Ukrainian).
dc.relation.references[12] Nahirnyj T., Tchervinka K. Interface phenomena and interaction energy at the surface of electroconductive solids. Computational Methods in Science and Technology. 14 (2), 105–110 (2008).
dc.relation.references[13] Kostrobij P. P., Markovych B. M., Polovyi V. Ye. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures. Mathematical Modeling and Computing. 6 (2), 297–303 (2019).
dc.relation.references[14] Kostrobij P. P., Markovych B. M., Polovyi V. Ye. Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations. Mathematical Modeling and Computing. 7 (1), 140–145 (2020).
dc.relation.references[15] Kostrobij P. P., Markovych B. M. The chemical potential and the work function of a metal film on a dielectric substrate. Philosophical Magazine Letters. 99 (1), 12–20 (2019).
dc.relation.references[16] Burak Y. Y., Halapats B. P., Hnidets’ B. M. Fizyko-mekhanichni protsesy v elektroprovidnykh tilakh. Kyyiv, Naukova dumka (1978), (in Ukrainian).
dc.relation.references[17] Oldham K. B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry. 613 (2), 131–138 (2008).
dc.relation.references[18] Burak Y., Nahirnyj T., Tchervinka K. Local Gradient Thermomechanics. In: Encyclopedia of thermal stresses., ed. Richard B. Hetnarski. Springer Publishers. P. 2794–2801 (2014).
dc.relation.references[19] Mehanika razrushenija i prochnost’ materialov: sprav. posobie; pod red. Panasjuka V. V. Tom 1. Osnovy mehaniki razrushenija materialov. Kiev, Naukova dumka (1988), (in Russian).
dc.relation.referencesen[1] Markovych B. M. Quantum-statistical description of equilibrium characteristicsand diffusion processes in spatially limited metal systems. Thesis for DSc (2020).
dc.relation.referencesen[2] Nahirnyj T. S., Tchervinka K. A. Fundamentals of the mechanics of locally non-homogeneous deformable solids. Lviv, Rastr-7 (2018), (in Ukrainian).
dc.relation.referencesen[3] Burak Y. I., Nahirnyj T. S. Matematicheskoe modelirovanie lokal’no-gradientnyh processov v inercionnyh termomehanicheskih sistemah. Prikladnaja mehanika. 28 (12), 3–23 (1992), (in Russian).
dc.relation.referencesen[4] Nahirnyj T. S., Tchervinka K. A., Senyk Y. A. Modeling local non-homogeneity electroconductive nonferromagnetic thermoelastic solid. Mathematical Modeling and Computing. 1 (2), 214–223 (2014).
dc.relation.referencesen[5] Nahirnyj T., Tchervinka K. Mathematical modeling of structural and near-surface non-homogeneities in thermoelastic thin films. Int. J. Eng. Sci. 91, 49–62 (2015).
dc.relation.referencesen[6] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018).
dc.relation.referencesen[7] Nahirnyj T. S, Tchervinka K. A., Senyk Y. A. Strength of electroconductive non-ferromagnetic layer. Size effect. Physico-mathematical modeling and information technologies. 4, 124–130 (2019).
dc.relation.referencesen[8] Nahirnyj T. S, Tchervinka K. A., Boiko Z. V. To the choice of boundary conditions in the problems of the locally gradient approach in thermomechanics. Mathematical methods and physical and mechanical fields. 54 (3), 199–206 (2011).
dc.relation.referencesen[9] Nahirnyj T., Tchervinka K. Natural boundary conditions and nearsurface non-homogeneity in nonferromagnetic electro conductive half-space and layer. Physico-mathematical modeling and information technologies. 25, 100–112 (2017).
dc.relation.referencesen[10] Wu Q., Miao W.-S., Zhang Y.-D., Gao H.-J., Hui D. Mechanical properties of nanomaterials: A review. Nanotechnology Reviews. 9 (1), 259–273 (2020).
dc.relation.referencesen[11] Nahirnyj T., Tchervinka K. Basics of mechanics of local non-homogeneous elastic bodies. Bases of nanomechanics II. Lviv, Rastr-7 (2014), (in Ukrainian).
dc.relation.referencesen[12] Nahirnyj T., Tchervinka K. Interface phenomena and interaction energy at the surface of electroconductive solids. Computational Methods in Science and Technology. 14 (2), 105–110 (2008).
dc.relation.referencesen[13] Kostrobij P. P., Markovych B. M., Polovyi V. Ye. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric-metal-dielectric structures. Mathematical Modeling and Computing. 6 (2), 297–303 (2019).
dc.relation.referencesen[14] Kostrobij P. P., Markovych B. M., Polovyi V. Ye. Frequency spectrum of surface plasmon-polariton waves: influence of Coulomb correlations. Mathematical Modeling and Computing. 7 (1), 140–145 (2020).
dc.relation.referencesen[15] Kostrobij P. P., Markovych B. M. The chemical potential and the work function of a metal film on a dielectric substrate. Philosophical Magazine Letters. 99 (1), 12–20 (2019).
dc.relation.referencesen[16] Burak Y. Y., Halapats B. P., Hnidets’ B. M. Fizyko-mekhanichni protsesy v elektroprovidnykh tilakh. Kyyiv, Naukova dumka (1978), (in Ukrainian).
dc.relation.referencesen[17] Oldham K. B. A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry. 613 (2), 131–138 (2008).
dc.relation.referencesen[18] Burak Y., Nahirnyj T., Tchervinka K. Local Gradient Thermomechanics. In: Encyclopedia of thermal stresses., ed. Richard B. Hetnarski. Springer Publishers. P. 2794–2801 (2014).
dc.relation.referencesen[19] Mehanika razrushenija i prochnost’ materialov: sprav. posobie; pod red. Panasjuka V. V. Tom 1. Osnovy mehaniki razrushenija materialov. Kiev, Naukova dumka (1988), (in Russian).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectелектропровідне тіло
dc.subjectнапруження
dc.subjectмодулі пружності
dc.subjectрозмірні ефекти
dc.subjectміцність
dc.subjectelectroconductive body
dc.subjectstresses
dc.subjectmodulus of elasticity
dc.subjectsize effects
dc.subjectstrength
dc.titleStress-deformed state and strength of a locally heterogeneous electrically conductive layer
dc.title.alternativeНапружено-деформований стан та міцність локально неоднорідного електропровідного шару
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n3_Markovych_B_M-Stress_deformed_state_750-756.pdf
Size:
876.97 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n3_Markovych_B_M-Stress_deformed_state_750-756__COVER.png
Size:
409.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: