Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth
dc.citation.epage | 8 | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Batangas State University | |
dc.contributor.author | Macalalad, Angelica | |
dc.contributor.author | Ebete, Quennie Rose | |
dc.contributor.author | Gutierrez, Dominic | |
dc.contributor.author | Ramos, Madelaine | |
dc.contributor.author | Magoling, Bryan John | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T09:32:53Z | |
dc.date.available | 2024-01-09T09:32:53Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Для видалення Cr(VI) з водного розчину як адсорбент використано активоване вугілля, отримане з водного гіацинту (WH-AC). Визначено, що оптимізований WH-AC є мезопористим та зернистим. Встановлено, що площа поверхні 11,564 м2/г має високу адсорбційну здатність. Адсорбція оптимізованого WH-AC відповідає кінетиці псевдодругого порядку та ізотермічній моделі Фрейндліха. Базуючись на коефіцієнті кореляції, одержаним з кінетичної моделі псевдодругого порядку, отримані значення R2 мали значення вище 0,99, що вказує на хемосорбційність процесу. Встановлено, що адсорбційна здатність WH-AC збільшується з 1,98 до 4,68 мг/г, з підвищенням концентрації адсорбату з 20 до 50 мг/л. Показано, що адсорбція активованим вугіллям, одержуваним з водного гіацинта, може бути альтернативним та ефективним методом для видалення шестивалентного хрому. | |
dc.description.abstract | The present study is focused on the use of activated carbon derived from water hyacinth (WH-AC) as adsorbent for the removal of Cr(VI) from aqueous solution. The optimized WH-AC was found to be mesoporous and considered as granular. The surface area of 11.564 m2/g was found to have a good adsorption capacity. The adsorption data of the optimized WH-AC followed a pseudo-second order kinetics and the Freundlich isotherm model. Based on the correlation coefficient obtained from pseudo-second-order kinetic model, the R2 values were all above 0.99, which is closer to unity of one (1) indicating that it followed a chemisorption process. The adsorption capacity of WH-AC increased from 1.98 to 4.68 mg/g when adsorbate concentration increased from 20 to 50 mg/l. The overall study proved that the adsorption by activated carbon derived from water hyacinth can be an alternative and efficient technique in hexavalent chromium removal. | |
dc.format.extent | 1-8 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth / Angelica Macalalad, Quennie Rose Ebete, Dominic Gutierrez, Madelaine Ramos, Bryan John Magoling // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 1–8. | |
dc.identifier.citationen | Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth / Angelica Macalalad, Quennie Rose Ebete, Dominic Gutierrez, Madelaine Ramos, Bryan John Magoling // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 1–8. | |
dc.identifier.doi | doi.org/10.23939/chcht15.01.001 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60687 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (15), 2021 | |
dc.relation.references | [1] https://eponline.com/articles/2013/05/06/people-affected-bytoxic-waste-sites.aspx | |
dc.relation.references | [2] Kakavandi, B., Kalantary, R. R., Farzadkia, M. et al.: J. Environ. Health Sci., 2014, 12, 115. https://doi.org/10.1186/s40201-014-0115-5 | |
dc.relation.references | [3] Rai M., Shahi G., Meena V. et al.: Resour. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011 | |
dc.relation.references | [4] Alslaibi T., Abustan I., Ahmad M., Foul A.: J. Environ. Chem. Eng., 2013, 1, 589. https://doi.org/10.1016/j.jece.2013.06.028 | |
dc.relation.references | [5] Langmuir I.: J. Am. Chem. Soc., 1916, 38, 2221. https://doi.org/10.1021/ja02268a002 | |
dc.relation.references | [6] Freundlich H.: J. Phys. Chem., 1906, 57, 385. | |
dc.relation.references | [7] Alslaibi T., Abustan I., Ahmad M., Foul A.: Desalin. Water Treat., 2015, 54, 166. https://doi.org/10.1080/19443994.2013.876672 | |
dc.relation.references | [8] Lagergren S.: Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24, 1. | |
dc.relation.references | [9] Hesas R., Arami-Niya A., Daud W., Sahu J.: BioResources, 2013, 8, 2950. https://doi.org/10.15376/biores.8.2.2950-2966 | |
dc.relation.references | [10] Ţucureanu V., Matei A., Avram A.: Crit. Rev. Anal. Chem., 2016, 46, 502, https://doi.org/10.1080/10408347.2016.1157013 | |
dc.relation.references | [11] Lafi R., Montasser I., Hafiane A.: Adsorpt. Sci. Technol.: 2018, 37, 160. https://doi.org/10.1177/0263617418819227 | |
dc.relation.references | [12] Silverstein R., Webster F., Kiemle D. et al.: Spectrometric Identification of Organic Compounds. 8 edn. Wiley 2014. | |
dc.relation.references | [13] Anisuzzaman S., Joseph C., Daud W. et al.: Int. J. Ind. Chem., 2015, 6, 9. https://doi.org/10.1007/s40090-014-0027-3 | |
dc.relation.references | [14] Magoling B., Macalalad A.: BioResources, 2017, 12, 3001. https://doi.org/10.15376/biores.12.2.3001-3016 | |
dc.relation.references | [15] Yang J., Yu M., Chen W.: J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054 | |
dc.relation.references | [16] Wanees S., Ahmed A., Adam M., Mohamed M.: Asian J. Chem., 2013, 25, 8245. https://doi.org/10.14233/ajchem.2013.13559 | |
dc.relation.references | [17] Bhanvase B., Ugwekar R. (Eds.): Process Modeling, Simulation, and Environmental Applications in Chemical Engineering, Apple Academic Press, New York 2016. https://doi.org/10.1201/9781315366449 | |
dc.relation.references | [18] Cruz G., Pirilä M., Huuhtanen M. et al.: J. Civil. Environ. Eng., 2012, 2, 109. https://doi.org/10.4172/2165-784X.1000109 | |
dc.relation.references | [19] Dubinin M.: Carbon, 1985, 23, 373. https://doi.org/10.1016/0008-6223(85)90029-6 | |
dc.relation.references | [20] National Research Council. Drinking Water and Health, vol. 2. The National Academies Press, Washington 1983. https://www.ncbi.nlm.nih.gov/books/NBK234593/ | |
dc.relation.references | [21] Patil S., Natarajan G., Bhole A.: Indian J. Environ. Health, 2006, 48, 203. | |
dc.relation.references | [22] Kang Y., Toh S., Monash P. et al.: Asia-Pac. J. Chem. Eng., 2013, 8, 811. https://doi.org/10.1002/apj.1725 | |
dc.relation.references | [23] Tan G., Xiao D.: J. Hazard. Mater., 2009, 164, 1359. https://doi.org/10.1016/j.jhazmat.2008.09.082 | |
dc.relation.references | [24] Dula T., Siraj K., Kitte S.: Int. Scholarly Res. Notice., 2014, 2014. https://doi.org/10.1155/2014/438245 | |
dc.relation.references | [25] Ho Y., Mckay G.: Process Biochem., 1999, 34, 451. https://doi.org/10.1016/S0032-9592(98)00112-5 | |
dc.relation.referencesen | [1] https://eponline.com/articles/2013/05/06/people-affected-bytoxic-waste-sites.aspx | |
dc.relation.referencesen | [2] Kakavandi, B., Kalantary, R. R., Farzadkia, M. et al., J. Environ. Health Sci., 2014, 12, 115. https://doi.org/10.1186/s40201-014-0115-5 | |
dc.relation.referencesen | [3] Rai M., Shahi G., Meena V. et al., Resour. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011 | |
dc.relation.referencesen | [4] Alslaibi T., Abustan I., Ahmad M., Foul A., J. Environ. Chem. Eng., 2013, 1, 589. https://doi.org/10.1016/j.jece.2013.06.028 | |
dc.relation.referencesen | [5] Langmuir I., J. Am. Chem. Soc., 1916, 38, 2221. https://doi.org/10.1021/ja02268a002 | |
dc.relation.referencesen | [6] Freundlich H., J. Phys. Chem., 1906, 57, 385. | |
dc.relation.referencesen | [7] Alslaibi T., Abustan I., Ahmad M., Foul A., Desalin. Water Treat., 2015, 54, 166. https://doi.org/10.1080/19443994.2013.876672 | |
dc.relation.referencesen | [8] Lagergren S., Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24, 1. | |
dc.relation.referencesen | [9] Hesas R., Arami-Niya A., Daud W., Sahu J., BioResources, 2013, 8, 2950. https://doi.org/10.15376/biores.8.2.2950-2966 | |
dc.relation.referencesen | [10] Ţucureanu V., Matei A., Avram A., Crit. Rev. Anal. Chem., 2016, 46, 502, https://doi.org/10.1080/10408347.2016.1157013 | |
dc.relation.referencesen | [11] Lafi R., Montasser I., Hafiane A., Adsorpt. Sci. Technol., 2018, 37, 160. https://doi.org/10.1177/0263617418819227 | |
dc.relation.referencesen | [12] Silverstein R., Webster F., Kiemle D. et al., Spectrometric Identification of Organic Compounds. 8 edn. Wiley 2014. | |
dc.relation.referencesen | [13] Anisuzzaman S., Joseph C., Daud W. et al., Int. J. Ind. Chem., 2015, 6, 9. https://doi.org/10.1007/s40090-014-0027-3 | |
dc.relation.referencesen | [14] Magoling B., Macalalad A., BioResources, 2017, 12, 3001. https://doi.org/10.15376/biores.12.2.3001-3016 | |
dc.relation.referencesen | [15] Yang J., Yu M., Chen W., J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054 | |
dc.relation.referencesen | [16] Wanees S., Ahmed A., Adam M., Mohamed M., Asian J. Chem., 2013, 25, 8245. https://doi.org/10.14233/ajchem.2013.13559 | |
dc.relation.referencesen | [17] Bhanvase B., Ugwekar R. (Eds.): Process Modeling, Simulation, and Environmental Applications in Chemical Engineering, Apple Academic Press, New York 2016. https://doi.org/10.1201/9781315366449 | |
dc.relation.referencesen | [18] Cruz G., Pirilä M., Huuhtanen M. et al., J. Civil. Environ. Eng., 2012, 2, 109. https://doi.org/10.4172/2165-784X.1000109 | |
dc.relation.referencesen | [19] Dubinin M., Carbon, 1985, 23, 373. https://doi.org/10.1016/0008-6223(85)90029-6 | |
dc.relation.referencesen | [20] National Research Council. Drinking Water and Health, vol. 2. The National Academies Press, Washington 1983. https://www.ncbi.nlm.nih.gov/books/NBK234593/ | |
dc.relation.referencesen | [21] Patil S., Natarajan G., Bhole A., Indian J. Environ. Health, 2006, 48, 203. | |
dc.relation.referencesen | [22] Kang Y., Toh S., Monash P. et al., Asia-Pac. J. Chem. Eng., 2013, 8, 811. https://doi.org/10.1002/apj.1725 | |
dc.relation.referencesen | [23] Tan G., Xiao D., J. Hazard. Mater., 2009, 164, 1359. https://doi.org/10.1016/j.jhazmat.2008.09.082 | |
dc.relation.referencesen | [24] Dula T., Siraj K., Kitte S., Int. Scholarly Res. Notice., 2014, 2014. https://doi.org/10.1155/2014/438245 | |
dc.relation.referencesen | [25] Ho Y., Mckay G., Process Biochem., 1999, 34, 451. https://doi.org/10.1016/S0032-9592(98)00112-5 | |
dc.relation.uri | https://eponline.com/articles/2013/05/06/people-affected-bytoxic-waste-sites.aspx | |
dc.relation.uri | https://doi.org/10.1186/s40201-014-0115-5 | |
dc.relation.uri | https://doi.org/10.1016/j.reffit.2016.11.011 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2013.06.028 | |
dc.relation.uri | https://doi.org/10.1021/ja02268a002 | |
dc.relation.uri | https://doi.org/10.1080/19443994.2013.876672 | |
dc.relation.uri | https://doi.org/10.15376/biores.8.2.2950-2966 | |
dc.relation.uri | https://doi.org/10.1080/10408347.2016.1157013 | |
dc.relation.uri | https://doi.org/10.1177/0263617418819227 | |
dc.relation.uri | https://doi.org/10.1007/s40090-014-0027-3 | |
dc.relation.uri | https://doi.org/10.15376/biores.12.2.3001-3016 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2014.02.054 | |
dc.relation.uri | https://doi.org/10.14233/ajchem.2013.13559 | |
dc.relation.uri | https://doi.org/10.1201/9781315366449 | |
dc.relation.uri | https://doi.org/10.4172/2165-784X.1000109 | |
dc.relation.uri | https://doi.org/10.1016/0008-6223(85)90029-6 | |
dc.relation.uri | https://www.ncbi.nlm.nih.gov/books/NBK234593/ | |
dc.relation.uri | https://doi.org/10.1002/apj.1725 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2008.09.082 | |
dc.relation.uri | https://doi.org/10.1155/2014/438245 | |
dc.relation.uri | https://doi.org/10.1016/S0032-9592(98)00112-5 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Macalalad A., Ebete Q. R., Gutierrez D., Ramos M., Magoling B. J., 2021 | |
dc.subject | адсорбція | |
dc.subject | шестивалентний хром | |
dc.subject | кінетика | |
dc.subject | ізотерма | |
dc.subject | водний гіацинт | |
dc.subject | adsorption | |
dc.subject | hexavalent chromium | |
dc.subject | kinetics | |
dc.subject | isotherm | |
dc.subject | water hyacinth | |
dc.title | Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth | |
dc.title.alternative | Кінетика та ізотермічні дослідження адсорбції шестивалентного хрому з використанням активованого вугілля з водного гіацинту | |
dc.type | Article |
Files
License bundle
1 - 1 of 1