Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth

dc.citation.epage8
dc.citation.issue1
dc.citation.spage1
dc.contributor.affiliationBatangas State University
dc.contributor.authorMacalalad, Angelica
dc.contributor.authorEbete, Quennie Rose
dc.contributor.authorGutierrez, Dominic
dc.contributor.authorRamos, Madelaine
dc.contributor.authorMagoling, Bryan John
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-09T09:32:53Z
dc.date.available2024-01-09T09:32:53Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractДля видалення Cr(VI) з водного розчину як адсорбент використано активоване вугілля, отримане з водного гіацинту (WH-AC). Визначено, що оптимізований WH-AC є мезопористим та зернистим. Встановлено, що площа поверхні 11,564 м2/г має високу адсорбційну здатність. Адсорбція оптимізованого WH-AC відповідає кінетиці псевдодругого порядку та ізотермічній моделі Фрейндліха. Базуючись на коефіцієнті кореляції, одержаним з кінетичної моделі псевдодругого порядку, отримані значення R2 мали значення вище 0,99, що вказує на хемосорбційність процесу. Встановлено, що адсорбційна здатність WH-AC збільшується з 1,98 до 4,68 мг/г, з підвищенням концентрації адсорбату з 20 до 50 мг/л. Показано, що адсорбція активованим вугіллям, одержуваним з водного гіацинта, може бути альтернативним та ефективним методом для видалення шестивалентного хрому.
dc.description.abstractThe present study is focused on the use of activated carbon derived from water hyacinth (WH-AC) as adsorbent for the removal of Cr(VI) from aqueous solution. The optimized WH-AC was found to be mesoporous and considered as granular. The surface area of 11.564 m2/g was found to have a good adsorption capacity. The adsorption data of the optimized WH-AC followed a pseudo-second order kinetics and the Freundlich isotherm model. Based on the correlation coefficient obtained from pseudo-second-order kinetic model, the R2 values were all above 0.99, which is closer to unity of one (1) indicating that it followed a chemisorption process. The adsorption capacity of WH-AC increased from 1.98 to 4.68 mg/g when adsorbate concentration increased from 20 to 50 mg/l. The overall study proved that the adsorption by activated carbon derived from water hyacinth can be an alternative and efficient technique in hexavalent chromium removal.
dc.format.extent1-8
dc.format.pages8
dc.identifier.citationKinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth / Angelica Macalalad, Quennie Rose Ebete, Dominic Gutierrez, Madelaine Ramos, Bryan John Magoling // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 1–8.
dc.identifier.citationenKinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth / Angelica Macalalad, Quennie Rose Ebete, Dominic Gutierrez, Madelaine Ramos, Bryan John Magoling // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 1–8.
dc.identifier.doidoi.org/10.23939/chcht15.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60687
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (15), 2021
dc.relation.references[1] https://eponline.com/articles/2013/05/06/people-affected-bytoxic-waste-sites.aspx
dc.relation.references[2] Kakavandi, B., Kalantary, R. R., Farzadkia, M. et al.: J. Environ. Health Sci., 2014, 12, 115. https://doi.org/10.1186/s40201-014-0115-5
dc.relation.references[3] Rai M., Shahi G., Meena V. et al.: Resour. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011
dc.relation.references[4] Alslaibi T., Abustan I., Ahmad M., Foul A.: J. Environ. Chem. Eng., 2013, 1, 589. https://doi.org/10.1016/j.jece.2013.06.028
dc.relation.references[5] Langmuir I.: J. Am. Chem. Soc., 1916, 38, 2221. https://doi.org/10.1021/ja02268a002
dc.relation.references[6] Freundlich H.: J. Phys. Chem., 1906, 57, 385.
dc.relation.references[7] Alslaibi T., Abustan I., Ahmad M., Foul A.: Desalin. Water Treat., 2015, 54, 166. https://doi.org/10.1080/19443994.2013.876672
dc.relation.references[8] Lagergren S.: Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24, 1.
dc.relation.references[9] Hesas R., Arami-Niya A., Daud W., Sahu J.: BioResources, 2013, 8, 2950. https://doi.org/10.15376/biores.8.2.2950-2966
dc.relation.references[10] Ţucureanu V., Matei A., Avram A.: Crit. Rev. Anal. Chem., 2016, 46, 502, https://doi.org/10.1080/10408347.2016.1157013
dc.relation.references[11] Lafi R., Montasser I., Hafiane A.: Adsorpt. Sci. Technol.: 2018, 37, 160. https://doi.org/10.1177/0263617418819227
dc.relation.references[12] Silverstein R., Webster F., Kiemle D. et al.: Spectrometric Identification of Organic Compounds. 8 edn. Wiley 2014.
dc.relation.references[13] Anisuzzaman S., Joseph C., Daud W. et al.: Int. J. Ind. Chem., 2015, 6, 9. https://doi.org/10.1007/s40090-014-0027-3
dc.relation.references[14] Magoling B., Macalalad A.: BioResources, 2017, 12, 3001. https://doi.org/10.15376/biores.12.2.3001-3016
dc.relation.references[15] Yang J., Yu M., Chen W.: J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054
dc.relation.references[16] Wanees S., Ahmed A., Adam M., Mohamed M.: Asian J. Chem., 2013, 25, 8245. https://doi.org/10.14233/ajchem.2013.13559
dc.relation.references[17] Bhanvase B., Ugwekar R. (Eds.): Process Modeling, Simulation, and Environmental Applications in Chemical Engineering, Apple Academic Press, New York 2016. https://doi.org/10.1201/9781315366449
dc.relation.references[18] Cruz G., Pirilä M., Huuhtanen M. et al.: J. Civil. Environ. Eng., 2012, 2, 109. https://doi.org/10.4172/2165-784X.1000109
dc.relation.references[19] Dubinin M.: Carbon, 1985, 23, 373. https://doi.org/10.1016/0008-6223(85)90029-6
dc.relation.references[20] National Research Council. Drinking Water and Health, vol. 2. The National Academies Press, Washington 1983. https://www.ncbi.nlm.nih.gov/books/NBK234593/
dc.relation.references[21] Patil S., Natarajan G., Bhole A.: Indian J. Environ. Health, 2006, 48, 203.
dc.relation.references[22] Kang Y., Toh S., Monash P. et al.: Asia-Pac. J. Chem. Eng., 2013, 8, 811. https://doi.org/10.1002/apj.1725
dc.relation.references[23] Tan G., Xiao D.: J. Hazard. Mater., 2009, 164, 1359. https://doi.org/10.1016/j.jhazmat.2008.09.082
dc.relation.references[24] Dula T., Siraj K., Kitte S.: Int. Scholarly Res. Notice., 2014, 2014. https://doi.org/10.1155/2014/438245
dc.relation.references[25] Ho Y., Mckay G.: Process Biochem., 1999, 34, 451. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.referencesen[1] https://eponline.com/articles/2013/05/06/people-affected-bytoxic-waste-sites.aspx
dc.relation.referencesen[2] Kakavandi, B., Kalantary, R. R., Farzadkia, M. et al., J. Environ. Health Sci., 2014, 12, 115. https://doi.org/10.1186/s40201-014-0115-5
dc.relation.referencesen[3] Rai M., Shahi G., Meena V. et al., Resour. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011
dc.relation.referencesen[4] Alslaibi T., Abustan I., Ahmad M., Foul A., J. Environ. Chem. Eng., 2013, 1, 589. https://doi.org/10.1016/j.jece.2013.06.028
dc.relation.referencesen[5] Langmuir I., J. Am. Chem. Soc., 1916, 38, 2221. https://doi.org/10.1021/ja02268a002
dc.relation.referencesen[6] Freundlich H., J. Phys. Chem., 1906, 57, 385.
dc.relation.referencesen[7] Alslaibi T., Abustan I., Ahmad M., Foul A., Desalin. Water Treat., 2015, 54, 166. https://doi.org/10.1080/19443994.2013.876672
dc.relation.referencesen[8] Lagergren S., Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24, 1.
dc.relation.referencesen[9] Hesas R., Arami-Niya A., Daud W., Sahu J., BioResources, 2013, 8, 2950. https://doi.org/10.15376/biores.8.2.2950-2966
dc.relation.referencesen[10] Ţucureanu V., Matei A., Avram A., Crit. Rev. Anal. Chem., 2016, 46, 502, https://doi.org/10.1080/10408347.2016.1157013
dc.relation.referencesen[11] Lafi R., Montasser I., Hafiane A., Adsorpt. Sci. Technol., 2018, 37, 160. https://doi.org/10.1177/0263617418819227
dc.relation.referencesen[12] Silverstein R., Webster F., Kiemle D. et al., Spectrometric Identification of Organic Compounds. 8 edn. Wiley 2014.
dc.relation.referencesen[13] Anisuzzaman S., Joseph C., Daud W. et al., Int. J. Ind. Chem., 2015, 6, 9. https://doi.org/10.1007/s40090-014-0027-3
dc.relation.referencesen[14] Magoling B., Macalalad A., BioResources, 2017, 12, 3001. https://doi.org/10.15376/biores.12.2.3001-3016
dc.relation.referencesen[15] Yang J., Yu M., Chen W., J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054
dc.relation.referencesen[16] Wanees S., Ahmed A., Adam M., Mohamed M., Asian J. Chem., 2013, 25, 8245. https://doi.org/10.14233/ajchem.2013.13559
dc.relation.referencesen[17] Bhanvase B., Ugwekar R. (Eds.): Process Modeling, Simulation, and Environmental Applications in Chemical Engineering, Apple Academic Press, New York 2016. https://doi.org/10.1201/9781315366449
dc.relation.referencesen[18] Cruz G., Pirilä M., Huuhtanen M. et al., J. Civil. Environ. Eng., 2012, 2, 109. https://doi.org/10.4172/2165-784X.1000109
dc.relation.referencesen[19] Dubinin M., Carbon, 1985, 23, 373. https://doi.org/10.1016/0008-6223(85)90029-6
dc.relation.referencesen[20] National Research Council. Drinking Water and Health, vol. 2. The National Academies Press, Washington 1983. https://www.ncbi.nlm.nih.gov/books/NBK234593/
dc.relation.referencesen[21] Patil S., Natarajan G., Bhole A., Indian J. Environ. Health, 2006, 48, 203.
dc.relation.referencesen[22] Kang Y., Toh S., Monash P. et al., Asia-Pac. J. Chem. Eng., 2013, 8, 811. https://doi.org/10.1002/apj.1725
dc.relation.referencesen[23] Tan G., Xiao D., J. Hazard. Mater., 2009, 164, 1359. https://doi.org/10.1016/j.jhazmat.2008.09.082
dc.relation.referencesen[24] Dula T., Siraj K., Kitte S., Int. Scholarly Res. Notice., 2014, 2014. https://doi.org/10.1155/2014/438245
dc.relation.referencesen[25] Ho Y., Mckay G., Process Biochem., 1999, 34, 451. https://doi.org/10.1016/S0032-9592(98)00112-5
dc.relation.urihttps://eponline.com/articles/2013/05/06/people-affected-bytoxic-waste-sites.aspx
dc.relation.urihttps://doi.org/10.1186/s40201-014-0115-5
dc.relation.urihttps://doi.org/10.1016/j.reffit.2016.11.011
dc.relation.urihttps://doi.org/10.1016/j.jece.2013.06.028
dc.relation.urihttps://doi.org/10.1021/ja02268a002
dc.relation.urihttps://doi.org/10.1080/19443994.2013.876672
dc.relation.urihttps://doi.org/10.15376/biores.8.2.2950-2966
dc.relation.urihttps://doi.org/10.1080/10408347.2016.1157013
dc.relation.urihttps://doi.org/10.1177/0263617418819227
dc.relation.urihttps://doi.org/10.1007/s40090-014-0027-3
dc.relation.urihttps://doi.org/10.15376/biores.12.2.3001-3016
dc.relation.urihttps://doi.org/10.1016/j.jiec.2014.02.054
dc.relation.urihttps://doi.org/10.14233/ajchem.2013.13559
dc.relation.urihttps://doi.org/10.1201/9781315366449
dc.relation.urihttps://doi.org/10.4172/2165-784X.1000109
dc.relation.urihttps://doi.org/10.1016/0008-6223(85)90029-6
dc.relation.urihttps://www.ncbi.nlm.nih.gov/books/NBK234593/
dc.relation.urihttps://doi.org/10.1002/apj.1725
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.09.082
dc.relation.urihttps://doi.org/10.1155/2014/438245
dc.relation.urihttps://doi.org/10.1016/S0032-9592(98)00112-5
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Macalalad A., Ebete Q. R., Gutierrez D., Ramos M., Magoling B. J., 2021
dc.subjectадсорбція
dc.subjectшестивалентний хром
dc.subjectкінетика
dc.subjectізотерма
dc.subjectводний гіацинт
dc.subjectadsorption
dc.subjecthexavalent chromium
dc.subjectkinetics
dc.subjectisotherm
dc.subjectwater hyacinth
dc.titleKinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth
dc.title.alternativeКінетика та ізотермічні дослідження адсорбції шестивалентного хрому з використанням активованого вугілля з водного гіацинту
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v15n1_Macalalad_A-Kinetics_and_Isotherm_Studies_1-8.pdf
Size:
630.52 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v15n1_Macalalad_A-Kinetics_and_Isotherm_Studies_1-8__COVER.png
Size:
529.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: