Removal of Heavy Metal Ions from Aqueous Solution by Nano Graphene Oxide

dc.citation.epage902
dc.citation.issue4
dc.citation.spage894
dc.contributor.affiliationUniversity of Baghdad
dc.contributor.authorJawad, Nizar A.
dc.contributor.authorNaife, Tariq M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:13Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМетою дослідження є отримання та характеризація нанооксиду графену (ОГ) перед використанням його для періодичної адсорбції для вилучення іонів важких металів (ванадію V+5, нікелю Ni+2 та кадмію Cd+2) з водних розчинів, забруднених цими металами, які були використані для імітації забруднюючих елементів, знайдених у рідких промислових стічних водах нафтопереробного заводу Доура в Багдаді, Ірак. У цьому дослідженні для синтезу використовували модифікований метод Гаммерса. Основними компонентами для приготування ОГ були порошок графіту (40-100 мкм), кислота H2SO4 і порошок KMnO4. Структуру синтезованого ОГ та його оптичні властивості досліджували методами ІЧ-спектроскопії з перетворенням Фур’є, оптичної, Раман-, енергодисперсійної рентгенівської спектроскопії, рентгеноструктурного аналізу та СЕМ. Було досліджено вплив різних параметрів для отримання найефективнішого вилучення V+5, Ni+2 і Cd+2 за pH 7-8. Швидкість перемішування становила 375 об/хв, час встановлення рівноваги для всіх іонів металів - 150 хвилин. Ефективність вилучення обернено пропорційна до температури, при цьому найбільше вилучення відбувається за 20 °C, а найменше - за 50 °C. Для Cd+2 і Ni+2 потрібна кількість ОГ становила 0,5 г, тоді як для V+5 - 0,6 г.
dc.description.abstractThe study's objective is to produce and evaluate Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (vanadium V+5, nickel Ni+2, and cadmium Cd+2) ions from aqueous solutions polluted with these metals, which were used to imitate the contaminating elements found in the liquid industrial wastewater of the Doura oil refinery in Baghdad, Iraq. This study used a modified Hummers method to synthesize. The main constituents in preparation GO were graphite powder (40-100 micron), H2SO4 acid, and KMnO4 powder. The GO structure synthesized and optical properties were investigated by FTIR, UV-vis, XRD, Raman spectroscopy, SEM, and EDX. The effects of various parameters were investigated to obtain the most efficient removal of V+5, Ni+2, and Cd+2, where pH of the acidic function is 7–8. The agitation speed was 375 RPM, with 150 minutes of equilibrium time for all metal ions. The removal efficiency is inversely associated with the temperature, where the highest removal is at 20 °C and the lowest at 50 °C. For Cd+2 and Ni+2, the appropriate amount of GO was 0.5 g, while for V+5, it was 0.6 g.
dc.format.extent894-902
dc.format.pages9
dc.identifier.citationJawad N. A. Removal of Heavy Metal Ions from Aqueous Solution by Nano Graphene Oxide / Nizar A. Jawad, Tariq M. Naife // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 894–902.
dc.identifier.citationenJawad N. A. Removal of Heavy Metal Ions from Aqueous Solution by Nano Graphene Oxide / Nizar A. Jawad, Tariq M. Naife // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 894–902.
dc.identifier.doidoi.org/10.23939/chcht17.04.894
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63701
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Breida, M.; Younssi, S.A.; Ouammou, M.; Bouhria, M.; Hafsi, M. Pollution of Water Sources from Agricultural and Industrial Effluents: Special Attention to NO3–, Cr(VI), and Cu(II). In Water Chemistry; Eyvaz, M.; Yüksel, E.; Eds. IntechOpen, 2020. https://doi.org/10.5772/intechopen.86921
dc.relation.references[2] Phan, T.A; Dang, K.H; Dinh, L.N. Synthesis and Preparation of Hydrophobic CNTs-Coated Melamine Formaldehyde Foam by Green and Simple Method for Efficient Oil/Water Separation. Chem. Chem. Technol. 2020, 14, 531–537. https://doi.org/10.23939/chcht14.04.531
dc.relation.references[3] Allafta, H.; Opp, C. Spatio-Temporal Variability and Pollution Sources Identification of the Surface Sediments of Shatt Al-Arab River, Southern Iraq. Sci Rep 2020, 10, 6979. https://doi.org/10.1038/s41598-020-63893-w
dc.relation.references[4] Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047
dc.relation.references[5] Dzyazko, Y.; Ponomarova, L.; Volfkovich, Y.; Tsirina, V.; Sosenkin, V.; Nikolska, N.; Belyakov, V. Influence of Zirconium Hydrophosphate Nanoparticles on Porous Structure and Sorption Capacity of the Composites Based on Ion Exchange Resin. Chem. Chem. Technol. 2016, 10, 329–335. https://doi.org/10.23939/chcht10.03.329
dc.relation.references[6] Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between Metal Ion Characteristics and Adsorption Performance of Graphene Oxide: A Comprehensive Experimental and Theoretical Study. Sep. Purif. Technol. 2020, 232, 115956. https://doi.org/10.1016/j.seppur.2019.115956
dc.relation.references[7] Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. https://doi.org/10.1021/ja01539a017
dc.relation.references[8] Bulin, C.; Ma, Z.; Guo, T.; Li, B.; Zhang, Y.; Zhang, B.; Xing, R.; Ge, X. Magnetic Graphene Oxide Nanocomposite: One-Pot Preparation, Adsorption Performance and Mechanism for Aqueous Mn(Ⅱ) and Zn(Ⅱ). J Phys Chem Solids 2021, 156, 110130. https://doi.org/10.1016/j.jpcs.2021.110130
dc.relation.references[9] Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon. 2013, 64, 225–229. https://doi.org/10.1016/j.carbon.2013.07.055
dc.relation.references[10] Ali, G.A.A.; Ibrahim, S.A.; Abbas, M.N. Catalytic Adsorptive of Nickel Metal from Iraqi Crude Oil Using Non-Conventional Catalysts. Innov. Infrastruct. Solut. 2021, 6, 7. https://doi.org/10.1007/s41062-020-00368-x
dc.relation.references[11] Tiwari, S.K.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G.C. Facile Electrochemical Synthesis of Few Layered Graphene from Discharged Battery Electrode and Its Application for Energy Storage. Arab. J. Chem. 2017, 10, 556–565. https://doi.org/10.1016/j.arabjc.2015.08.016
dc.relation.references[12] Tiwari, S.K.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G.C. A Time Efficient Reduction Strategy for Bulk Production of Reduced Graphene Oxide Using Selenium Powder as a Reducing Agent. J Mater Sci. 2016, 51, 6156–6165. https://doi.org/10.1007/s10853-016-9903-x
dc.relation.references[13] Eigler, S. Graphite Sulphate – A Precursor to Graphene. ChemComm 2015, 51, 3162–3165. https://doi.org/10.1039/C4CC09381J
dc.relation.references[14] Türkaslan, S.S.; Ugur, Ş.S.; Türkaslan, B.E.; Fantuzzi, N. Evaluating the X-Ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric. Materials 2022, 15, 1441. https://doi.org/10.3390/ma15041441
dc.relation.references[15] Gascho, J.L.S.; Costa, S.F.; Recco, A.A.C.; Pezzin, S.H. Graphene Oxide Films Obtained by Vacuum Filtration: X-Ray Diffraction Evidence of Crystalline Reorganization. J. Nanomater. 2019, 2019, 5963148. https://doi.org/10.1155/2019/5963148
dc.relation.references[16] Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewicz, G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials 2018, 11, 1050. https://doi.org/10.3390/ma11071050
dc.relation.references[17] Li, H.; Wei, Z. Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate. Polymers 2021, 13, 2431. https://doi.org/10.3390/polym13152431
dc.relation.references[18] Chuah, R.; Gopinath, S.C.B.; Anbu, P.; Salimi, M.N.; Yaakub, A.R.W.; Lakshmipriya, T. Synthesis and Characterization of Reduced Graphene Oxide Using the Aqueous Extract of Eclipta prostrata. 3 Biotech. 2020, 10, 364. https://doi.org/10.1007/s13205-020-02365-4
dc.relation.references[19] Chintalapudi, K.; Rao Pannem, R.M. Strength Properties of Graphene Oxide Cement Composites. Materials Today: Proceedings 2021, 45, 3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369
dc.relation.references[20] Cruz-Lopes, L.P.; Macena, M.; Esteves, B.; Guiné, R.P.F. Ideal pH for the Adsorption of Metal Ions Cr6+, Ni2+, Pb2+ in Aqueous Solution with Different Adsorbent Materials. Open Agric. 2021, 6, 115–123. https://doi.org/10.1515/opag-2021-0225
dc.relation.references[21] Parastar, M.; Sheshmani, S.; Shokrollahzadeh, S. Cross-Linked Chitosan into Graphene Oxide-Iron(III) Oxide Hydroxide as Nano-Biosorbent for Pd(II) and Cd(II) Removal. Int. J. Biol. Macromol. 2021, 166, 229–237. https://doi.org/10.1016/j.ijbiomac.2020.10.160
dc.relation.references[22] Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of Heavy Metals from Wastewater Using Agricultural Byproducts. J WATER SUPPLY RES T. 2020, 69, 99–112. https://doi.org/10.2166/aqua.2020.133
dc.relation.references[23] Anirudhan, T.S.; Sreekumari, S.S. Adsorptive Removal of Heavy Metal Ions from Industrial Effluents Using Activated Carbon Derived from Waste Coconut Buttons. J Environ Sci 2011, 23, 1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3
dc.relation.references[24] Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Mohammed, A.K.; Shuaib, D.T. Potential of Using Kaolin as a Natural Adsorbent for the Removal of Pollutants from Tannery Wastewater. Heliyon 2019, 5, e02923. https://doi.org/10.1016/j.heliyon.2019.e02923
dc.relation.references[25] Soliman, N.K.; Moustafa, A.F. Industrial Solid Waste for Heavy Metals Adsorption Features and Challenges; a Review. J. Mater. Res. Technol. 2020, 9, 10235–10253. https://doi.org/10.1016/j.jmrt.2020.07.045
dc.relation.references[26] Vilardi, G.; Di Palma, L.; Verdone, N. Heavy Metals Adsorption by Banana Peels Micro-Powder: Equilibrium Modeling by Non-Linear Models. Chin. J. Chem. Eng. 2018, 26, 455–464. https://doi.org/10.1016/j.cjche.2017.06.026
dc.relation.referencesen[1] Breida, M.; Younssi, S.A.; Ouammou, M.; Bouhria, M.; Hafsi, M. Pollution of Water Sources from Agricultural and Industrial Effluents: Special Attention to NO3–, Cr(VI), and Cu(II). In Water Chemistry; Eyvaz, M.; Yüksel, E.; Eds. IntechOpen, 2020. https://doi.org/10.5772/intechopen.86921
dc.relation.referencesen[2] Phan, T.A; Dang, K.H; Dinh, L.N. Synthesis and Preparation of Hydrophobic CNTs-Coated Melamine Formaldehyde Foam by Green and Simple Method for Efficient Oil/Water Separation. Chem. Chem. Technol. 2020, 14, 531–537. https://doi.org/10.23939/chcht14.04.531
dc.relation.referencesen[3] Allafta, H.; Opp, C. Spatio-Temporal Variability and Pollution Sources Identification of the Surface Sediments of Shatt Al-Arab River, Southern Iraq. Sci Rep 2020, 10, 6979. https://doi.org/10.1038/s41598-020-63893-w
dc.relation.referencesen[4] Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047
dc.relation.referencesen[5] Dzyazko, Y.; Ponomarova, L.; Volfkovich, Y.; Tsirina, V.; Sosenkin, V.; Nikolska, N.; Belyakov, V. Influence of Zirconium Hydrophosphate Nanoparticles on Porous Structure and Sorption Capacity of the Composites Based on Ion Exchange Resin. Chem. Chem. Technol. 2016, 10, 329–335. https://doi.org/10.23939/chcht10.03.329
dc.relation.referencesen[6] Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between Metal Ion Characteristics and Adsorption Performance of Graphene Oxide: A Comprehensive Experimental and Theoretical Study. Sep. Purif. Technol. 2020, 232, 115956. https://doi.org/10.1016/j.seppur.2019.115956
dc.relation.referencesen[7] Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. https://doi.org/10.1021/ja01539a017
dc.relation.referencesen[8] Bulin, C.; Ma, Z.; Guo, T.; Li, B.; Zhang, Y.; Zhang, B.; Xing, R.; Ge, X. Magnetic Graphene Oxide Nanocomposite: One-Pot Preparation, Adsorption Performance and Mechanism for Aqueous Mn(Ⅱ) and Zn(Ⅱ). J Phys Chem Solids 2021, 156, 110130. https://doi.org/10.1016/j.jpcs.2021.110130
dc.relation.referencesen[9] Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon. 2013, 64, 225–229. https://doi.org/10.1016/j.carbon.2013.07.055
dc.relation.referencesen[10] Ali, G.A.A.; Ibrahim, S.A.; Abbas, M.N. Catalytic Adsorptive of Nickel Metal from Iraqi Crude Oil Using Non-Conventional Catalysts. Innov. Infrastruct. Solut. 2021, 6, 7. https://doi.org/10.1007/s41062-020-00368-x
dc.relation.referencesen[11] Tiwari, S.K.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G.C. Facile Electrochemical Synthesis of Few Layered Graphene from Discharged Battery Electrode and Its Application for Energy Storage. Arab. J. Chem. 2017, 10, 556–565. https://doi.org/10.1016/j.arabjc.2015.08.016
dc.relation.referencesen[12] Tiwari, S.K.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G.C. A Time Efficient Reduction Strategy for Bulk Production of Reduced Graphene Oxide Using Selenium Powder as a Reducing Agent. J Mater Sci. 2016, 51, 6156–6165. https://doi.org/10.1007/s10853-016-9903-x
dc.relation.referencesen[13] Eigler, S. Graphite Sulphate – A Precursor to Graphene. ChemComm 2015, 51, 3162–3165. https://doi.org/10.1039/P.4CC09381J
dc.relation.referencesen[14] Türkaslan, S.S.; Ugur, Ş.S.; Türkaslan, B.E.; Fantuzzi, N. Evaluating the X-Ray-Shielding Performance of Graphene-Oxide-Coated Nanocomposite Fabric. Materials 2022, 15, 1441. https://doi.org/10.3390/ma15041441
dc.relation.referencesen[15] Gascho, J.L.S.; Costa, S.F.; Recco, A.A.C.; Pezzin, S.H. Graphene Oxide Films Obtained by Vacuum Filtration: X-Ray Diffraction Evidence of Crystalline Reorganization. J. Nanomater. 2019, 2019, 5963148. https://doi.org/10.1155/2019/5963148
dc.relation.referencesen[16] Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewicz, G. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy. Materials 2018, 11, 1050. https://doi.org/10.3390/ma11071050
dc.relation.referencesen[17] Li, H.; Wei, Z. Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate. Polymers 2021, 13, 2431. https://doi.org/10.3390/polym13152431
dc.relation.referencesen[18] Chuah, R.; Gopinath, S.C.B.; Anbu, P.; Salimi, M.N.; Yaakub, A.R.W.; Lakshmipriya, T. Synthesis and Characterization of Reduced Graphene Oxide Using the Aqueous Extract of Eclipta prostrata. 3 Biotech. 2020, 10, 364. https://doi.org/10.1007/s13205-020-02365-4
dc.relation.referencesen[19] Chintalapudi, K.; Rao Pannem, R.M. Strength Properties of Graphene Oxide Cement Composites. Materials Today: Proceedings 2021, 45, 3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369
dc.relation.referencesen[20] Cruz-Lopes, L.P.; Macena, M.; Esteves, B.; Guiné, R.P.F. Ideal pH for the Adsorption of Metal Ions Cr6+, Ni2+, Pb2+ in Aqueous Solution with Different Adsorbent Materials. Open Agric. 2021, 6, 115–123. https://doi.org/10.1515/opag-2021-0225
dc.relation.referencesen[21] Parastar, M.; Sheshmani, S.; Shokrollahzadeh, S. Cross-Linked Chitosan into Graphene Oxide-Iron(III) Oxide Hydroxide as Nano-Biosorbent for Pd(II) and Cd(II) Removal. Int. J. Biol. Macromol. 2021, 166, 229–237. https://doi.org/10.1016/j.ijbiomac.2020.10.160
dc.relation.referencesen[22] Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of Heavy Metals from Wastewater Using Agricultural Byproducts. J WATER SUPPLY RES T. 2020, 69, 99–112. https://doi.org/10.2166/aqua.2020.133
dc.relation.referencesen[23] Anirudhan, T.S.; Sreekumari, S.S. Adsorptive Removal of Heavy Metal Ions from Industrial Effluents Using Activated Carbon Derived from Waste Coconut Buttons. J Environ Sci 2011, 23, 1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3
dc.relation.referencesen[24] Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Mohammed, A.K.; Shuaib, D.T. Potential of Using Kaolin as a Natural Adsorbent for the Removal of Pollutants from Tannery Wastewater. Heliyon 2019, 5, e02923. https://doi.org/10.1016/j.heliyon.2019.e02923
dc.relation.referencesen[25] Soliman, N.K.; Moustafa, A.F. Industrial Solid Waste for Heavy Metals Adsorption Features and Challenges; a Review. J. Mater. Res. Technol. 2020, 9, 10235–10253. https://doi.org/10.1016/j.jmrt.2020.07.045
dc.relation.referencesen[26] Vilardi, G.; Di Palma, L.; Verdone, N. Heavy Metals Adsorption by Banana Peels Micro-Powder: Equilibrium Modeling by Non-Linear Models. Chin. J. Chem. Eng. 2018, 26, 455–464. https://doi.org/10.1016/j.cjche.2017.06.026
dc.relation.urihttps://doi.org/10.5772/intechopen.86921
dc.relation.urihttps://doi.org/10.23939/chcht14.04.531
dc.relation.urihttps://doi.org/10.1038/s41598-020-63893-w
dc.relation.urihttps://doi.org/10.23939/chcht14.01.047
dc.relation.urihttps://doi.org/10.23939/chcht10.03.329
dc.relation.urihttps://doi.org/10.1016/j.seppur.2019.115956
dc.relation.urihttps://doi.org/10.1021/ja01539a017
dc.relation.urihttps://doi.org/10.1016/j.jpcs.2021.110130
dc.relation.urihttps://doi.org/10.1016/j.carbon.2013.07.055
dc.relation.urihttps://doi.org/10.1007/s41062-020-00368-x
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2015.08.016
dc.relation.urihttps://doi.org/10.1007/s10853-016-9903-x
dc.relation.urihttps://doi.org/10.1039/C4CC09381J
dc.relation.urihttps://doi.org/10.3390/ma15041441
dc.relation.urihttps://doi.org/10.1155/2019/5963148
dc.relation.urihttps://doi.org/10.3390/ma11071050
dc.relation.urihttps://doi.org/10.3390/polym13152431
dc.relation.urihttps://doi.org/10.1007/s13205-020-02365-4
dc.relation.urihttps://doi.org/10.1016/j.matpr.2020.08.369
dc.relation.urihttps://doi.org/10.1515/opag-2021-0225
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2020.10.160
dc.relation.urihttps://doi.org/10.2166/aqua.2020.133
dc.relation.urihttps://doi.org/10.1016/S1001-0742(10)60515-3
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2019.e02923
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2020.07.045
dc.relation.urihttps://doi.org/10.1016/j.cjche.2017.06.026
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Jawad N. A., Naife T. M., 2023
dc.subjectвилучення важких металів
dc.subjectнанооксид графену
dc.subjectмодифікований метод Хаммерса
dc.subjectперіодична адсорбція
dc.subjectстічні води нафтопереробного заводу
dc.subjectremoval heavy metal
dc.subjectnano graphene oxide
dc.subjectmodified Hummers method
dc.subjectbatch adsorption
dc.subjectrefinery wastewater
dc.titleRemoval of Heavy Metal Ions from Aqueous Solution by Nano Graphene Oxide
dc.title.alternativeВидалення іонів важких металів з водного розчину нанооксидом графену
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Jawad_N_A-Removal_of_Heavy_Metal_894-902.pdf
Size:
843.87 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Jawad_N_A-Removal_of_Heavy_Metal_894-902__COVER.png
Size:
567.55 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: