Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions

dc.citation.epage104
dc.citation.issue1
dc.citation.spage98
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKoval, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-09T09:32:56Z
dc.date.available2024-01-09T09:32:56Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractВиконано порівняння значеннь ефективних констант швидкості знищення мікроорганізмів (kd), залежно від діаметру клітин та природи газу, барботованого за умов кавітації. Ефективність руйнування клітин за Ar / US більша в 2-2,5 рази порівняно з He / US, O2 / US та CO2 / US. Клітини дріжджів руйнуються швидше у порівнянні з бактеріями (kd (клітини дріжджів) >> kd (клітини бактерій)), що пояснюється розміром клітини. Стійкість клітини за умов кавітації обернено пропорційна її діаметру. Враховуючи розміри клітин, отримані залежності kd=ƒ(dклітин) можуть бути успішно використані як еталон не тільки для якісного визначення, але й для оцінювання ефективності кавітаційного оброблення води в присутності O2, CO2, Ar та Не.
dc.description.abstractThe values of еffective rate constants of microorganisms destruction (kd) were compared, depending on the diameter of cells and gas nature bubbling under cavitation conditions. The efficiency of cell destruction under Ar/US is larger by 2–2.5 times compared to He/US, O2/US and CO2/US. Yeast cells were destroyed faster than bacteria (kd (yeast cells) >> kd (bacteria cells)) that is explained by the cells size. The cell stability under cavitational conditions is reversely proportional to the cell diameter. Considering the cell sizes, the presented dependencies of kd = ƒ(dcells) can be successfully used as a standard not only for qualitative determination, but also for evaluating the efficiency of cavitation treatment of water in the presence of O2, CO2, Ar and He.
dc.format.extent98-104
dc.format.pages7
dc.identifier.citationKoval I. Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions / Iryna Koval // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 98–104.
dc.identifier.citationenKoval I. Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions / Iryna Koval // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 98–104.
dc.identifier.doidoi.org/10.23939/chcht15.01.098
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60691
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (15), 2021
dc.relation.references[1] Sidenko T.: Vodopostachannya ta Vodovidvedennya: Anatovanyy Bibliohrafichnyy Pokazhchyk. Naukova biblioteka CHNTU, Chernihiv 2017.
dc.relation.references[2] Ayrapetyan T.: Tekhnolohiya Ochystky Promyslovykh Stichnykh Vod.: KHNUMH im. O. M. Beketova, Kharkiv 2017.
dc.relation.references[3] Zahorodnyuk K.: Vodopostachannya ta Vodovidvedennya, 2010, 2, 36.
dc.relation.references[4] Strykalenko T.: Vodopostachannya ta Vodovidvedennya, 2009, 1, 35.
dc.relation.references[5] Bhavya M., Umesh Hebbar H.: Ultrasonics Sonochem., 2019, 57, 108. https://doi.org/10.1016/j.ultsonch.2019.05.002
dc.relation.references[6] Iorio M., Bevilacqua A., Corbo M. et al.: Ultrasonics Sonochem., 2019, 52, 477. https://doi.org/10.1016/j.ultsonch.2018.12.026
dc.relation.references[7] Kong Y., Peng Y., Zhang Zh. et al.: Ultrasonics Sonochem., 2019, 56, 447. https://doi.org/10.1016/j.ultsonch.2019.04.017
dc.relation.references[8] Li Y., Shi X., Zhang Zh. et al.: Ultrasonics Sonochem., 2019, 55, 232. https://doi.org/10.1016/j.ultsonch.2019.01.022
dc.relation.references[9] Carrillo-Lopez L., Huerta-Jimenez M., Garcia-Galicia I. et al.: Ultrasonics Sonochem., 2019, 58, 104. https://doi.org/10.1016/j.ultsonch.2019.05.025
dc.relation.references[10] Park J., Son Y., Lee W.: Ultrasonics Sonochem., 2019, 55, 8. https://doi.org/10.1016/j.ultsonch.2019.03.007
dc.relation.references[11] Palanisamy N., Seale B., Turner A. et al.: Ultrasonics Sonochem., 2019, 51, 325. https://doi.org/10.1016/j.ultsonch.2018.09.025
dc.relation.references[12] Znak Z., Zin O.: Chem. Chem. Technol., 2017, 11, 517. https://doi.org/10.23939/chcht11.04.517
dc.relation.references[13] Zhou X., Li Z., Lan J. et al.: Ultrasonics Sonochem., 2017, 35, 471. https://doi.org/10.1016/j.ultsonch.2016.10.028
dc.relation.references[14] Shin G.-A., Sobsey M.: Water Research, 2008, 42, 4562. https://doi.org/10.1016/j.watres.2008.08.001
dc.relation.references[15] Fei G., Lizhong Z., Jing W.: Desalination, 2008, 225, 156. https://doi.org/10.1016/j.desal.2007.03.016
dc.relation.references[16] Lukyanchuk S.: Environment & Health, 2009, 3, 31.
dc.relation.references[17] Potapchenko N.: Voda i Vodoochystnye Tekhnolohyy, 2013, 1, 70.
dc.relation.references[18] Miranda A., Lepretti M., Rizzo L. et al.: Sci. Total Environm., 2016, 554-555, 1. https://doi.org/10.1016/j.scitotenv.2016.02.189
dc.relation.references[19] Martinelli M., Giovannangeli F., Rotunno S. et al.: J. Prev. Med. Hyg., 2017, 58, E48.
dc.relation.references[20] Zheng J., Su Ch., Zhou J. et al.: Chem. Eng. J., 2017, 317, 309. https://doi.org/10.1016/j.cej.2017.02.076
dc.relation.references[21] Zyara A., Torvinen E., Veijalainen A.-M. et al.: Water, 2016, 8, 130. https://doi.org/10.3390/w8040130
dc.relation.references[22] Wang J., Wang Zh., Carolina L. et al.: Ultrasonics Sonochem., 2019, 55, 273. https://doi.org/10.1016/j.ultsonch.2019.01.017
dc.relation.references[23] Kondratovych O., Koval I., Kyslenko V.: Chem. Chem. Technol., 2013, 7, 185. https://doi.org/10.23939/chcht07.02.185
dc.relation.references[24] Ojha K., Mason T., O’Donnell C. et al.: Ultrasonics Sonochem., 2017, 34, 410. https://doi.org/10.1016/j.ultsonch.2016.06.001
dc.relation.references[25] Al-Hashimi A., Mason T., Joyce E. et al.: Environ. Sci. Technol., 2015, 49, 11697. https://doi.org/10.1021/es5045437
dc.relation.references[26] Romenskiy A., Kazakov V., Grin G.: Ultrazvuk v Heterogennom Katalize. Severodonetsk 2006.
dc.relation.references[27] Koval I.: Int. Symposium "The Environment and the Industry", 20-21 September 2018, 362. https://doi.org/10.21698/simi.2018.fp43
dc.relation.references[28] Shevchuk L., Strogan O., Koval I.: Chem. Chem. Technol., 2012, 6, 219. https://doi.org/10.23939/chcht06.02.219
dc.relation.references[29] Koval I., Falyk T.:15th Int. Scientific-Practical Conf. "Resources of Natural Waters in Carpathian Region" (Problems of protection and rational exploitation), Ukraine, Lviv 2016, 92.
dc.relation.references[30] Dehghani M., Mahvi A., Jahed G. et al.: J. Zhejiang Univ. Sci., 2007, 7, 493. https://doi.org/10.1631/jzus.2007.B0493
dc.relation.references[31] Suslick K. (Ed.): Ultrasound: Its Chemical, Physical, and Biological Effects. VCH Publishers, New York 1988.
dc.relation.references[32] Koval I., KіslenkoV., Shevchuk L. et al.: Chem. Chem. Technol., 2011, 5, 463.
dc.relation.referencesen[1] Sidenko T., Vodopostachannya ta Vodovidvedennya: Anatovanyy Bibliohrafichnyy Pokazhchyk. Naukova biblioteka CHNTU, Chernihiv 2017.
dc.relation.referencesen[2] Ayrapetyan T., Tekhnolohiya Ochystky Promyslovykh Stichnykh Vod., KHNUMH im. O. M. Beketova, Kharkiv 2017.
dc.relation.referencesen[3] Zahorodnyuk K., Vodopostachannya ta Vodovidvedennya, 2010, 2, 36.
dc.relation.referencesen[4] Strykalenko T., Vodopostachannya ta Vodovidvedennya, 2009, 1, 35.
dc.relation.referencesen[5] Bhavya M., Umesh Hebbar H., Ultrasonics Sonochem., 2019, 57, 108. https://doi.org/10.1016/j.ultsonch.2019.05.002
dc.relation.referencesen[6] Iorio M., Bevilacqua A., Corbo M. et al., Ultrasonics Sonochem., 2019, 52, 477. https://doi.org/10.1016/j.ultsonch.2018.12.026
dc.relation.referencesen[7] Kong Y., Peng Y., Zhang Zh. et al., Ultrasonics Sonochem., 2019, 56, 447. https://doi.org/10.1016/j.ultsonch.2019.04.017
dc.relation.referencesen[8] Li Y., Shi X., Zhang Zh. et al., Ultrasonics Sonochem., 2019, 55, 232. https://doi.org/10.1016/j.ultsonch.2019.01.022
dc.relation.referencesen[9] Carrillo-Lopez L., Huerta-Jimenez M., Garcia-Galicia I. et al., Ultrasonics Sonochem., 2019, 58, 104. https://doi.org/10.1016/j.ultsonch.2019.05.025
dc.relation.referencesen[10] Park J., Son Y., Lee W., Ultrasonics Sonochem., 2019, 55, 8. https://doi.org/10.1016/j.ultsonch.2019.03.007
dc.relation.referencesen[11] Palanisamy N., Seale B., Turner A. et al., Ultrasonics Sonochem., 2019, 51, 325. https://doi.org/10.1016/j.ultsonch.2018.09.025
dc.relation.referencesen[12] Znak Z., Zin O., Chem. Chem. Technol., 2017, 11, 517. https://doi.org/10.23939/chcht11.04.517
dc.relation.referencesen[13] Zhou X., Li Z., Lan J. et al., Ultrasonics Sonochem., 2017, 35, 471. https://doi.org/10.1016/j.ultsonch.2016.10.028
dc.relation.referencesen[14] Shin G.-A., Sobsey M., Water Research, 2008, 42, 4562. https://doi.org/10.1016/j.watres.2008.08.001
dc.relation.referencesen[15] Fei G., Lizhong Z., Jing W., Desalination, 2008, 225, 156. https://doi.org/10.1016/j.desal.2007.03.016
dc.relation.referencesen[16] Lukyanchuk S., Environment & Health, 2009, 3, 31.
dc.relation.referencesen[17] Potapchenko N., Voda i Vodoochystnye Tekhnolohyy, 2013, 1, 70.
dc.relation.referencesen[18] Miranda A., Lepretti M., Rizzo L. et al., Sci. Total Environm., 2016, 554-555, 1. https://doi.org/10.1016/j.scitotenv.2016.02.189
dc.relation.referencesen[19] Martinelli M., Giovannangeli F., Rotunno S. et al., J. Prev. Med. Hyg., 2017, 58, E48.
dc.relation.referencesen[20] Zheng J., Su Ch., Zhou J. et al., Chem. Eng. J., 2017, 317, 309. https://doi.org/10.1016/j.cej.2017.02.076
dc.relation.referencesen[21] Zyara A., Torvinen E., Veijalainen A.-M. et al., Water, 2016, 8, 130. https://doi.org/10.3390/w8040130
dc.relation.referencesen[22] Wang J., Wang Zh., Carolina L. et al., Ultrasonics Sonochem., 2019, 55, 273. https://doi.org/10.1016/j.ultsonch.2019.01.017
dc.relation.referencesen[23] Kondratovych O., Koval I., Kyslenko V., Chem. Chem. Technol., 2013, 7, 185. https://doi.org/10.23939/chcht07.02.185
dc.relation.referencesen[24] Ojha K., Mason T., O’Donnell C. et al., Ultrasonics Sonochem., 2017, 34, 410. https://doi.org/10.1016/j.ultsonch.2016.06.001
dc.relation.referencesen[25] Al-Hashimi A., Mason T., Joyce E. et al., Environ. Sci. Technol., 2015, 49, 11697. https://doi.org/10.1021/es5045437
dc.relation.referencesen[26] Romenskiy A., Kazakov V., Grin G., Ultrazvuk v Heterogennom Katalize. Severodonetsk 2006.
dc.relation.referencesen[27] Koval I., Int. Symposium "The Environment and the Industry", 20-21 September 2018, 362. https://doi.org/10.21698/simi.2018.fp43
dc.relation.referencesen[28] Shevchuk L., Strogan O., Koval I., Chem. Chem. Technol., 2012, 6, 219. https://doi.org/10.23939/chcht06.02.219
dc.relation.referencesen[29] Koval I., Falyk T.:15th Int. Scientific-Practical Conf. "Resources of Natural Waters in Carpathian Region" (Problems of protection and rational exploitation), Ukraine, Lviv 2016, 92.
dc.relation.referencesen[30] Dehghani M., Mahvi A., Jahed G. et al., J. Zhejiang Univ. Sci., 2007, 7, 493. https://doi.org/10.1631/jzus.2007.B0493
dc.relation.referencesen[31] Suslick K. (Ed.): Ultrasound: Its Chemical, Physical, and Biological Effects. VCH Publishers, New York 1988.
dc.relation.referencesen[32] Koval I., KislenkoV., Shevchuk L. et al., Chem. Chem. Technol., 2011, 5, 463.
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.05.002
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2018.12.026
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.04.017
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.01.022
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.05.025
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.03.007
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2018.09.025
dc.relation.urihttps://doi.org/10.23939/chcht11.04.517
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2016.10.028
dc.relation.urihttps://doi.org/10.1016/j.watres.2008.08.001
dc.relation.urihttps://doi.org/10.1016/j.desal.2007.03.016
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2016.02.189
dc.relation.urihttps://doi.org/10.1016/j.cej.2017.02.076
dc.relation.urihttps://doi.org/10.3390/w8040130
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2019.01.017
dc.relation.urihttps://doi.org/10.23939/chcht07.02.185
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2016.06.001
dc.relation.urihttps://doi.org/10.1021/es5045437
dc.relation.urihttps://doi.org/10.21698/simi.2018.fp43
dc.relation.urihttps://doi.org/10.23939/chcht06.02.219
dc.relation.urihttps://doi.org/10.1631/jzus.2007.B0493
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Koval I., 2021
dc.subjectдіаметр клітини
dc.subjectкавітація
dc.subjectгаз
dc.subjectвода
dc.subjectмікроорганізм
dc.subjectруйнування
dc.subjectcells diameter
dc.subjectcavitation
dc.subjectgas
dc.subjectwater
dc.subjectmicroorganism
dc.subjectdestruction
dc.titleCorrelation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions
dc.title.alternativeКореляція між діаметром мікроорганізмів та ефективністю руйнування мікроорганізмів за умов газ/кавітація
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v15n1_Koval_I-Correlation_between_Diameter_98-104.pdf
Size:
645.89 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v15n1_Koval_I-Correlation_between_Diameter_98-104__COVER.png
Size:
538.97 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: