Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads

dc.citation.epage93
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage83
dc.citation.volume18
dc.contributor.affiliationUniversity of Baghdad
dc.contributor.authorJamka, Zainab N.
dc.contributor.authorMohammed, Wadood T.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:50Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractЗабруднення водних об'єктів шкідливими забруднюючими речовинами є однією з найгостріших глобальних проблем. Поточне дослідження зосереджено на розробці ефективного адсорбенту для видалення нітрат-іонів з водних розчинів. У дослідженні запропоновано модифіковані композитні хітозан-цеолітні кульки для підвищення ефективності процесу адсорбції. Цеоліт використовували для збільшення площі поверхні, а цирконій наносили на кульки для підвищення селективності щодо нітрат-аніонів. Механізм адсорбції оцінювали, характеризуючи вихідні кульки та кульки з адсорбованим сорбатом за допомогою рентгеноструктурного аналізу (XRD), інфрачервоної спектроскопії з перетворенням Фур'є (FTIR), польової емісійної сканувальної електронної мікроскопії (FESEM) та аналізу за допомогою енергодисперсійного рентгенівського аналізатора (EDX). Досліди проводили в системі періодичної дії та вивчали вплив ключових параметрів, таких як час контакту, початкова концентрація нітрат-аніонів і дозування адсорбенту на ефективність адсорбції. Результати показали, що найвищий ступінь вилучення нітрат-іонів був зафіксований на рівні 95,42 % за використання 0,2 г Cs-Ze-Zr адсорбенту з початковою концентрацією 50 мг/л і часом контакту 120 хвилин. Максимальна адсорбційна здатність щодо нітрат-іонів на виготовленій кульці становила 80,15 мг/г. Крім того, серед ізотерм Фрейндліха, Ленгмюра і Темкіна дані про рівновагу ізотерми узгоджувалися з моделлю ізотерми Фрейндліха. Кінетичні дані для адсорбції були задовільно апроксимовані псевдопершим порядком. Отримані результати чітко вказують на те, що запропонований адсорбент (Cs-Ze-Zr) може бути успішно використаний для вилучення нітрат-іонів, що підтверджується високою ефективністю вилучення й адсорбційною здатністю, отриманою в дослідженні.
dc.description.abstractThe contamination of water bodies with harmful pollutants considers an aggravating global problem. The current research focuses on a developing efficient adsorbed for removing nitrate ions from aqueous solutions. The study proposed modified chitosan-zeolite composite beads to enhance the performance of the adsorption process. The zeolite was used to increase the surface area, and Zirconium was loaded on the beads to promote the selectivity for nitrate anions. The adsorption mechanism was assessed by characterizing the beads and sorbate adsorbed beads utilizing X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and analysis with an energy dispersive X-ray analyzer (EDX). The experiments were conducted in a batch system, and the effect of key parameters like contact time, initial nitrate anion concentration, and adsorbent dosage on the adsorption performance was investigated. The results demonstrated that the highest removal of nitrate ions was determined to be 95.42% at 0.2 g of Cs-Ze-Zr adsorbent with an initial concentration of 50 mg/L and a contact time of 120 minutes. The maximum adsorption capacity of the nitrate ions on the manufactured bead was 80.15 mg/g. In addition, among the Freundlich, Langmuir, and Temkin isotherms, the isotherm equilibrium data were consistent with a Freundlich isotherm model. The kinetic data for adsorption were satisfactorily fitted by a pseudo-first order. Subsequently, the results distinctly indicated that the proposed adsorbed (Cs-Ze-Zr) could be employed fruitfully in removing nitrate ions, demonstrated through the remarkable removal efficiency and adsorption capacity obtained in the study.
dc.format.extent83-93
dc.format.pages11
dc.identifier.citationJamka Z. N. Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads / Zainab N. Jamka, Wadood T. Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 83–93.
dc.identifier.citationenJamka Z. N. Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads / Zainab N. Jamka, Wadood T. Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 83–93.
dc.identifier.doidoi.org/10.23939/chcht18.01.083
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111773
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Yang, K.; Yan, L.G.; Yang, Y.M.; Yu, S.J.; Shan, R.R.; Yu, H.Q.; Zhu, B.C.; Du, B. Adsorptive Removal of Phosphate by Mg-Al and Zn-Al Layered Double Hydroxides: Kinetics, Isotherms and Mechanisms. Sep. Purif. Technol. 2014, 124, 36–42. https://doi.org/10.1016/j.seppur.2013.12.042
dc.relation.references[2] Banu, H.T.; Karthikeyan, P.; Meenakshi, S. Zr4+ Ions Embedded Chitosan-Soya Bean Husk Activated Bio-Char Composite Beads for the Recovery of Nitrate and Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 573–583. https://doi.org/10.1016/j.ijbiomac.2019.02.100
dc.relation.references[3] Kamaraj, R.; Pandiarajan, A.; Jayakiruba, S.; Naushad, M.; Vasudevan, S. Kinetics, Thermodynamics and Isotherm Modeling for Removal of Nitrate from Liquids by Facile One-Pot Electrosynthesized Nano Zinc Hydroxide. J. Mol. Liq. 2016, 215, 204–211. https://doi.org/10.1016/j.molliq.2015.12.032
dc.relation.references[4] Van Voorthuizen, E.M.; Zwijnenburg, A.; Wessling, M. Nutrient Removal by NF and RO Membranes in a Decentralized Sanitation System. Water Res. 2005, 39, 3657–3667. https://doi.org/10.1016/j.watres.2005.06.005
dc.relation.references[5] Kuokkanen, V.; Kuokkanen, T.; Rämö, J.; Lassi, U.; Roininen, J. Removal of Phosphate from Wastewaters for Further Utilization Using Electrocoagulation with Hybrid Electrodes - Techno-Economic Studies. J. Water Process Eng. 2015, 8, e50–e57. https://doi.org/10.1016/j.jwpe.2014.11.008
dc.relation.references[6] Raval, H.D.; Rana, P.S.; Maiti, S. A Novel High-Flux, Thin-Film Composite Reverse Osmosis Membrane Modified by Chitosan for Advanced Water Treatment. RSC Adv. 2015, 5, 6687–6694. https://doi.org/10.1039/c4ra12610f
dc.relation.references[7] Quan, X.; Ye, C.; Xiong, Y.; Xiang, J.; Wang, F. Simultaneous Removal of Ammonia, P and COD from Anaerobically Digested Piggery Wastewater Using an Integrated Process of Chemical Precipitation and Air Stripping. J. Hazard. Mater. 2010, 178, 326–332. https://doi.org/10.1016/j.jhazmat.2010.01.083
dc.relation.references[8] Liou, Y.H.; Lo, S.L.; Lin, C.J.; Kuan, W.H.; Weng, S.C. Chemical Reduction of an Unbuffered Nitrate Solution Using Catalyzed and Uncatalyzed Nanoscale Iron Particles. J. Hazard. Mater. 2005, 127, 102–110. https://doi.org/10.1016/j.jhazmat.2005.06.029
dc.relation.references[9] Rashed, M.N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Ch. 7; IntechOpen: Rijeka, 2013. https://doi.org/10.5772/54048
dc.relation.references[10] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
dc.relation.references[11] Hammadi, A.; Shakir, I. Adsorption Behavior of Light Naphtha Components on Zeolite (5A) and Activated Carbon. Iraqi J. Chem. Pet. Eng. 2019, 20, 27–33. https://doi.org/10.31699/IJCPE.2019.4.5
dc.relation.references[12] Waleed Khalid, M.; D. Salman, S. Adsorption of Chromium Ions on Activated Carbon Produced from Cow Bones. Iraqi J. Chem. Pet. Eng. 2019, 20, 23–32. https://doi.org/10.31699/ijcpe.2019.2.4
dc.relation.references[13] Choudhary, V.R.; Vaidya, S.H. Adsorption of Copper Nitrate from Solution on Silica Gel. J. Chem. Technol. Biotechnol. 1982, 32, 888–892. https://doi.org/10.1002/jctb.5030320726
dc.relation.references[14] Hummadi, K.K. Optimal Operating Conditions for Adsorption of Heavy Metals from an Aqueous Solution by an Agriculture Waste. Iraqi J. Chem. Pet. Eng. 2021, 22, 27–35. https://doi.org/10.31699/ijcpe.2021.2.4
dc.relation.references[15] Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and Characterization of Metal Loaded Chitosan-Alginate Biopolymeric Hybrid Beads for the Efficient Removal of Phosphate and Nitrate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 407–418. https://doi.org/10.1016/j.ijbiomac.2019.02.059
dc.relation.references[16] Hasmath Farzana, M.; Meenakshi, S. Photocatalytic Aptitude of Titanium Dioxide Impregnated Chitosan Beads for the Reduction of Cr(VI). Int. J. Biol. Macromol. 2015, 72, 1265–1271. https://doi.org/10.1016/J.IJBIOMAC.2014.09.029
dc.relation.references[17] Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; Liu, B. A Review on the Use of Chitosan and Chitosan Derivatives as the Bio-Adsorbents for the Water Treatment: Removal of Nitrogen-Containing Pollutants. Carbohydr. Polym. 2021, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625
dc.relation.references[18] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889
dc.relation.references[19] Nitsae, M.; Madjid, A.; Hakim, L.; Sabarudin, A. Preparation of Chitosan Beads Using Tripolyphosphate and Ethylene Glycol Diglycidyl Ether as Crosslinker for Cr(VI) Adsorption. Chem. Chem. Technol. 2016, 10, 105–114. https://doi.org/10.23939/chcht10.01.105
dc.relation.references[20] Rajeswari, A.; Amalraj, A.; Pius, A. Removal of Phosphate Using Chitosan-Polymer Composites. J. Environ. Chem. Eng. 2015, 3, 2331–2341. https://doi.org/10.1016/j.jece.2015.08.022
dc.relation.references[21] Karthikeyan, P.; Banu, H. A. T.; Meenakshi, S. Removal of Phosphate and Nitrate Ions from Aqueous Solution Using La3+ Incorporated Chitosan Biopolymeric Matrix Membrane. Int. J. Biol. Macromol. 2019, 124, 492–504. https://doi.org/10.1016/j.ijbiomac.2018.11.127
dc.relation.references[22] Azlan, K.; Wan Saime, W.N.; Lai Ken, L. Chitosan and Chemically Modified Chitosan Beads for Acid Dyes Sorption. J. Environ. Sci. 2009, 21, 296–302. https://doi.org/10.1016/S1001-0742(08)62267-6
dc.relation.references[23] Kumar, I.A.; Viswanathan, N. Fabrication of Metal Ions Cross-Linked Alginate Assisted Biocomposite Beads for Selective Phosphate Removal. J. Environ. Chem. Eng. 2017, 5, 1438–1446. https://doi.org/10.1016/j.jece.2017.02.005
dc.relation.references[24] Kljajević, L.J.; Matović, B.; Radosavljević-Mihajlović, A.; Rosić, M.; Bosković, S.; Devečerski, A. Preparation of ZrO2 and ZrO2/SiC Powders by Carbothermal Reduction of ZrSiO4. J. Alloys Compd. 2011, 509, 2203–2215. https://doi.org/10.1016/j.jallcom.2010.11.002
dc.relation.references[25] Wafiroh, S.; Abdulloh, A.; Widati, A.A. Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell. Chem. Chem. Technol. 2018, 12, 229–235. https://doi.org/10.23939/chcht12.02.229
dc.relation.references[26] Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis; 2010. https://doi.org/10.1002/9783527629565
dc.relation.references[27] Sowmya, A.; Meenakshi, S. Zr(IV) Loaded Cross-Linked Chitosan Beads with Enhanced Surface Area for the Removal of Nitrate and Phosphate. Int. J. Biol. Macromol. 2014, 69, 336–343. https://doi.org/10.1016/j.ijbiomac.2014.05.043
dc.relation.references[28] Alver, E.; Metin, A.; Çiftçi, H. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone/Zeolite Composite by Solution Blending Method. J. Inorg. Organomet. Polym. Mater. 2014, 24, 1048–1054. https://doi.org/10.1007/s10904-014-0087-z
dc.relation.references[29] Nathan, A. J.; Scobell, A. APHA AWWA 23rd EDITION; 2017; Vol. 91.
dc.relation.references[30] Thamilarasan, V.; Sethuraman, V.; Gopinath, K.; Balalakshmi, C.; Govindarajan, M.; Mothana, R.A.; Siddiqui, N.A.; Khaled, J.M.; Benelli, G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus Semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J. Clust. Sci. 2018, 29, 375–384. https://doi.org/10.1007/s10876-018-1342-1
dc.relation.references[31] Zheng, H.; Han, L.; Ma, H.; Zheng, Y.; Zhang, H.; Liu, D.; Liang, S. Adsorption Characteristics of Ammonium Ion by Zeolite 13X. J. Hazard. Mater. 2008, 158, 577–584. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.01.115
dc.relation.references[32] Alshahidy, B.A.; Abbas, A.S. Preparation and Modification of 13X Zeolite as a Heterogeneous Catalyst for Esterification of Oleic Acid. AIP Conf. Proc. 2020, 2213, 020167. https://doi.org/10.1063/5.0000171
dc.relation.references[33] Thakkar, H.; Eastman, S.; Hajari, A.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. 3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments. ACS Appl. Mater. Interfaces 2016, 8, 27753–27761. https://doi.org/10.1021/acsami.6b09647
dc.relation.references[34] Gorodylova, N.; Šulcová, P.; Bosacka, M.; Filipek, E. DTA-TG and XRD Study on the Reaction between ZrOCl2•8H2O and (NH4)2HPO4 for Synthesis of ZrP2O7. J. Therm. Anal. Calorim. 2014, 118, 1095–1100. https://doi.org/10.1007/s10973-014-3890-4
dc.relation.references[35] Elanchezhiyan, S.S.; Sivasurian, N.; Meenakshi, S. Enhancement of Oil Recovery Using Zirconium-Chitosan Hybrid Composite by Adsorptive Method. Carbohydr. Polym. 2016, 145, 103–113. https://doi.org/10.1016/j.carbpol.2016.02.038
dc.relation.references[36] Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. https://doi.org/10.1002/app.31787
dc.relation.references[37] De Lucas, A.; Uguina, A. M.; Covián, I.; Rodríguez, L. Synthesis of 13X Zeolite from Calcined Kaolins and Sodium Silicate for Use in Detergents. Ind. Eng. Chem. Res. 1992, 31, 2134–2140. https://doi.org/10.1021/ie00009a010
dc.relation.references[38] Lechert, H.; Kacirek, H. The Kinetics of Nucleation of X Zeolites. Zeolites 1993, 13, 192–200. https://doi.org/10.1016/S0144-2449(05)80277-5
dc.relation.references[39] Zhou, C.; Alshameri, A.; Yan, C.; Qiu, X.; Wang, H.; Ma, Y. Characteristics and Evaluation of Synthetic 13X Zeolite from Yunnan’s Natural Halloysite. J. Porous Mater. 2013, 20, 587–594. https://doi.org/10.1007/s10934-012-9631-9
dc.relation.references[40] Jiang, H.; Chen, P.; Luo, S.; Tu, X.; Cao, Q.; Shu, M. Synthesis of Novel Nanocomposite Fe3O4/ZrO2/Chitosan and Its Application for Removal of Nitrate and Phosphate. Appl. Surf. Sci. 2013, 284, 942–949. https://doi.org/10.1016/j.apsusc.2013.04.013
dc.relation.references[41] Nur, T.; Shim, W.G.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate Removal Using Purolite A520E Ion Exchange Resin: Batch and Fixed-Bed Column Adsorption Modelling. Int. J. Environ. Sci. Technol. 2015, 12, 1311–1320. https://doi.org/10.1007/s13762-014-0510-6
dc.relation.references[42] Liu, Q.; Hu, P.; Wang, J.; Zhang, L.; Huang, R. Phosphate Adsorption from Aqueous Solutions by Zirconium (IV) Loaded Cross-Linked Chitosan Particles. J. Taiwan Inst. Chem. Eng. 2016, 59, 311–319. https://doi.org/10.1016/j.jtice.2015.08.012
dc.relation.references[43] Ali, M.E.A. Synthesis and Adsorption Properties of Chitosan-CDTA-GO Nanocomposite for Removal of Hexavalent Chromium from Aqueous Solutions. Arab. J. Chem. 2018, 11, 1107–1116. https://doi.org/10.1016/j.arabjc.2016.09.010
dc.relation.references[44] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169–176. https://doi.org/10.23939/chcht16.02.169
dc.relation.references[45] Nuryanti, S.; Suherman; Rahmawati, S.; Amalia, M.; Santoso, T.; Muhtar, H. Langmuir and Freundlich Isotherm Equation Test on the Adsorption Process of Cu (II) Metal Ions by Cassava Peel Waste (Manihot esculenta crantz). J. Phys. Conf. Ser. 2021, 2126, 012022. https://doi.org/10.1088/1742-6596/2126/1/012022
dc.relation.references[46] Radhi, B.D.; Mohammed, W.T. TiO2 Loading on Activated Carbon: Preparation, Characterization, Desulfurization Performance and Isotherm of the Adsorption of Dibenzothiophene from Model Fuel. Egypt. J. Chem. 2022. https://doi.org/10.21608/EJCHEM.2022.109702.5003
dc.relation.references[47] Li, M.; Lu, B.; Ke, Q.-F.; Guo, Y.-J.; Guo, Y.-P. Synergetic Effect between Adsorption and Photodegradation on Nanostructured TiO2/Activated Carbon Fiber Felt Porous Composites for Toluene Removal. J. Hazard. Mater. 2017, 333, 88–98. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.019
dc.relation.references[48] Jawad, R.J.; Ismail, M.H.S.; Siajam, S.I. Adsorption of Heavy Metals and Residual Oil from Palm Oil Mill Effluent Using a Novel Adsorbent of Alginate and Mangrove Composite Beads Coated with Chitosan in a Packed Bed Column. IIUM Eng. J. 2018, 19, 1–14. https://doi.org/10.31436/iiumej.v19i1.734
dc.relation.references[49] Malekbala, M.R.; Soltani, S.M.; Yazdi, S.K.; Hosseini, S. Equilibrium and Kinetic Studies of Safranine Adsorption on Alkali-Treated Mango Seed Integuments. Int. J. Chem. Eng. Appl. 2012, 3, 160–166. https://doi.org/10.7763/ijcea.2012.v3.179
dc.relation.referencesen[1] Yang, K.; Yan, L.G.; Yang, Y.M.; Yu, S.J.; Shan, R.R.; Yu, H.Q.; Zhu, B.C.; Du, B. Adsorptive Removal of Phosphate by Mg-Al and Zn-Al Layered Double Hydroxides: Kinetics, Isotherms and Mechanisms. Sep. Purif. Technol. 2014, 124, 36–42. https://doi.org/10.1016/j.seppur.2013.12.042
dc.relation.referencesen[2] Banu, H.T.; Karthikeyan, P.; Meenakshi, S. Zr4+ Ions Embedded Chitosan-Soya Bean Husk Activated Bio-Char Composite Beads for the Recovery of Nitrate and Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 573–583. https://doi.org/10.1016/j.ijbiomac.2019.02.100
dc.relation.referencesen[3] Kamaraj, R.; Pandiarajan, A.; Jayakiruba, S.; Naushad, M.; Vasudevan, S. Kinetics, Thermodynamics and Isotherm Modeling for Removal of Nitrate from Liquids by Facile One-Pot Electrosynthesized Nano Zinc Hydroxide. J. Mol. Liq. 2016, 215, 204–211. https://doi.org/10.1016/j.molliq.2015.12.032
dc.relation.referencesen[4] Van Voorthuizen, E.M.; Zwijnenburg, A.; Wessling, M. Nutrient Removal by NF and RO Membranes in a Decentralized Sanitation System. Water Res. 2005, 39, 3657–3667. https://doi.org/10.1016/j.watres.2005.06.005
dc.relation.referencesen[5] Kuokkanen, V.; Kuokkanen, T.; Rämö, J.; Lassi, U.; Roininen, J. Removal of Phosphate from Wastewaters for Further Utilization Using Electrocoagulation with Hybrid Electrodes - Techno-Economic Studies. J. Water Process Eng. 2015, 8, e50–e57. https://doi.org/10.1016/j.jwpe.2014.11.008
dc.relation.referencesen[6] Raval, H.D.; Rana, P.S.; Maiti, S. A Novel High-Flux, Thin-Film Composite Reverse Osmosis Membrane Modified by Chitosan for Advanced Water Treatment. RSC Adv. 2015, 5, 6687–6694. https://doi.org/10.1039/P.4ra12610f
dc.relation.referencesen[7] Quan, X.; Ye, C.; Xiong, Y.; Xiang, J.; Wang, F. Simultaneous Removal of Ammonia, P and COD from Anaerobically Digested Piggery Wastewater Using an Integrated Process of Chemical Precipitation and Air Stripping. J. Hazard. Mater. 2010, 178, 326–332. https://doi.org/10.1016/j.jhazmat.2010.01.083
dc.relation.referencesen[8] Liou, Y.H.; Lo, S.L.; Lin, C.J.; Kuan, W.H.; Weng, S.C. Chemical Reduction of an Unbuffered Nitrate Solution Using Catalyzed and Uncatalyzed Nanoscale Iron Particles. J. Hazard. Mater. 2005, 127, 102–110. https://doi.org/10.1016/j.jhazmat.2005.06.029
dc.relation.referencesen[9] Rashed, M.N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Ch. 7; IntechOpen: Rijeka, 2013. https://doi.org/10.5772/54048
dc.relation.referencesen[10] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
dc.relation.referencesen[11] Hammadi, A.; Shakir, I. Adsorption Behavior of Light Naphtha Components on Zeolite (5A) and Activated Carbon. Iraqi J. Chem. Pet. Eng. 2019, 20, 27–33. https://doi.org/10.31699/IJCPE.2019.4.5
dc.relation.referencesen[12] Waleed Khalid, M.; D. Salman, S. Adsorption of Chromium Ions on Activated Carbon Produced from Cow Bones. Iraqi J. Chem. Pet. Eng. 2019, 20, 23–32. https://doi.org/10.31699/ijcpe.2019.2.4
dc.relation.referencesen[13] Choudhary, V.R.; Vaidya, S.H. Adsorption of Copper Nitrate from Solution on Silica Gel. J. Chem. Technol. Biotechnol. 1982, 32, 888–892. https://doi.org/10.1002/jctb.5030320726
dc.relation.referencesen[14] Hummadi, K.K. Optimal Operating Conditions for Adsorption of Heavy Metals from an Aqueous Solution by an Agriculture Waste. Iraqi J. Chem. Pet. Eng. 2021, 22, 27–35. https://doi.org/10.31699/ijcpe.2021.2.4
dc.relation.referencesen[15] Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and Characterization of Metal Loaded Chitosan-Alginate Biopolymeric Hybrid Beads for the Efficient Removal of Phosphate and Nitrate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 407–418. https://doi.org/10.1016/j.ijbiomac.2019.02.059
dc.relation.referencesen[16] Hasmath Farzana, M.; Meenakshi, S. Photocatalytic Aptitude of Titanium Dioxide Impregnated Chitosan Beads for the Reduction of Cr(VI). Int. J. Biol. Macromol. 2015, 72, 1265–1271. https://doi.org/10.1016/J.IJBIOMAC.2014.09.029
dc.relation.referencesen[17] Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; Liu, B. A Review on the Use of Chitosan and Chitosan Derivatives as the Bio-Adsorbents for the Water Treatment: Removal of Nitrogen-Containing Pollutants. Carbohydr. Polym. 2021, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625
dc.relation.referencesen[18] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889
dc.relation.referencesen[19] Nitsae, M.; Madjid, A.; Hakim, L.; Sabarudin, A. Preparation of Chitosan Beads Using Tripolyphosphate and Ethylene Glycol Diglycidyl Ether as Crosslinker for Cr(VI) Adsorption. Chem. Chem. Technol. 2016, 10, 105–114. https://doi.org/10.23939/chcht10.01.105
dc.relation.referencesen[20] Rajeswari, A.; Amalraj, A.; Pius, A. Removal of Phosphate Using Chitosan-Polymer Composites. J. Environ. Chem. Eng. 2015, 3, 2331–2341. https://doi.org/10.1016/j.jece.2015.08.022
dc.relation.referencesen[21] Karthikeyan, P.; Banu, H. A. T.; Meenakshi, S. Removal of Phosphate and Nitrate Ions from Aqueous Solution Using La3+ Incorporated Chitosan Biopolymeric Matrix Membrane. Int. J. Biol. Macromol. 2019, 124, 492–504. https://doi.org/10.1016/j.ijbiomac.2018.11.127
dc.relation.referencesen[22] Azlan, K.; Wan Saime, W.N.; Lai Ken, L. Chitosan and Chemically Modified Chitosan Beads for Acid Dyes Sorption. J. Environ. Sci. 2009, 21, 296–302. https://doi.org/10.1016/S1001-0742(08)62267-6
dc.relation.referencesen[23] Kumar, I.A.; Viswanathan, N. Fabrication of Metal Ions Cross-Linked Alginate Assisted Biocomposite Beads for Selective Phosphate Removal. J. Environ. Chem. Eng. 2017, 5, 1438–1446. https://doi.org/10.1016/j.jece.2017.02.005
dc.relation.referencesen[24] Kljajević, L.J.; Matović, B.; Radosavljević-Mihajlović, A.; Rosić, M.; Bosković, S.; Devečerski, A. Preparation of ZrO2 and ZrO2/SiC Powders by Carbothermal Reduction of ZrSiO4. J. Alloys Compd. 2011, 509, 2203–2215. https://doi.org/10.1016/j.jallcom.2010.11.002
dc.relation.referencesen[25] Wafiroh, S.; Abdulloh, A.; Widati, A.A. Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell. Chem. Chem. Technol. 2018, 12, 229–235. https://doi.org/10.23939/chcht12.02.229
dc.relation.referencesen[26] Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis; 2010. https://doi.org/10.1002/9783527629565
dc.relation.referencesen[27] Sowmya, A.; Meenakshi, S. Zr(IV) Loaded Cross-Linked Chitosan Beads with Enhanced Surface Area for the Removal of Nitrate and Phosphate. Int. J. Biol. Macromol. 2014, 69, 336–343. https://doi.org/10.1016/j.ijbiomac.2014.05.043
dc.relation.referencesen[28] Alver, E.; Metin, A.; Çiftçi, H. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone/Zeolite Composite by Solution Blending Method. J. Inorg. Organomet. Polym. Mater. 2014, 24, 1048–1054. https://doi.org/10.1007/s10904-014-0087-z
dc.relation.referencesen[29] Nathan, A. J.; Scobell, A. APHA AWWA 23rd EDITION; 2017; Vol. 91.
dc.relation.referencesen[30] Thamilarasan, V.; Sethuraman, V.; Gopinath, K.; Balalakshmi, C.; Govindarajan, M.; Mothana, R.A.; Siddiqui, N.A.; Khaled, J.M.; Benelli, G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus Semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J. Clust. Sci. 2018, 29, 375–384. https://doi.org/10.1007/s10876-018-1342-1
dc.relation.referencesen[31] Zheng, H.; Han, L.; Ma, H.; Zheng, Y.; Zhang, H.; Liu, D.; Liang, S. Adsorption Characteristics of Ammonium Ion by Zeolite 13X. J. Hazard. Mater. 2008, 158, 577–584. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.01.115
dc.relation.referencesen[32] Alshahidy, B.A.; Abbas, A.S. Preparation and Modification of 13X Zeolite as a Heterogeneous Catalyst for Esterification of Oleic Acid. AIP Conf. Proc. 2020, 2213, 020167. https://doi.org/10.1063/5.0000171
dc.relation.referencesen[33] Thakkar, H.; Eastman, S.; Hajari, A.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. 3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments. ACS Appl. Mater. Interfaces 2016, 8, 27753–27761. https://doi.org/10.1021/acsami.6b09647
dc.relation.referencesen[34] Gorodylova, N.; Šulcová, P.; Bosacka, M.; Filipek, E. DTA-TG and XRD Study on the Reaction between ZrOCl2•8H2O and (NH4)2HPO4 for Synthesis of ZrP2O7. J. Therm. Anal. Calorim. 2014, 118, 1095–1100. https://doi.org/10.1007/s10973-014-3890-4
dc.relation.referencesen[35] Elanchezhiyan, S.S.; Sivasurian, N.; Meenakshi, S. Enhancement of Oil Recovery Using Zirconium-Chitosan Hybrid Composite by Adsorptive Method. Carbohydr. Polym. 2016, 145, 103–113. https://doi.org/10.1016/j.carbpol.2016.02.038
dc.relation.referencesen[36] Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(e-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. https://doi.org/10.1002/app.31787
dc.relation.referencesen[37] De Lucas, A.; Uguina, A. M.; Covián, I.; Rodríguez, L. Synthesis of 13X Zeolite from Calcined Kaolins and Sodium Silicate for Use in Detergents. Ind. Eng. Chem. Res. 1992, 31, 2134–2140. https://doi.org/10.1021/ie00009a010
dc.relation.referencesen[38] Lechert, H.; Kacirek, H. The Kinetics of Nucleation of X Zeolites. Zeolites 1993, 13, 192–200. https://doi.org/10.1016/S0144-2449(05)80277-5
dc.relation.referencesen[39] Zhou, C.; Alshameri, A.; Yan, C.; Qiu, X.; Wang, H.; Ma, Y. Characteristics and Evaluation of Synthetic 13X Zeolite from Yunnan’s Natural Halloysite. J. Porous Mater. 2013, 20, 587–594. https://doi.org/10.1007/s10934-012-9631-9
dc.relation.referencesen[40] Jiang, H.; Chen, P.; Luo, S.; Tu, X.; Cao, Q.; Shu, M. Synthesis of Novel Nanocomposite Fe3O4/ZrO2/Chitosan and Its Application for Removal of Nitrate and Phosphate. Appl. Surf. Sci. 2013, 284, 942–949. https://doi.org/10.1016/j.apsusc.2013.04.013
dc.relation.referencesen[41] Nur, T.; Shim, W.G.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate Removal Using Purolite A520E Ion Exchange Resin: Batch and Fixed-Bed Column Adsorption Modelling. Int. J. Environ. Sci. Technol. 2015, 12, 1311–1320. https://doi.org/10.1007/s13762-014-0510-6
dc.relation.referencesen[42] Liu, Q.; Hu, P.; Wang, J.; Zhang, L.; Huang, R. Phosphate Adsorption from Aqueous Solutions by Zirconium (IV) Loaded Cross-Linked Chitosan Particles. J. Taiwan Inst. Chem. Eng. 2016, 59, 311–319. https://doi.org/10.1016/j.jtice.2015.08.012
dc.relation.referencesen[43] Ali, M.E.A. Synthesis and Adsorption Properties of Chitosan-CDTA-GO Nanocomposite for Removal of Hexavalent Chromium from Aqueous Solutions. Arab. J. Chem. 2018, 11, 1107–1116. https://doi.org/10.1016/j.arabjc.2016.09.010
dc.relation.referencesen[44] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169–176. https://doi.org/10.23939/chcht16.02.169
dc.relation.referencesen[45] Nuryanti, S.; Suherman; Rahmawati, S.; Amalia, M.; Santoso, T.; Muhtar, H. Langmuir and Freundlich Isotherm Equation Test on the Adsorption Process of Cu (II) Metal Ions by Cassava Peel Waste (Manihot esculenta crantz). J. Phys. Conf. Ser. 2021, 2126, 012022. https://doi.org/10.1088/1742-6596/2126/1/012022
dc.relation.referencesen[46] Radhi, B.D.; Mohammed, W.T. TiO2 Loading on Activated Carbon: Preparation, Characterization, Desulfurization Performance and Isotherm of the Adsorption of Dibenzothiophene from Model Fuel. Egypt. J. Chem. 2022. https://doi.org/10.21608/EJCHEM.2022.109702.5003
dc.relation.referencesen[47] Li, M.; Lu, B.; Ke, Q.-F.; Guo, Y.-J.; Guo, Y.-P. Synergetic Effect between Adsorption and Photodegradation on Nanostructured TiO2/Activated Carbon Fiber Felt Porous Composites for Toluene Removal. J. Hazard. Mater. 2017, 333, 88–98. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.019
dc.relation.referencesen[48] Jawad, R.J.; Ismail, M.H.S.; Siajam, S.I. Adsorption of Heavy Metals and Residual Oil from Palm Oil Mill Effluent Using a Novel Adsorbent of Alginate and Mangrove Composite Beads Coated with Chitosan in a Packed Bed Column. IIUM Eng. J. 2018, 19, 1–14. https://doi.org/10.31436/iiumej.v19i1.734
dc.relation.referencesen[49] Malekbala, M.R.; Soltani, S.M.; Yazdi, S.K.; Hosseini, S. Equilibrium and Kinetic Studies of Safranine Adsorption on Alkali-Treated Mango Seed Integuments. Int. J. Chem. Eng. Appl. 2012, 3, 160–166. https://doi.org/10.7763/ijcea.2012.v3.179
dc.relation.urihttps://doi.org/10.1016/j.seppur.2013.12.042
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2019.02.100
dc.relation.urihttps://doi.org/10.1016/j.molliq.2015.12.032
dc.relation.urihttps://doi.org/10.1016/j.watres.2005.06.005
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2014.11.008
dc.relation.urihttps://doi.org/10.1039/c4ra12610f
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.01.083
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2005.06.029
dc.relation.urihttps://doi.org/10.5772/54048
dc.relation.urihttps://doi.org/10.23939/chcht16.02.267
dc.relation.urihttps://doi.org/10.31699/IJCPE.2019.4.5
dc.relation.urihttps://doi.org/10.31699/ijcpe.2019.2.4
dc.relation.urihttps://doi.org/10.1002/jctb.5030320726
dc.relation.urihttps://doi.org/10.31699/ijcpe.2021.2.4
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2019.02.059
dc.relation.urihttps://doi.org/10.1016/J.IJBIOMAC.2014.09.029
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2021.118625
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2020.124889
dc.relation.urihttps://doi.org/10.23939/chcht10.01.105
dc.relation.urihttps://doi.org/10.1016/j.jece.2015.08.022
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2018.11.127
dc.relation.urihttps://doi.org/10.1016/S1001-0742(08)62267-6
dc.relation.urihttps://doi.org/10.1016/j.jece.2017.02.005
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2010.11.002
dc.relation.urihttps://doi.org/10.23939/chcht12.02.229
dc.relation.urihttps://doi.org/10.1002/9783527629565
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2014.05.043
dc.relation.urihttps://doi.org/10.1007/s10904-014-0087-z
dc.relation.urihttps://doi.org/10.1007/s10876-018-1342-1
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.jhazmat.2008.01.115
dc.relation.urihttps://doi.org/10.1063/5.0000171
dc.relation.urihttps://doi.org/10.1021/acsami.6b09647
dc.relation.urihttps://doi.org/10.1007/s10973-014-3890-4
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2016.02.038
dc.relation.urihttps://doi.org/10.1002/app.31787
dc.relation.urihttps://doi.org/10.1021/ie00009a010
dc.relation.urihttps://doi.org/10.1016/S0144-2449(05)80277-5
dc.relation.urihttps://doi.org/10.1007/s10934-012-9631-9
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2013.04.013
dc.relation.urihttps://doi.org/10.1007/s13762-014-0510-6
dc.relation.urihttps://doi.org/10.1016/j.jtice.2015.08.012
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2016.09.010
dc.relation.urihttps://doi.org/10.23939/chcht16.02.169
dc.relation.urihttps://doi.org/10.1088/1742-6596/2126/1/012022
dc.relation.urihttps://doi.org/10.21608/EJCHEM.2022.109702.5003
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.019
dc.relation.urihttps://doi.org/10.31436/iiumej.v19i1.734
dc.relation.urihttps://doi.org/10.7763/ijcea.2012.v3.179
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Jamka Z. N., Mohammed W. T., 2024
dc.subjectмодифікований хітозан
dc.subjectперіодична адсорбція
dc.subjectнітрат
dc.subjectцеоліт
dc.subjectцирконій
dc.subjectmodified chitosan
dc.subjectbatch adsorption
dc.subjectnitrate
dc.subjectzeolite
dc.subjectzirconium
dc.titleParametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads
dc.title.alternativeПараметричне та кінетичне дослідження видалення нітратів з води модифікованими композитними кульками з хітозану
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Jamka_Z_N-Parametric_and_Kinetic_Study_83-93.pdf
Size:
8.85 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Jamka_Z_N-Parametric_and_Kinetic_Study_83-93__COVER.png
Size:
564.36 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: