Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads
| dc.citation.epage | 93 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Хімія та хімічна технологія | |
| dc.citation.spage | 83 | |
| dc.citation.volume | 18 | |
| dc.contributor.affiliation | University of Baghdad | |
| dc.contributor.author | Jamka, Zainab N. | |
| dc.contributor.author | Mohammed, Wadood T. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-24T06:19:50Z | |
| dc.date.created | 2024-03-01 | |
| dc.date.issued | 2024-03-01 | |
| dc.description.abstract | Забруднення водних об'єктів шкідливими забруднюючими речовинами є однією з найгостріших глобальних проблем. Поточне дослідження зосереджено на розробці ефективного адсорбенту для видалення нітрат-іонів з водних розчинів. У дослідженні запропоновано модифіковані композитні хітозан-цеолітні кульки для підвищення ефективності процесу адсорбції. Цеоліт використовували для збільшення площі поверхні, а цирконій наносили на кульки для підвищення селективності щодо нітрат-аніонів. Механізм адсорбції оцінювали, характеризуючи вихідні кульки та кульки з адсорбованим сорбатом за допомогою рентгеноструктурного аналізу (XRD), інфрачервоної спектроскопії з перетворенням Фур'є (FTIR), польової емісійної сканувальної електронної мікроскопії (FESEM) та аналізу за допомогою енергодисперсійного рентгенівського аналізатора (EDX). Досліди проводили в системі періодичної дії та вивчали вплив ключових параметрів, таких як час контакту, початкова концентрація нітрат-аніонів і дозування адсорбенту на ефективність адсорбції. Результати показали, що найвищий ступінь вилучення нітрат-іонів був зафіксований на рівні 95,42 % за використання 0,2 г Cs-Ze-Zr адсорбенту з початковою концентрацією 50 мг/л і часом контакту 120 хвилин. Максимальна адсорбційна здатність щодо нітрат-іонів на виготовленій кульці становила 80,15 мг/г. Крім того, серед ізотерм Фрейндліха, Ленгмюра і Темкіна дані про рівновагу ізотерми узгоджувалися з моделлю ізотерми Фрейндліха. Кінетичні дані для адсорбції були задовільно апроксимовані псевдопершим порядком. Отримані результати чітко вказують на те, що запропонований адсорбент (Cs-Ze-Zr) може бути успішно використаний для вилучення нітрат-іонів, що підтверджується високою ефективністю вилучення й адсорбційною здатністю, отриманою в дослідженні. | |
| dc.description.abstract | The contamination of water bodies with harmful pollutants considers an aggravating global problem. The current research focuses on a developing efficient adsorbed for removing nitrate ions from aqueous solutions. The study proposed modified chitosan-zeolite composite beads to enhance the performance of the adsorption process. The zeolite was used to increase the surface area, and Zirconium was loaded on the beads to promote the selectivity for nitrate anions. The adsorption mechanism was assessed by characterizing the beads and sorbate adsorbed beads utilizing X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and analysis with an energy dispersive X-ray analyzer (EDX). The experiments were conducted in a batch system, and the effect of key parameters like contact time, initial nitrate anion concentration, and adsorbent dosage on the adsorption performance was investigated. The results demonstrated that the highest removal of nitrate ions was determined to be 95.42% at 0.2 g of Cs-Ze-Zr adsorbent with an initial concentration of 50 mg/L and a contact time of 120 minutes. The maximum adsorption capacity of the nitrate ions on the manufactured bead was 80.15 mg/g. In addition, among the Freundlich, Langmuir, and Temkin isotherms, the isotherm equilibrium data were consistent with a Freundlich isotherm model. The kinetic data for adsorption were satisfactorily fitted by a pseudo-first order. Subsequently, the results distinctly indicated that the proposed adsorbed (Cs-Ze-Zr) could be employed fruitfully in removing nitrate ions, demonstrated through the remarkable removal efficiency and adsorption capacity obtained in the study. | |
| dc.format.extent | 83-93 | |
| dc.format.pages | 11 | |
| dc.identifier.citation | Jamka Z. N. Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads / Zainab N. Jamka, Wadood T. Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 83–93. | |
| dc.identifier.citationen | Jamka Z. N. Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads / Zainab N. Jamka, Wadood T. Mohammed // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 83–93. | |
| dc.identifier.doi | doi.org/10.23939/chcht18.01.083 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111773 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія та хімічна технологія, 1 (18), 2024 | |
| dc.relation.ispartof | Chemistry & Chemical Technology, 1 (18), 2024 | |
| dc.relation.references | [1] Yang, K.; Yan, L.G.; Yang, Y.M.; Yu, S.J.; Shan, R.R.; Yu, H.Q.; Zhu, B.C.; Du, B. Adsorptive Removal of Phosphate by Mg-Al and Zn-Al Layered Double Hydroxides: Kinetics, Isotherms and Mechanisms. Sep. Purif. Technol. 2014, 124, 36–42. https://doi.org/10.1016/j.seppur.2013.12.042 | |
| dc.relation.references | [2] Banu, H.T.; Karthikeyan, P.; Meenakshi, S. Zr4+ Ions Embedded Chitosan-Soya Bean Husk Activated Bio-Char Composite Beads for the Recovery of Nitrate and Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 573–583. https://doi.org/10.1016/j.ijbiomac.2019.02.100 | |
| dc.relation.references | [3] Kamaraj, R.; Pandiarajan, A.; Jayakiruba, S.; Naushad, M.; Vasudevan, S. Kinetics, Thermodynamics and Isotherm Modeling for Removal of Nitrate from Liquids by Facile One-Pot Electrosynthesized Nano Zinc Hydroxide. J. Mol. Liq. 2016, 215, 204–211. https://doi.org/10.1016/j.molliq.2015.12.032 | |
| dc.relation.references | [4] Van Voorthuizen, E.M.; Zwijnenburg, A.; Wessling, M. Nutrient Removal by NF and RO Membranes in a Decentralized Sanitation System. Water Res. 2005, 39, 3657–3667. https://doi.org/10.1016/j.watres.2005.06.005 | |
| dc.relation.references | [5] Kuokkanen, V.; Kuokkanen, T.; Rämö, J.; Lassi, U.; Roininen, J. Removal of Phosphate from Wastewaters for Further Utilization Using Electrocoagulation with Hybrid Electrodes - Techno-Economic Studies. J. Water Process Eng. 2015, 8, e50–e57. https://doi.org/10.1016/j.jwpe.2014.11.008 | |
| dc.relation.references | [6] Raval, H.D.; Rana, P.S.; Maiti, S. A Novel High-Flux, Thin-Film Composite Reverse Osmosis Membrane Modified by Chitosan for Advanced Water Treatment. RSC Adv. 2015, 5, 6687–6694. https://doi.org/10.1039/c4ra12610f | |
| dc.relation.references | [7] Quan, X.; Ye, C.; Xiong, Y.; Xiang, J.; Wang, F. Simultaneous Removal of Ammonia, P and COD from Anaerobically Digested Piggery Wastewater Using an Integrated Process of Chemical Precipitation and Air Stripping. J. Hazard. Mater. 2010, 178, 326–332. https://doi.org/10.1016/j.jhazmat.2010.01.083 | |
| dc.relation.references | [8] Liou, Y.H.; Lo, S.L.; Lin, C.J.; Kuan, W.H.; Weng, S.C. Chemical Reduction of an Unbuffered Nitrate Solution Using Catalyzed and Uncatalyzed Nanoscale Iron Particles. J. Hazard. Mater. 2005, 127, 102–110. https://doi.org/10.1016/j.jhazmat.2005.06.029 | |
| dc.relation.references | [9] Rashed, M.N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Ch. 7; IntechOpen: Rijeka, 2013. https://doi.org/10.5772/54048 | |
| dc.relation.references | [10] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267 | |
| dc.relation.references | [11] Hammadi, A.; Shakir, I. Adsorption Behavior of Light Naphtha Components on Zeolite (5A) and Activated Carbon. Iraqi J. Chem. Pet. Eng. 2019, 20, 27–33. https://doi.org/10.31699/IJCPE.2019.4.5 | |
| dc.relation.references | [12] Waleed Khalid, M.; D. Salman, S. Adsorption of Chromium Ions on Activated Carbon Produced from Cow Bones. Iraqi J. Chem. Pet. Eng. 2019, 20, 23–32. https://doi.org/10.31699/ijcpe.2019.2.4 | |
| dc.relation.references | [13] Choudhary, V.R.; Vaidya, S.H. Adsorption of Copper Nitrate from Solution on Silica Gel. J. Chem. Technol. Biotechnol. 1982, 32, 888–892. https://doi.org/10.1002/jctb.5030320726 | |
| dc.relation.references | [14] Hummadi, K.K. Optimal Operating Conditions for Adsorption of Heavy Metals from an Aqueous Solution by an Agriculture Waste. Iraqi J. Chem. Pet. Eng. 2021, 22, 27–35. https://doi.org/10.31699/ijcpe.2021.2.4 | |
| dc.relation.references | [15] Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and Characterization of Metal Loaded Chitosan-Alginate Biopolymeric Hybrid Beads for the Efficient Removal of Phosphate and Nitrate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 407–418. https://doi.org/10.1016/j.ijbiomac.2019.02.059 | |
| dc.relation.references | [16] Hasmath Farzana, M.; Meenakshi, S. Photocatalytic Aptitude of Titanium Dioxide Impregnated Chitosan Beads for the Reduction of Cr(VI). Int. J. Biol. Macromol. 2015, 72, 1265–1271. https://doi.org/10.1016/J.IJBIOMAC.2014.09.029 | |
| dc.relation.references | [17] Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; Liu, B. A Review on the Use of Chitosan and Chitosan Derivatives as the Bio-Adsorbents for the Water Treatment: Removal of Nitrogen-Containing Pollutants. Carbohydr. Polym. 2021, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625 | |
| dc.relation.references | [18] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889 | |
| dc.relation.references | [19] Nitsae, M.; Madjid, A.; Hakim, L.; Sabarudin, A. Preparation of Chitosan Beads Using Tripolyphosphate and Ethylene Glycol Diglycidyl Ether as Crosslinker for Cr(VI) Adsorption. Chem. Chem. Technol. 2016, 10, 105–114. https://doi.org/10.23939/chcht10.01.105 | |
| dc.relation.references | [20] Rajeswari, A.; Amalraj, A.; Pius, A. Removal of Phosphate Using Chitosan-Polymer Composites. J. Environ. Chem. Eng. 2015, 3, 2331–2341. https://doi.org/10.1016/j.jece.2015.08.022 | |
| dc.relation.references | [21] Karthikeyan, P.; Banu, H. A. T.; Meenakshi, S. Removal of Phosphate and Nitrate Ions from Aqueous Solution Using La3+ Incorporated Chitosan Biopolymeric Matrix Membrane. Int. J. Biol. Macromol. 2019, 124, 492–504. https://doi.org/10.1016/j.ijbiomac.2018.11.127 | |
| dc.relation.references | [22] Azlan, K.; Wan Saime, W.N.; Lai Ken, L. Chitosan and Chemically Modified Chitosan Beads for Acid Dyes Sorption. J. Environ. Sci. 2009, 21, 296–302. https://doi.org/10.1016/S1001-0742(08)62267-6 | |
| dc.relation.references | [23] Kumar, I.A.; Viswanathan, N. Fabrication of Metal Ions Cross-Linked Alginate Assisted Biocomposite Beads for Selective Phosphate Removal. J. Environ. Chem. Eng. 2017, 5, 1438–1446. https://doi.org/10.1016/j.jece.2017.02.005 | |
| dc.relation.references | [24] Kljajević, L.J.; Matović, B.; Radosavljević-Mihajlović, A.; Rosić, M.; Bosković, S.; Devečerski, A. Preparation of ZrO2 and ZrO2/SiC Powders by Carbothermal Reduction of ZrSiO4. J. Alloys Compd. 2011, 509, 2203–2215. https://doi.org/10.1016/j.jallcom.2010.11.002 | |
| dc.relation.references | [25] Wafiroh, S.; Abdulloh, A.; Widati, A.A. Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell. Chem. Chem. Technol. 2018, 12, 229–235. https://doi.org/10.23939/chcht12.02.229 | |
| dc.relation.references | [26] Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis; 2010. https://doi.org/10.1002/9783527629565 | |
| dc.relation.references | [27] Sowmya, A.; Meenakshi, S. Zr(IV) Loaded Cross-Linked Chitosan Beads with Enhanced Surface Area for the Removal of Nitrate and Phosphate. Int. J. Biol. Macromol. 2014, 69, 336–343. https://doi.org/10.1016/j.ijbiomac.2014.05.043 | |
| dc.relation.references | [28] Alver, E.; Metin, A.; Çiftçi, H. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone/Zeolite Composite by Solution Blending Method. J. Inorg. Organomet. Polym. Mater. 2014, 24, 1048–1054. https://doi.org/10.1007/s10904-014-0087-z | |
| dc.relation.references | [29] Nathan, A. J.; Scobell, A. APHA AWWA 23rd EDITION; 2017; Vol. 91. | |
| dc.relation.references | [30] Thamilarasan, V.; Sethuraman, V.; Gopinath, K.; Balalakshmi, C.; Govindarajan, M.; Mothana, R.A.; Siddiqui, N.A.; Khaled, J.M.; Benelli, G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus Semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J. Clust. Sci. 2018, 29, 375–384. https://doi.org/10.1007/s10876-018-1342-1 | |
| dc.relation.references | [31] Zheng, H.; Han, L.; Ma, H.; Zheng, Y.; Zhang, H.; Liu, D.; Liang, S. Adsorption Characteristics of Ammonium Ion by Zeolite 13X. J. Hazard. Mater. 2008, 158, 577–584. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.01.115 | |
| dc.relation.references | [32] Alshahidy, B.A.; Abbas, A.S. Preparation and Modification of 13X Zeolite as a Heterogeneous Catalyst for Esterification of Oleic Acid. AIP Conf. Proc. 2020, 2213, 020167. https://doi.org/10.1063/5.0000171 | |
| dc.relation.references | [33] Thakkar, H.; Eastman, S.; Hajari, A.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. 3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments. ACS Appl. Mater. Interfaces 2016, 8, 27753–27761. https://doi.org/10.1021/acsami.6b09647 | |
| dc.relation.references | [34] Gorodylova, N.; Šulcová, P.; Bosacka, M.; Filipek, E. DTA-TG and XRD Study on the Reaction between ZrOCl2•8H2O and (NH4)2HPO4 for Synthesis of ZrP2O7. J. Therm. Anal. Calorim. 2014, 118, 1095–1100. https://doi.org/10.1007/s10973-014-3890-4 | |
| dc.relation.references | [35] Elanchezhiyan, S.S.; Sivasurian, N.; Meenakshi, S. Enhancement of Oil Recovery Using Zirconium-Chitosan Hybrid Composite by Adsorptive Method. Carbohydr. Polym. 2016, 145, 103–113. https://doi.org/10.1016/j.carbpol.2016.02.038 | |
| dc.relation.references | [36] Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. https://doi.org/10.1002/app.31787 | |
| dc.relation.references | [37] De Lucas, A.; Uguina, A. M.; Covián, I.; Rodríguez, L. Synthesis of 13X Zeolite from Calcined Kaolins and Sodium Silicate for Use in Detergents. Ind. Eng. Chem. Res. 1992, 31, 2134–2140. https://doi.org/10.1021/ie00009a010 | |
| dc.relation.references | [38] Lechert, H.; Kacirek, H. The Kinetics of Nucleation of X Zeolites. Zeolites 1993, 13, 192–200. https://doi.org/10.1016/S0144-2449(05)80277-5 | |
| dc.relation.references | [39] Zhou, C.; Alshameri, A.; Yan, C.; Qiu, X.; Wang, H.; Ma, Y. Characteristics and Evaluation of Synthetic 13X Zeolite from Yunnan’s Natural Halloysite. J. Porous Mater. 2013, 20, 587–594. https://doi.org/10.1007/s10934-012-9631-9 | |
| dc.relation.references | [40] Jiang, H.; Chen, P.; Luo, S.; Tu, X.; Cao, Q.; Shu, M. Synthesis of Novel Nanocomposite Fe3O4/ZrO2/Chitosan and Its Application for Removal of Nitrate and Phosphate. Appl. Surf. Sci. 2013, 284, 942–949. https://doi.org/10.1016/j.apsusc.2013.04.013 | |
| dc.relation.references | [41] Nur, T.; Shim, W.G.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate Removal Using Purolite A520E Ion Exchange Resin: Batch and Fixed-Bed Column Adsorption Modelling. Int. J. Environ. Sci. Technol. 2015, 12, 1311–1320. https://doi.org/10.1007/s13762-014-0510-6 | |
| dc.relation.references | [42] Liu, Q.; Hu, P.; Wang, J.; Zhang, L.; Huang, R. Phosphate Adsorption from Aqueous Solutions by Zirconium (IV) Loaded Cross-Linked Chitosan Particles. J. Taiwan Inst. Chem. Eng. 2016, 59, 311–319. https://doi.org/10.1016/j.jtice.2015.08.012 | |
| dc.relation.references | [43] Ali, M.E.A. Synthesis and Adsorption Properties of Chitosan-CDTA-GO Nanocomposite for Removal of Hexavalent Chromium from Aqueous Solutions. Arab. J. Chem. 2018, 11, 1107–1116. https://doi.org/10.1016/j.arabjc.2016.09.010 | |
| dc.relation.references | [44] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169–176. https://doi.org/10.23939/chcht16.02.169 | |
| dc.relation.references | [45] Nuryanti, S.; Suherman; Rahmawati, S.; Amalia, M.; Santoso, T.; Muhtar, H. Langmuir and Freundlich Isotherm Equation Test on the Adsorption Process of Cu (II) Metal Ions by Cassava Peel Waste (Manihot esculenta crantz). J. Phys. Conf. Ser. 2021, 2126, 012022. https://doi.org/10.1088/1742-6596/2126/1/012022 | |
| dc.relation.references | [46] Radhi, B.D.; Mohammed, W.T. TiO2 Loading on Activated Carbon: Preparation, Characterization, Desulfurization Performance and Isotherm of the Adsorption of Dibenzothiophene from Model Fuel. Egypt. J. Chem. 2022. https://doi.org/10.21608/EJCHEM.2022.109702.5003 | |
| dc.relation.references | [47] Li, M.; Lu, B.; Ke, Q.-F.; Guo, Y.-J.; Guo, Y.-P. Synergetic Effect between Adsorption and Photodegradation on Nanostructured TiO2/Activated Carbon Fiber Felt Porous Composites for Toluene Removal. J. Hazard. Mater. 2017, 333, 88–98. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.019 | |
| dc.relation.references | [48] Jawad, R.J.; Ismail, M.H.S.; Siajam, S.I. Adsorption of Heavy Metals and Residual Oil from Palm Oil Mill Effluent Using a Novel Adsorbent of Alginate and Mangrove Composite Beads Coated with Chitosan in a Packed Bed Column. IIUM Eng. J. 2018, 19, 1–14. https://doi.org/10.31436/iiumej.v19i1.734 | |
| dc.relation.references | [49] Malekbala, M.R.; Soltani, S.M.; Yazdi, S.K.; Hosseini, S. Equilibrium and Kinetic Studies of Safranine Adsorption on Alkali-Treated Mango Seed Integuments. Int. J. Chem. Eng. Appl. 2012, 3, 160–166. https://doi.org/10.7763/ijcea.2012.v3.179 | |
| dc.relation.referencesen | [1] Yang, K.; Yan, L.G.; Yang, Y.M.; Yu, S.J.; Shan, R.R.; Yu, H.Q.; Zhu, B.C.; Du, B. Adsorptive Removal of Phosphate by Mg-Al and Zn-Al Layered Double Hydroxides: Kinetics, Isotherms and Mechanisms. Sep. Purif. Technol. 2014, 124, 36–42. https://doi.org/10.1016/j.seppur.2013.12.042 | |
| dc.relation.referencesen | [2] Banu, H.T.; Karthikeyan, P.; Meenakshi, S. Zr4+ Ions Embedded Chitosan-Soya Bean Husk Activated Bio-Char Composite Beads for the Recovery of Nitrate and Phosphate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 573–583. https://doi.org/10.1016/j.ijbiomac.2019.02.100 | |
| dc.relation.referencesen | [3] Kamaraj, R.; Pandiarajan, A.; Jayakiruba, S.; Naushad, M.; Vasudevan, S. Kinetics, Thermodynamics and Isotherm Modeling for Removal of Nitrate from Liquids by Facile One-Pot Electrosynthesized Nano Zinc Hydroxide. J. Mol. Liq. 2016, 215, 204–211. https://doi.org/10.1016/j.molliq.2015.12.032 | |
| dc.relation.referencesen | [4] Van Voorthuizen, E.M.; Zwijnenburg, A.; Wessling, M. Nutrient Removal by NF and RO Membranes in a Decentralized Sanitation System. Water Res. 2005, 39, 3657–3667. https://doi.org/10.1016/j.watres.2005.06.005 | |
| dc.relation.referencesen | [5] Kuokkanen, V.; Kuokkanen, T.; Rämö, J.; Lassi, U.; Roininen, J. Removal of Phosphate from Wastewaters for Further Utilization Using Electrocoagulation with Hybrid Electrodes - Techno-Economic Studies. J. Water Process Eng. 2015, 8, e50–e57. https://doi.org/10.1016/j.jwpe.2014.11.008 | |
| dc.relation.referencesen | [6] Raval, H.D.; Rana, P.S.; Maiti, S. A Novel High-Flux, Thin-Film Composite Reverse Osmosis Membrane Modified by Chitosan for Advanced Water Treatment. RSC Adv. 2015, 5, 6687–6694. https://doi.org/10.1039/P.4ra12610f | |
| dc.relation.referencesen | [7] Quan, X.; Ye, C.; Xiong, Y.; Xiang, J.; Wang, F. Simultaneous Removal of Ammonia, P and COD from Anaerobically Digested Piggery Wastewater Using an Integrated Process of Chemical Precipitation and Air Stripping. J. Hazard. Mater. 2010, 178, 326–332. https://doi.org/10.1016/j.jhazmat.2010.01.083 | |
| dc.relation.referencesen | [8] Liou, Y.H.; Lo, S.L.; Lin, C.J.; Kuan, W.H.; Weng, S.C. Chemical Reduction of an Unbuffered Nitrate Solution Using Catalyzed and Uncatalyzed Nanoscale Iron Particles. J. Hazard. Mater. 2005, 127, 102–110. https://doi.org/10.1016/j.jhazmat.2005.06.029 | |
| dc.relation.referencesen | [9] Rashed, M.N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater, Ch. 7; IntechOpen: Rijeka, 2013. https://doi.org/10.5772/54048 | |
| dc.relation.referencesen | [10] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267 | |
| dc.relation.referencesen | [11] Hammadi, A.; Shakir, I. Adsorption Behavior of Light Naphtha Components on Zeolite (5A) and Activated Carbon. Iraqi J. Chem. Pet. Eng. 2019, 20, 27–33. https://doi.org/10.31699/IJCPE.2019.4.5 | |
| dc.relation.referencesen | [12] Waleed Khalid, M.; D. Salman, S. Adsorption of Chromium Ions on Activated Carbon Produced from Cow Bones. Iraqi J. Chem. Pet. Eng. 2019, 20, 23–32. https://doi.org/10.31699/ijcpe.2019.2.4 | |
| dc.relation.referencesen | [13] Choudhary, V.R.; Vaidya, S.H. Adsorption of Copper Nitrate from Solution on Silica Gel. J. Chem. Technol. Biotechnol. 1982, 32, 888–892. https://doi.org/10.1002/jctb.5030320726 | |
| dc.relation.referencesen | [14] Hummadi, K.K. Optimal Operating Conditions for Adsorption of Heavy Metals from an Aqueous Solution by an Agriculture Waste. Iraqi J. Chem. Pet. Eng. 2021, 22, 27–35. https://doi.org/10.31699/ijcpe.2021.2.4 | |
| dc.relation.referencesen | [15] Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and Characterization of Metal Loaded Chitosan-Alginate Biopolymeric Hybrid Beads for the Efficient Removal of Phosphate and Nitrate Ions from Aqueous Solution. Int. J. Biol. Macromol. 2019, 130, 407–418. https://doi.org/10.1016/j.ijbiomac.2019.02.059 | |
| dc.relation.referencesen | [16] Hasmath Farzana, M.; Meenakshi, S. Photocatalytic Aptitude of Titanium Dioxide Impregnated Chitosan Beads for the Reduction of Cr(VI). Int. J. Biol. Macromol. 2015, 72, 1265–1271. https://doi.org/10.1016/J.IJBIOMAC.2014.09.029 | |
| dc.relation.referencesen | [17] Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; Liu, B. A Review on the Use of Chitosan and Chitosan Derivatives as the Bio-Adsorbents for the Water Treatment: Removal of Nitrogen-Containing Pollutants. Carbohydr. Polym. 2021, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625 | |
| dc.relation.referencesen | [18] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants – A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889 | |
| dc.relation.referencesen | [19] Nitsae, M.; Madjid, A.; Hakim, L.; Sabarudin, A. Preparation of Chitosan Beads Using Tripolyphosphate and Ethylene Glycol Diglycidyl Ether as Crosslinker for Cr(VI) Adsorption. Chem. Chem. Technol. 2016, 10, 105–114. https://doi.org/10.23939/chcht10.01.105 | |
| dc.relation.referencesen | [20] Rajeswari, A.; Amalraj, A.; Pius, A. Removal of Phosphate Using Chitosan-Polymer Composites. J. Environ. Chem. Eng. 2015, 3, 2331–2341. https://doi.org/10.1016/j.jece.2015.08.022 | |
| dc.relation.referencesen | [21] Karthikeyan, P.; Banu, H. A. T.; Meenakshi, S. Removal of Phosphate and Nitrate Ions from Aqueous Solution Using La3+ Incorporated Chitosan Biopolymeric Matrix Membrane. Int. J. Biol. Macromol. 2019, 124, 492–504. https://doi.org/10.1016/j.ijbiomac.2018.11.127 | |
| dc.relation.referencesen | [22] Azlan, K.; Wan Saime, W.N.; Lai Ken, L. Chitosan and Chemically Modified Chitosan Beads for Acid Dyes Sorption. J. Environ. Sci. 2009, 21, 296–302. https://doi.org/10.1016/S1001-0742(08)62267-6 | |
| dc.relation.referencesen | [23] Kumar, I.A.; Viswanathan, N. Fabrication of Metal Ions Cross-Linked Alginate Assisted Biocomposite Beads for Selective Phosphate Removal. J. Environ. Chem. Eng. 2017, 5, 1438–1446. https://doi.org/10.1016/j.jece.2017.02.005 | |
| dc.relation.referencesen | [24] Kljajević, L.J.; Matović, B.; Radosavljević-Mihajlović, A.; Rosić, M.; Bosković, S.; Devečerski, A. Preparation of ZrO2 and ZrO2/SiC Powders by Carbothermal Reduction of ZrSiO4. J. Alloys Compd. 2011, 509, 2203–2215. https://doi.org/10.1016/j.jallcom.2010.11.002 | |
| dc.relation.referencesen | [25] Wafiroh, S.; Abdulloh, A.; Widati, A.A. Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell. Chem. Chem. Technol. 2018, 12, 229–235. https://doi.org/10.23939/chcht12.02.229 | |
| dc.relation.referencesen | [26] Kulprathipanja, S. Zeolites in Industrial Separation and Catalysis; 2010. https://doi.org/10.1002/9783527629565 | |
| dc.relation.referencesen | [27] Sowmya, A.; Meenakshi, S. Zr(IV) Loaded Cross-Linked Chitosan Beads with Enhanced Surface Area for the Removal of Nitrate and Phosphate. Int. J. Biol. Macromol. 2014, 69, 336–343. https://doi.org/10.1016/j.ijbiomac.2014.05.043 | |
| dc.relation.referencesen | [28] Alver, E.; Metin, A.; Çiftçi, H. Synthesis and Characterization of Chitosan/Polyvinylpyrrolidone/Zeolite Composite by Solution Blending Method. J. Inorg. Organomet. Polym. Mater. 2014, 24, 1048–1054. https://doi.org/10.1007/s10904-014-0087-z | |
| dc.relation.referencesen | [29] Nathan, A. J.; Scobell, A. APHA AWWA 23rd EDITION; 2017; Vol. 91. | |
| dc.relation.referencesen | [30] Thamilarasan, V.; Sethuraman, V.; Gopinath, K.; Balalakshmi, C.; Govindarajan, M.; Mothana, R.A.; Siddiqui, N.A.; Khaled, J.M.; Benelli, G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus Semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J. Clust. Sci. 2018, 29, 375–384. https://doi.org/10.1007/s10876-018-1342-1 | |
| dc.relation.referencesen | [31] Zheng, H.; Han, L.; Ma, H.; Zheng, Y.; Zhang, H.; Liu, D.; Liang, S. Adsorption Characteristics of Ammonium Ion by Zeolite 13X. J. Hazard. Mater. 2008, 158, 577–584. https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.01.115 | |
| dc.relation.referencesen | [32] Alshahidy, B.A.; Abbas, A.S. Preparation and Modification of 13X Zeolite as a Heterogeneous Catalyst for Esterification of Oleic Acid. AIP Conf. Proc. 2020, 2213, 020167. https://doi.org/10.1063/5.0000171 | |
| dc.relation.referencesen | [33] Thakkar, H.; Eastman, S.; Hajari, A.; Rownaghi, A. A.; Knox, J. C.; Rezaei, F. 3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments. ACS Appl. Mater. Interfaces 2016, 8, 27753–27761. https://doi.org/10.1021/acsami.6b09647 | |
| dc.relation.referencesen | [34] Gorodylova, N.; Šulcová, P.; Bosacka, M.; Filipek, E. DTA-TG and XRD Study on the Reaction between ZrOCl2•8H2O and (NH4)2HPO4 for Synthesis of ZrP2O7. J. Therm. Anal. Calorim. 2014, 118, 1095–1100. https://doi.org/10.1007/s10973-014-3890-4 | |
| dc.relation.referencesen | [35] Elanchezhiyan, S.S.; Sivasurian, N.; Meenakshi, S. Enhancement of Oil Recovery Using Zirconium-Chitosan Hybrid Composite by Adsorptive Method. Carbohydr. Polym. 2016, 145, 103–113. https://doi.org/10.1016/j.carbpol.2016.02.038 | |
| dc.relation.referencesen | [36] Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(e-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. https://doi.org/10.1002/app.31787 | |
| dc.relation.referencesen | [37] De Lucas, A.; Uguina, A. M.; Covián, I.; Rodríguez, L. Synthesis of 13X Zeolite from Calcined Kaolins and Sodium Silicate for Use in Detergents. Ind. Eng. Chem. Res. 1992, 31, 2134–2140. https://doi.org/10.1021/ie00009a010 | |
| dc.relation.referencesen | [38] Lechert, H.; Kacirek, H. The Kinetics of Nucleation of X Zeolites. Zeolites 1993, 13, 192–200. https://doi.org/10.1016/S0144-2449(05)80277-5 | |
| dc.relation.referencesen | [39] Zhou, C.; Alshameri, A.; Yan, C.; Qiu, X.; Wang, H.; Ma, Y. Characteristics and Evaluation of Synthetic 13X Zeolite from Yunnan’s Natural Halloysite. J. Porous Mater. 2013, 20, 587–594. https://doi.org/10.1007/s10934-012-9631-9 | |
| dc.relation.referencesen | [40] Jiang, H.; Chen, P.; Luo, S.; Tu, X.; Cao, Q.; Shu, M. Synthesis of Novel Nanocomposite Fe3O4/ZrO2/Chitosan and Its Application for Removal of Nitrate and Phosphate. Appl. Surf. Sci. 2013, 284, 942–949. https://doi.org/10.1016/j.apsusc.2013.04.013 | |
| dc.relation.referencesen | [41] Nur, T.; Shim, W.G.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate Removal Using Purolite A520E Ion Exchange Resin: Batch and Fixed-Bed Column Adsorption Modelling. Int. J. Environ. Sci. Technol. 2015, 12, 1311–1320. https://doi.org/10.1007/s13762-014-0510-6 | |
| dc.relation.referencesen | [42] Liu, Q.; Hu, P.; Wang, J.; Zhang, L.; Huang, R. Phosphate Adsorption from Aqueous Solutions by Zirconium (IV) Loaded Cross-Linked Chitosan Particles. J. Taiwan Inst. Chem. Eng. 2016, 59, 311–319. https://doi.org/10.1016/j.jtice.2015.08.012 | |
| dc.relation.referencesen | [43] Ali, M.E.A. Synthesis and Adsorption Properties of Chitosan-CDTA-GO Nanocomposite for Removal of Hexavalent Chromium from Aqueous Solutions. Arab. J. Chem. 2018, 11, 1107–1116. https://doi.org/10.1016/j.arabjc.2016.09.010 | |
| dc.relation.referencesen | [44] Purbasari, A.; Ariyanti, D.; Sumardiono, S.; Khairunnisa, K.; Sidharta, T. Adsorption Kinetics and Isotherms of Cu(II) and Fe(II) Ions from Aqueous Solutions by Fly Ash-Based Geopolymer. Chem. Chem. Technol. 2022, 16, 169–176. https://doi.org/10.23939/chcht16.02.169 | |
| dc.relation.referencesen | [45] Nuryanti, S.; Suherman; Rahmawati, S.; Amalia, M.; Santoso, T.; Muhtar, H. Langmuir and Freundlich Isotherm Equation Test on the Adsorption Process of Cu (II) Metal Ions by Cassava Peel Waste (Manihot esculenta crantz). J. Phys. Conf. Ser. 2021, 2126, 012022. https://doi.org/10.1088/1742-6596/2126/1/012022 | |
| dc.relation.referencesen | [46] Radhi, B.D.; Mohammed, W.T. TiO2 Loading on Activated Carbon: Preparation, Characterization, Desulfurization Performance and Isotherm of the Adsorption of Dibenzothiophene from Model Fuel. Egypt. J. Chem. 2022. https://doi.org/10.21608/EJCHEM.2022.109702.5003 | |
| dc.relation.referencesen | [47] Li, M.; Lu, B.; Ke, Q.-F.; Guo, Y.-J.; Guo, Y.-P. Synergetic Effect between Adsorption and Photodegradation on Nanostructured TiO2/Activated Carbon Fiber Felt Porous Composites for Toluene Removal. J. Hazard. Mater. 2017, 333, 88–98. https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.019 | |
| dc.relation.referencesen | [48] Jawad, R.J.; Ismail, M.H.S.; Siajam, S.I. Adsorption of Heavy Metals and Residual Oil from Palm Oil Mill Effluent Using a Novel Adsorbent of Alginate and Mangrove Composite Beads Coated with Chitosan in a Packed Bed Column. IIUM Eng. J. 2018, 19, 1–14. https://doi.org/10.31436/iiumej.v19i1.734 | |
| dc.relation.referencesen | [49] Malekbala, M.R.; Soltani, S.M.; Yazdi, S.K.; Hosseini, S. Equilibrium and Kinetic Studies of Safranine Adsorption on Alkali-Treated Mango Seed Integuments. Int. J. Chem. Eng. Appl. 2012, 3, 160–166. https://doi.org/10.7763/ijcea.2012.v3.179 | |
| dc.relation.uri | https://doi.org/10.1016/j.seppur.2013.12.042 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2019.02.100 | |
| dc.relation.uri | https://doi.org/10.1016/j.molliq.2015.12.032 | |
| dc.relation.uri | https://doi.org/10.1016/j.watres.2005.06.005 | |
| dc.relation.uri | https://doi.org/10.1016/j.jwpe.2014.11.008 | |
| dc.relation.uri | https://doi.org/10.1039/c4ra12610f | |
| dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.01.083 | |
| dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2005.06.029 | |
| dc.relation.uri | https://doi.org/10.5772/54048 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.02.267 | |
| dc.relation.uri | https://doi.org/10.31699/IJCPE.2019.4.5 | |
| dc.relation.uri | https://doi.org/10.31699/ijcpe.2019.2.4 | |
| dc.relation.uri | https://doi.org/10.1002/jctb.5030320726 | |
| dc.relation.uri | https://doi.org/10.31699/ijcpe.2021.2.4 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2019.02.059 | |
| dc.relation.uri | https://doi.org/10.1016/J.IJBIOMAC.2014.09.029 | |
| dc.relation.uri | https://doi.org/10.1016/j.carbpol.2021.118625 | |
| dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2020.124889 | |
| dc.relation.uri | https://doi.org/10.23939/chcht10.01.105 | |
| dc.relation.uri | https://doi.org/10.1016/j.jece.2015.08.022 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2018.11.127 | |
| dc.relation.uri | https://doi.org/10.1016/S1001-0742(08)62267-6 | |
| dc.relation.uri | https://doi.org/10.1016/j.jece.2017.02.005 | |
| dc.relation.uri | https://doi.org/10.1016/j.jallcom.2010.11.002 | |
| dc.relation.uri | https://doi.org/10.23939/chcht12.02.229 | |
| dc.relation.uri | https://doi.org/10.1002/9783527629565 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2014.05.043 | |
| dc.relation.uri | https://doi.org/10.1007/s10904-014-0087-z | |
| dc.relation.uri | https://doi.org/10.1007/s10876-018-1342-1 | |
| dc.relation.uri | https://doi.org/https://doi.org/10.1016/j.jhazmat.2008.01.115 | |
| dc.relation.uri | https://doi.org/10.1063/5.0000171 | |
| dc.relation.uri | https://doi.org/10.1021/acsami.6b09647 | |
| dc.relation.uri | https://doi.org/10.1007/s10973-014-3890-4 | |
| dc.relation.uri | https://doi.org/10.1016/j.carbpol.2016.02.038 | |
| dc.relation.uri | https://doi.org/10.1002/app.31787 | |
| dc.relation.uri | https://doi.org/10.1021/ie00009a010 | |
| dc.relation.uri | https://doi.org/10.1016/S0144-2449(05)80277-5 | |
| dc.relation.uri | https://doi.org/10.1007/s10934-012-9631-9 | |
| dc.relation.uri | https://doi.org/10.1016/j.apsusc.2013.04.013 | |
| dc.relation.uri | https://doi.org/10.1007/s13762-014-0510-6 | |
| dc.relation.uri | https://doi.org/10.1016/j.jtice.2015.08.012 | |
| dc.relation.uri | https://doi.org/10.1016/j.arabjc.2016.09.010 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.02.169 | |
| dc.relation.uri | https://doi.org/10.1088/1742-6596/2126/1/012022 | |
| dc.relation.uri | https://doi.org/10.21608/EJCHEM.2022.109702.5003 | |
| dc.relation.uri | https://doi.org/https://doi.org/10.1016/j.jhazmat.2017.03.019 | |
| dc.relation.uri | https://doi.org/10.31436/iiumej.v19i1.734 | |
| dc.relation.uri | https://doi.org/10.7763/ijcea.2012.v3.179 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Jamka Z. N., Mohammed W. T., 2024 | |
| dc.subject | модифікований хітозан | |
| dc.subject | періодична адсорбція | |
| dc.subject | нітрат | |
| dc.subject | цеоліт | |
| dc.subject | цирконій | |
| dc.subject | modified chitosan | |
| dc.subject | batch adsorption | |
| dc.subject | nitrate | |
| dc.subject | zeolite | |
| dc.subject | zirconium | |
| dc.title | Parametric and Kinetic Study of Nitrate Removal from Water by Modified Chitosan Composite Beads | |
| dc.title.alternative | Параметричне та кінетичне дослідження видалення нітратів з води модифікованими композитними кульками з хітозану | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1